
1

Distributed ECN-Based Congestion Control

Xiaolong Li Homayoun Yousefi’zadeh
Department of EECS

University of California, Irvine
[xiaolonl,hyousefi]@uci.edu

Abstract—Following the design philosophy of XCP, VCP is
a router-assisted congestion protocol that intends to balance
the efficiency and the fairness control in high Bandwidth-Delay
Product networks. While both VCP and XCP achieve comparable
performance, VCP represents a more practical alternative of
deployment as it only requires the use of two ECN bits in
the IP header. However, the use of two ECN bits only allows
for establishing three levels of congestion notification signaling.
Our previous work reveals that VCP suffers from relatively low
speed of convergence and exhibits a biased fairness behavior in
moderate bandwidth high delay networks due to utilizing an
insufficient amount of congestion feedback. In this paper, we
propose a distributed ECN-based congestion control protocol to
which we refer as Double-Packet Congestion Control Protocol
(DPCP). DPCP is capable of relaying a more precise conges-
tion feedback compared to earlier proposed Variable-structure
Congestion-control Protocol (VCP) yet preserving the utilization
of the two ECN bits. By distributing (extracting) congestion
related information into (from) a series of packets, DPCP is
able to circumvent the limitations of VCP related to the use of
three congestion levels encoded into two ECN bits. We implement
DPCP in Linux and demonstrate its performance improvements
compared to VCP through experimental studies.

I. I NTRODUCTION

As pointed out by [1], conventional TCP and end-to-
end TCP-based Active Queue Management (AQM) schemes
such as those proposed by [2], [3], [4], [5], [6] suffer from
inefficiency and unfairness in high Bandwidth-Delay Product
(BDP) networks. While a wide variety of techniques [7], [8],
[9], [10], [11], [12], [13], [14], [15], [16] have been developed
to address the problem, all such techniques retain an integrated
controller design and thus often fail to achieve both effi-
ciency and fairness. Alternatively, recently proposed eXplicit
Congestion-control Protocol (XCP) [17] and Variable-structure
Congestion-control Protocol (VCP) [18] take an approach in
which the fairness of congestion control is decoupled from
its efficiency. Consequently, the protocols can achieve high
utilization, low persistent queue length, insignificant packet
loss rate, and sound fairness depending on the heterogeneity
characteristics of a network.

Essentially, both XCP and VCP are router-assisted pro-
tocols. Routers are required to extract and forward conges-
tion related information to end nodes along a transmitting
path. While XCP requires routers to explicitly relay the next
transmitting rate to transmitting side, VCP only marks one
of the three levels of congestion sampled by routers to the
transmitting side of a flow. Thus, XCP typically requires the

This work was sponsored by the grants from Boeing IntegratedDefense
Systems and UC Discovery Industry-University CooperativeResearch Pro-
gram.

use of a larger number of bits in the IP header of each
packet to relay congestion information introducing significant
deployment obstacles. In contrast, VCP only uses the two
existing ECN bits in the IP header to encapsulate three
congestion levels. Given that VCP demands the use of no extra
bits in the IP header, it represents a more practical alternative
of deployment than XCP.

That said, the operation of VCP is subject to the following
shortcomings. First, VCP can only deliver limited feedbackto
end hosts since two bits can at most represent four levels of
congestion. Second, in order to avoid sudden bursts, VCP has
to control the growth of transmission rates by setting artificial
bounds. The latter, yields slow convergence speed and high
transition times. Third, due to the use of fixed parameters for
fairness control, VCP exhibits poor fairness characteristics in
high delay networks. It is important to note that any feedback-
based congestion control protocol must address the tradeoff
between the amount of the feedback information and the
practicality. It is this tradeoff that provides the motivation for
this paper.

In this paper, we propose a new congestion control pro-
tocol by extending the design of VCP. Our proposed proto-
col, Double-Packet Congestion control Protocol (DPCP) can
achieve faster convergence and significantly better fairness
characteristic than VCP in high BDP networks. In DPCP, finer-
grained congestion levels are provided to the transmittingside
without requiring the use of extra bits in IP packet header,
i.e. DPCP still uses the two ECN bits in the IP header. A
congestion level is carried by a chain of two packets and
each packet provides two bits out of four bits of information
associated with a congestion level. Utilizing a simple and
practical design, routers are made responsible for computing
and distributing congestion signaling into two packets. Atan
end node, a congestion level can be retrieved by concatenating
a group of two ECN bits together from a set of packets.

