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Abstract— Dynamic server scheduling schemes in queuing sys-are namely Complete Sharing (CS) with no enforced capacity
tems accommodating delay-sensitive traffic need to addresie  gllocation mechanism, Complete Partitioning (CP) withaqu
tradeoff between efficiency and fairness. For delay-sensie traf- partitioning of the available buffer capacity, and ParBhahring

fic, threshold-exceeding delay or equivalently loss is useds a . ) .
measure of efficiency. gln thi)sl paper, a pair of dynamic server (PS) with a common shared and dedicated portions of therbuffe

scheduling schemes for queuing systems accommodating dela Space. A survey of the literature shows that CS achievemapti
sensitive traffic are compared. Each scheme consists of twom-  throughput-delay performance. However, it does not perfor
ponents. The first component attempts at forecasting the aiving  wel|| when accommodating greedy sources. The work of [13],
traffic patterns of the sources sharing the server bandwidthand [8], and [19] all propose simple implementations of Stat® P
the second component makes the assignment of server bandiid . L .
among the sources. The schemes utilize BFGS and resilientdia (SPS) mgthods with the_ objective C?f b_alancmg the_trade@ff b
propagation learning in perceptron neural networks to forecast tween efficiency and fairness. While implementation of éhes
the arriving traffic patterns, respectively. Once the traffic patterns  schemes is relatively simple, their performance sufferthas
are forecast, the schemes rely on water-filling to make the seer  result of relying on static partitioning. A dynamic buffeam-
bandwidth assignments max-min fair. Our simulations reveathe  53ement scheme is classified under PS methods with theyabilit
eff:c;:gg;y igrdr;:inezzﬁri ?gfgé';ggﬁ gcjf th@;giﬂﬁﬁg Server 10 adjust the buffer size of each source according to theativer
Scheduling, Delay, Loss, Fairness. buffer occupancy. The schemes of [23], [24], [10], and [4] ar
all classified under Dynamic Push Out (DPO) which is a variant
of dynamic buffer management schemes.

Other server scheduling and buffer allocation schemes that
have been extensively discussed in the literature and ceatbe

The adaptive learning power of neural networks has provegorized under the above classifications include Earliesit®
useful in various contexts of the literature of computer owm |ine First (EDF), Complete Sharing with Virtual partitiomwj
nication networks. For example, neural networks have begdsvp), and Generalized Process Sharing (GPS). Among the
successfully utilized in dynamic allocation of bandwidtr f set of articles in the literature, [7], [26], and [5] provide ap-
Variable Bit Rate (VBR) video over Asynchronous Transfesropriate overview of the latter techniques, respectiviely27]
Mode (ATM) [3]. Systems with neural network building blocksand [12], performance analysis studies of a number of buffer
are robust in the sense that occurrence of small errors dgesfanagement schemes are provided. The tradeoff between the
interfere with their proper operation. This charactetisfineu- available bandwidth and buffer space is studied in [20]. The
ral networks makes them quite suitable for forecastinditraf work of [18] and [1] are among recent literature articles-pro
patterns. viding a theoretical and an intelligent treatment of theféuf

Reducing queuing delay and packet loss is an important dganagement problem, respectively. Our works of [29] andl [31
sign issue of traffic control algorithms. For delay-sensitraf- are also classified under dynamic buffer management schemes
fic, queuing delay has a one-to-one relationship with paokst They can outperform the SPS scheme of [19] in terms of loss-
and is usually viewed as a measure of efficiency. For shamgginess tradeoff. Our work of [28] applies gradient-basack-
queuing systems, fairness needs to be taken into consa@erapropagation learning to forecast the overall queuing defay
as a trade off factor. We refer to fairness as a mean of provishared buffer.
ing each individual source with the ability to take advaeta§  In this paper, we focus on the issue of server scheduling
an appropriate portion of the available resources. Exasngfle rather than buffer management for delay-sensitive traffie
such resource include server bandwidth and/or buffer space introduce a family of server scheduling schemes classified u

Fixed Time Division Multiplexing (FTDM) and Statistical der dynamic STDM schemes. The schemes rely on neuro-
Time Division Multiplexing (STDM) are arguably two of the forecasting methods applied to individual arriving patteof a
most important server scheduling schemes of the literaifirenumber of delay-sensitive traffic sources sharing a siregees.
communication networks [15], [22]. While in FTDM eachOnce the traffic patterns are forecast, the schemes utibterw
source takes advantage of a fair portion of the server battbwifilling technique to dynamically adjust the assignment o¥se
and there is no bandwidth sharing, in STDM the unused pdrandwidth. In this paper, we use the terms server bandwidth
tion of the bandwidth assigned to each source might be usedhftl service rate interchangeably. Our schemes can be épplie
service packets generated by other sources. to both fixed- and variable-length packets.

As described in [19], [11], [16], [17], and [9], buffer mareag ~ An outline of the paper follows. In Section Il, we de-
ment schemes are classified under three main categoriese Ttseribe our proposed neural network forecasting schemesgeaf t

I. INTRODUCTION



traffic patterns. In Section