Most notably, this paper makes several key contributions.
First, we propose a novel approach to overcome the limitations
of VCP in high BDP networks by providing more accurate
feedback to the sender. While the approach defines a larger
number of congestion levels than VCP, it avoids demanding
extra bits in packet headers by utilizing a chain of packets to
carry congestion levels. Second, we propose a simple and low-
overhead yet efficient scheme for distributing and extracting
congestion related information into and/or from a chain of
packets. Finally, we implement DPCP in both ns-2 [19] and
Linux. Through experimental studies, we demonstrate that
DPCP is able to make a significant performance improvement
compared to VCP in terms of convergence speed and fairness.

2

The rest of the paper is organized as follows. In Section II,
we review the high level design methodology of VCP along
with its limitations. In Section III, we present the fundamentals
of the DPCP. Experimental studies are presented in Section
IV. Finally, we present several conclusions and discuss future
work in Section V.

II. BACKGROUND

In this section, we first review the fundamentals of VCP.
Then, we show the limitations of VCP in high BDP networks.

A. Fundamentals of VCP

Fundamentally, VCP inherits the sliding window charac-
teristic of TCP while applying a quite different window
management mechanism. In VCP, thecwnd is regulated by
different congestion control policies defined according tothe
level of congestion in the network. Three congestion levels
are defined as low-load, high-load, and overload that allow
for encoding the level of congestion into two ECN bits in the
IP packet header. VCP-capable routers frequently compute the
Load Factor (LF) and map it to one of the congestion levels
mentioned above. When a data packet arrives, each router
examines the congestion level of its upstream link carried in
the ECN bits of a packet and updates ECN bits only if its
downstream link is more congested. Finally, a receiver receives
the congestion level associated with the most congested link.
Then, the receiver signals the sender of its session with the
congestion information via acknowledgement (ACK) pack-
ets. Accordingly, a VCP sender reacts with three congestion
control policies: Multiplicative Increase (MI) in the low-load
region, Additive Increase (AI) in the high-load region, and
Multiplicative Decrease (MD) in the overload region. The MI
operation is utilized to achieve a better efficiency than that of
TCP tied to slow start phenomenon, while the AI and MD
operations are used to support the fairness characteristicof
TCP.

B. The Limitations of VCP

We open this section by noting that VCP executes a
MIAIMD policy to achieve the so-called max-min fairness
[20] characteristic. However, VCP tends to allocate more
bandwidth to flows that traverse fewer bottleneck links due
to the fact that it implements MIAIMD through the use of
a quantized representation of LF instead of its exact value
[18]. Furthermore, VCP enforces the MD policy only once
with a fixed parameter of 0.875 if an overload is detected.
After holding a decreased value ofcwnd for a Round Trip
Time (RTT), VCP applies the AI policy. However, such a
decrease is insufficient when the real value of the LF is more
than 115% calculated as the result of a parameter setting of
115 × 0.875 > 100. After that, the LF remains in the over-
load region and a subsequent AI makes the network even
more congested. As evidenced by Section IV, VCP exhibits
a fairness bias in multi-bottleneck environments, especially in
networks with large delays typical of wireless and satellite
networks.

Furthermore, VCP applies artificial bounds to its MI and
AI parameters in order to avoid sudden bursts. As a result, in
moderate bandwidth high delay networks, VCP’s bandwidth
consumption speed can be very low. As the result of applying
MI policy, VCP can even be slower than TCP affected by the
slow start phenomenon. Our previous work [21] shows that
VCP has higher transition times than XCP and TCP when the
average RTT is around 400ms or higher.

While it has been shown that increasing the number of bits
used for encoding LF can improve fairness and convergence
speed of VCP in such environments [18], such increase
will introduce significant deployment obstacles. Therefore, the
important question that we raise is whether one can use a larger
number of bits to quantize LF without requiring the use of
more than two ECN bits in the IP packet header. The answer
to this question is the subject of investigation in this paper.

III. DPCP: DOUBLE-PACKET CONGESTIONCONTROL

PROTOCOL

As an end-to-end congestion control protocol, DPCP is
focused on overcoming the limitations of VCP by utilizing
more bits in encoding the LF. Rather than demanding more bits
in a single packet header, DPCP distributes the bits necessary
for encoding the LF into a chain of packets. Each packet uses
the two ECN bits in the IP header to carry partial feedback
information associated with its chain. By concatenating the
set of ECN bits in a packet chain, DPCP allows for signaling
end nodes with a more accurate feedback than VCP without
demanding more bits in the header of an individual packet.

Although the concept of using more bits for encoding LF
is not new [22], [23], DPCP minimizes the overhead and
preserves the transparency of deploying VCP and TCP. To
that end, DPCP attempts at transparently segmenting and
reassembling the header bits used to encode LF without
changing the format of the packet. This segmentation and
reassembly introduces unique challenges of this work related
to out of order arrival of packets in a chain, partial loss
of packets in a chain, and backward compatibility to VCP.
Specifically, the key concepts of the DPCP can be subdivided
into the following:

• Segmentation and Reassembly (SR) of LF: As DPCP
distributes the LF among a chain of packets, LF needs to
be segmented and reassembled at routers and end nodes.
To keep backward compatibility, the utilized SR scheme
allows for easy exception handling and downgradability
to the original VCP.

• Packet ordering management: DPCP relies on the feed-
back distributed in a chain of packets. To retrieve the
correct LF, the relative ordering of packets has to be
assessed and managed. DPCP provides a simple and
efficient mechanism that allows for easily identifying the
packet ordering of a chain. Most importantly, there is no
need to buffer packets for maintaining the ordering of
packets belonging to a chain internally at the routers.

• Exception handling: During transmission, exceptions
such as packet loss and Out of Order (OO) packet
delivery may occur. By detecting the appropriate ordering

3

TABLE I
DPCP LF DEFINITIONS

Low Load High Load Over Load

MSP LSP LF MSP LSP LF MSP LSP LF MD Factor
01 01 < 20% 10 01 < 85% 11 01 < 105% 0.875
01 10 < 40% 10 10 < 95% 11 10 < 140% 0.6
01 11 < 80% 10 11 < 100% 11 11 < 200% 0.43

of packets at the end nodes, DPCP reacts appropriately
to exceptions in order to avoid failure. We discuss the
impacts of exceptions later in this paper.

A. DPCP Overview

DPCP employs4 bits to encode the LF allowing for defining
16 congestion levels. In DPCP, the four bits necessary to
encode an LF are distributed between two packets transmitted
consecutively. We refer the packet carrying the first part of
LF as Most Significant Packet (MSP) and the other packet as
Least Significant Packet (LSP). The MSP is sent out first. For
example, given an LF of1011, the MSP carries10 in its ECN
bits and the LSP carries11 in its ECN bits. To keep backward
compatibility with TCP, we exclude the combinations contain-
ing 00. Thus, DPCP is left with9 combinations that can be
used for encoding LF. In contrast to VCP, DPCP defines three
congestion zones with three congestion levels in each zone.
The boundaries for MIAIMD operations remain the same as
those in VCP. Consequently, in low-load and high-load zones,
DPCP grows thecwnd using both multiplicative and additive
factors as the original MIAIMD model of [20] does. While
the original MIAIMD model uses one value of LF per region,
each LF represents a range of values in DPCP.

Thus when growingcwnd, DPCP conservatively computes
increments using the upper bound of an LF. In overload zone,
DPCP cuts thecwnd with three factors to guarantee a safe
descent to the high-load zone. Table I shows the definitions of
LF and MD factors. Notably, the congestion levels are defined
for seamless transition between DPCP and VCP.

B. Packet Ordering Management

DPCP’s design introduces an integrated scheme for appro-
priately managing packet ordering. First, we note that there
is no room in the packet header for ordering information.
That mentioned, it is important to note that packet ordering
information can be captured by a binary value pointing to
either MSP or LSP. Exploring the TCP header of a packet,
we note that there are two 32-bit numbers, a sequence num-
ber (seq), and an acknowledgement number (ack)1. During
communications, both numbers can only grow at end nodes
and the relative ordering ofseq and ack barely changes.
Furthermore, modern implementations of TCP make initial
seq andack sufficiently apart from each other. Under typical
network operation scenarios, there is a slim chance to change

1As defined in TCP standard [24], every octet of data sent over aTCP
connection has a sequence number. Theseq denotes the sequence number
of the first data octet in a segment, while theack contains the value of the
next sequence number the sender of the segment is expecting to receive. The
initial value of both numbers for a connection are randomly determined when
the connection is established. After completing a three-way handshake, both
sides of a connection have the initial sequence number of others.

the relative ordering ofseq andack as both number grow. It
is this observation that forms the foundation of DPCP.

Specifically, upon the establishment of a TCP connection,
the first data packet is treated as the MSP of the first chain of
packets. To simplify the operation, DPCP utilizes the relative
ordering ofseq andack as an indication of MSP (seq > ack)
or LSP (seq < ack). Once the relative ordering is determined,
it will never be changed during transmission. There is a binary
flag MSP maintained at end nodes which flips over upon the
receipt of each packet. The sender is responsible for signaling
the routers MSP or LSP by switching theseq and theack.
The operation at the sender is described by the pseudo code
below.

Algorithm 1 Packet Ordering Manager
if MSP is TRUE then

if seq > ack then
Do nothing

else if seq < ack then
Switch seq andack

else
ack − 1

end if
else

if seq < ack then
Do nothing

else if seq > ack then
Switch seq andack

else
seq − 1

end if
end if
MSP ←∼MSP

At the receiving side, the same logic is followed for the
ACK packet processing. Note that routers do not care for ACK
packets and the maintenance of the ordering ofseq andack

for ACK packets is only for retrieving the LF at the sender.
By simply using the relative ordering of information between
seq and ack, DPCP is able to distribute LF between two
packets without needing to buffer those packets. Furthermore,
this mechanism significantly simplifies the routers operation.
Since the original ordering of transmission might not reflect
at the arrival sequence of packets due to loss or other factors,
a router might not know if a packet is the MSP or LSP for a
particular chain. Relying on the observation described above, a
router simply compares theseq andack, and directly encodes
the MSP/LSP of the current LF into the ECN bits of the current
packet. The operation described above is neat and simple
without introducing any significant overhead. Moreover, the
mechanism eliminates the need to keep a mapping between
packets and an LF. In the case of facing a tie, i.e., when the
seq value is the same as theack value, the end node simply
subtracts1 from either theack or theseq number whichever
that is supposed to be smaller. For example, for an MSP, the
sender will subtract1 from the ack to make seq > ack.
If the difference betweenseq and ack is equal to1 at the
receiving side, the TCP checksum needs to be checked. In

4

the latter case, an incorrect checksum indicates a tie. Before
further processing of the packet, DPCP recovers the original
value by adding1 to seq and/or ack number whichever is
smaller. While resolving the tie breaker introduces computing
overhead, such overhead is nearly negligible considering the
fact that facing a tie situation is extremely unlikely and that
the processing only happens at end nodes.

In next subsection, the details of encoding and decoding are
presented.

C. Encoding & Decoding

The encoding happens at both routers and end nodes. For
correct encoding, the router needs to keep track of a flag for
each flow. That is the only state that needs to be kept at the
router. Specifically, the operations associated with encoding
and decoding are presented as below. Given a router, assume
MSP1 andLSP1 are associated with the router’s downstream
link and MSP2 and LSP2 exist in the header of incoming
packets that represent the LF of the router’s most congested
upstream link.

Algorithm 2 Encoding
if seq > ack then

if MSP1 > MSP2 then
Mark ECN bits withMSP1

flag ←MSP LOW

else if MSP1 < MSP2 then
flag ←MSP HIGH

else
flag ←MSP HIGH

end if
else

if flag = MSP LOW then
Mark ECN bits withLSP1

else if flag = MSP EQ then
if LSP1 > LSP2 then

Mark ECN bits withLSP1

end if
end if

end if

The complete decoding operation happens only at end
hosts, wherecomplete means that intermediate routers can
accomplish encoding without knowing the complete value of
an LF. Initially, at the sender, the LF is set asLOW LOAD,
i.e. 0101. Upon the arrival of the first Acknowledge (ACK)
packet, the sender immediately starts regulatingcwnd without
waiting for the LSP. This will cut the response time from two
RTTs to one RTT. Once the sender gets a complete LF, DPCP
does a finer adjustment based on the new value. Specifically,
upon arrival of an MSP, the sender simply replaces the MSP
part of the saved LF with the newly arrived MSP. Meanwhile,
the sender starts adjustingcwnd conservatively under the
assumption that the LF is the highest one in the congestion
zone defined by the MSP. For example, if an MSP indicates
HIGH LOAD, then DPCP assumes the complete LF is
1011. In the subsequent operations, whenever an MSP is

updated the previous LSP is ignored and will be replaced with
11. Normally, the appearance of MSP and LSP should follow
an interleaved pattern. The case for a consecutive MSP and
LSP pair will be discussed in the next subsection.

D. Exception Handling

DPCP relies on the feedback carried by two in-order pack-
ets. Thus, DPCP must be able to handle OO transmission and
packet loss events. Specifically, DPCP provides mechanisms
to respond to the following exceptions:

• Packet Loss & OO transmission: In this case, end nodes
will receive consecutive MSPs/LSPs. Rather than at-
tempting to recover the appropriate order, DPCP uses the
higher value in MSPs to construct the LF if receiving con-
secutive MSPs. Otherwise, it ignores arriving LSPs, and
uses a pairing of saved MSP and11 to construct the LF.
Generally speaking, receiving consecutive MSPs/LSPs
is an indication of congestion. Thus, after receiving
three consecutive MSPs/LSPs, DPCP downgrades to the
original VCP by simply skipping the packet ordering
operation, i.e. no change to the packet ordering is made
and then all nodes treat packets as MSP. This behavior
allows DPCP to seamlessly convert its behavior to that of
the original VCP. After several RTTs, DPCP can resume
its normal multi-packet operation. Note that only the
sender is involved with the switching of operation be-
tween DPCP and the original VCP, while routers and the
receiving end are not even aware of it. If OO transmission
continues happening, it implies a lossy link, then DPCP
will not try to resume a multi-packet operation from the
operation of the original VCP. In such situation, a more
complicated scheme can be implemented by keeping
track of receivedseqs. Due to the limitation of space,
we omit a detail discussion of the latter scenario.

• Multipath: While it is possible that packets follow differ-
ent paths during transmission, it is unlikely that packets
are assigned to different paths in an interleaved way.
Thus from the perspective of end nodes, the arrival
pattern of packets appears to be according to anOO

transmission pattern when transmission switches paths.
Therefore, DPCP will not be ill-behaved in this case.

IV. PERFORMANCEEVALUATION

In this section, simulation studies and experimental studies
of DPCP are presented. We implement DPCP in both ns-
2 simulator and Linux kernel. Performance of DPCP and
VCP are compared in terms of efficiency and fairness. Since
DPCP is proposed to address the limitations of VCP, our
target environment is characterized by moderate bandwidth
(2− 10Mbps) high delay (200− 1000ms) links.

A. Simulation Studies

In this subsection, we compare DPCP and VCP in a
multi-bottleneck scenario with a typical parking-lot topology
consisting of four links. All of the links have a250ms one-way
delay and4Mbps bandwidth except the middle link #2 that has

5

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

U
til

iz
at

io
n

(%
)

Time (s)

VCP Long flows
VCP Local Flows

Fig. 1. VCP fails to achieve fairness over bottleneck link #0.

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

U
til

iz
at

io
n

(%
)

Time (s)

DPCP Long flows
DPCP Local Flows

Fig. 2. Bandwidth utilization of DPCP at bottleneck link #0.

a 2Mbps bandwidth. There are two types of aggregate FTP
flows traversing over the topology. The first type is referred
to as a Long Flow and represents the combined traffic of30

FTP flows traversing all of the links in the forward direction.
The second type is referred as to a Local Flow. There are
four Local Flows each of which representing 10 FTP flows
traversing each individual link in the forward direction. Except
those flows that traverse link #2 and start after1000 seconds,
all other Local Flows start at the beginning of the experiments.

Ideally, during the first 1000 seconds, both Long and Local
Flows are to equally split the bandwidth of a shared link.
Starting from1000-th second when an extra Local Flow starts
at link #2, the utilization of Long Flows at Link #0 should drop
to 25% while the utilization of Local Flows should go up to
75%. Fig. 1 shows the split of link bandwidth among Local
and Long Flows in the case of VCP. In the figure, VCP exhibits
a biased fairness characteristic splitting the bandwidth of link
#0 with a ratio of15 to 1. In contrast, DPCP demonstrates a
significantly better fairness characteristic as shown in Fig 2.

At link #2, we expect to see a near 100% bandwidth
utilization for Long Flows during the first 1000 second and
a split of 50% in the last 2000 seconds between Long and
Local Flow when the Local Flow joins. As illustrated by
Fig. 4, DPCP shows good fairness and responsiveness. To the
contrary and as shown by Fig. 3, the bandwidth split ratio
does not change even when Local Flows are turned on. The
latter observation proves that VCP fails to achieve fairness in
high BDP multiple bottleneck topologies serving flows with
heterogeneous RTTs.

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

U
til

iz
at

io
n

(%
)

Time (s)

VCP Long flows
VCP Local Flows

Fig. 3. VCP fails to achieve fairness over bottleneck link #2.

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000
U

til
iz

at
io

n
(%

)
Time (s)

DPCP Long flows
DPCP Local Flows

Fig. 4. Bandwidth utilization of DPCP at bottleneck link #2.

B. Experimental Studies

In this subsection, we describe our implementation of DPCP
in Linux kernel. The implementation approach follows that of
VCP as described in [21]. In this section, we do present our
experimental study conducted over a real testbed comparing
the performance of VCP and DPCP. Due the limitation of
space, we only present the results associated with a single
bottleneck scenario. We use a dumbbell topology, the settings
used for experiments match those of [21]. While not shown in
here, the performance of DPCP in multi-bottleneck scenarios
follows the pattern shown in our simulation studies.

Fig. 5 compares the bottleneck bandwidth utilization of VCP
and DPCP. In contrast to VCP, DPCP converges rapidly and
introduces a transition time of less than4s compared to20s
observed in the case of VCP. In addition, DPCP achieves
higher bandwidth utilization compared to VCP.

C. The Effect of Number of Exceptions

As the packet ordering scheme can well handle OO delivery,
we measure the effect of packet loss only. Note that packet
loss causes OO delivery as well. We install Nistnet network
emulator [25] to enforce packet loss. Fig. 6 shows the effects
of loss on the Average FTP Completion Time (AFCT) as
Packet Loss Rate (PLR) varies. While the performance of
both protocols degrades as the number of PLR increases,
DPCP consistently outperforms VCP since it achieves faster
convergence and higher bandwidth utilization than VCP. No-
tably, the performance of DPCP is not significantly affected
when PLR is less than 30% although DPCP is sensitive to

6

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

U
til

iz
at

io
n

(%
)

Time (s)

DPCP flows
VCP Flows

Fig. 5. A Performance Comparison of VCP and DPCP.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 F
T

P
 C

om
pl

et
io

n
T

im
e

(s
)

Packet Loss Rate (%)

DPCP flows
VCP Flows

Fig. 6. The effect of packet loss on the performance of VCP andDPCP.

packet loss. Since DPCP will downgrade to VCP when the
link is identified as a lossy link, DPCP shows a significant
performance degradation after the value of PLR exceeds 35%.
The performance gap between DPCP and VCP shrinks as PLR
gets larger.

V. CONCLUSION

In this paper, we proposed Double-Packet Congestion con-
trol Protocol (DPCP) as an extension of Variable-structure
Congestion-control Protocol (VCP). We demonstrated how
DPCP overcomes the limitations of VCP by providing a
more accurate feedback to sender. Rather than demanding
extra bits in the header of an individual packet, DPCP used
two consecutive packets to carry congestion related infor-
mation in a distributed manner. Furthermore, we proposed
a packet ordering management scheme to enable a simple,
low-complexity mechanism of segmentation and reassembly.
We also demonstrated how the scheme took advantage of
the sequence number and the acknowledgement number as
well as the checksum in TCP header to encode ordering
information. We implemented DPCP in both ns-2 and Linux
kernel. Through both simulation and experimental studies,
we demonstrated that DPCP could overcome the limitations
of VCP achieving a significant performance improvement in
terms of fairness and efficiency in high BDP networks. We
are currently working on a multi-packet version of the DPCP
that can utilize a chain of up to four packets to carry the exact
value of LF.

REFERENCES

[1] M. Goutelle, Y. Gu, and E. He, “A Survey of Transport
Protocols other than Standard TCP,” inData Transport
Research Group, 2004, work in progress, April 2004.
https://forge.gridforum.org/forum/forum.php?forum id=410.

[2] V. Jacobson, “Congestion Avoidance and Control,” inACM SIGCOMM
’88, Stanford, CA, Aug. 1988, pp. 314–329.

[3] S. Kunniyur and R. Srikant, “Analysis and design of an adaptive virtual
queue (avq) algorithm for active queue management,” inProc. of the
2001 ACM SIGCOMM Conference, 2001.

[4] K. Ramakrishnan, S. Floyd, and D. Black, “The addition ofexplicit
congestion notification (ECN) to IP,” inIETF RFC 3168, 2001.

[5] S. Floyd and V. Jacobson, “Random Early Detection gateways for
Congestion Avoidance,”IEEE/ACM Transactions on Networking, vol. 1,
no. 9, pp. 397–413, Aug 1993.

[6] S. Athuraliya, V. H. Li, S. H. Low, and Q. Yin, “REM: ActiveQueue
Management,”IEEE Network, vol. 15, no. 3, pp. 48 – 53, May/June
2001.

[7] L. Xu, K. Harfoush, and I. Rhee, “Binary Increase Congestion Control
(BIC) for Fast Long-Distance Networks,” inProc. of the Infocom 04,
2004.

[8] I. Rhee and L. Xu, “CUBIC: A New TCP-Friendly High-Speed TCP
Variant,” in Proc. of the PFLDNet’05, Feb. 2005.

[9] S. Floyd, “HighSpeed TCP for Large Congestion Windows,”Aug. 2002.
[10] D. Leith and R. Shorten, “H-TCP: TCP for High-speed and Long-

distance Networks,” inProc. of the PFLDNet’04, Feb. 2004.
[11] T. Kelly, “Scalable TCP: Improving Performance in HighSpeed

Wide Area Networks,” Feb. 2003, available at http://wwwlce.
eng.cam.ac.uk/ctk21/scalable/.

[12] C. Jin, D. Wei, and S. Low, “FAST TCP: Motivation, Architecture,
Algorithms, Performance,” inProc. of the Infocom 04, 2004.

[13] S. Bhandarkar, S. Jain, and A. Reddy, “Improving TCP Performance in
High Bandwidth High RTT Links Using Layered Congestion Control,”
in Proc. of the PFLDNet’05, Feb. 2005.

[14] B. Wydrowski and M. Zukerman, “MaxNet: A Congestion Control
Architecture for Maxmin Fairness,”IEEE Comm. Letters, vol. 6, no. 11,
pp. 512 – 514, Nov. 2002.

[15] S. Floyd, M. Allman, A. Jain, and P. Sarolahti, “Quick-Start for TCP
and IP,” in IETF RFC 4782, Jan. 2007.

[16] K. Xu, Y. Tian, N. Ansari, and S. Member, “Tcp-jersey forwireless ip
communications,”IEEE J. Select. Areas Commun, vol. 22, pp. 747–756,
2004.

[17] D. Katabi, M. Handley, and C. Rohrs, “Congestion Control for High
Bandwidth-Delay Product Networks,” inProc. ACM SIGCOMM, 2002,
Aug. 2002.

[18] Y. Xia, L. Subramanian, I. Stoica, and S. Kalyanaraman,“One More Bit
Is Enough,” inProc. ACM SIGCOMM, 2005, Aug. 2005.

[19] -, “UCB/LBNL/VINT Network Simulator - ns (version 2),”available at
www.mash.cs.berkeley.edu/ns/.

[20] D. Bertsekas and R. Gallager,Data networks (2nd ed.). Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 1992.

[21] X. Li and H. Yousefi’zadeh, “An Implementation and Experimental
Study of the Vraiable-Structure Congestion Control Protocol (VCP),”
in Proc. of the IEEE MILCOM, 2007, Oct. 2007.

[22] I. A. Qazi and T. Znati, “On the design of load factor based congestion
control protocols for next-generation networks,” inProc. of the IEEE
INFOCOM 2008, Apr. 2008.

[23] I. A. Qazi, L. L. H. Andrew, and T. Znati, “Two bigs are enough,” in
Proc. of the ACM SIGCOMM 2008, Aug. 2008.

[24] J. Postel, “Transmission Control Protocol,”RFC 793, Sept. 1981.
[25] M. Carson and D. Santay, “NIST Net-A Linux-based Network Emulation

Tool,” Computer Communication Review, June 2003.

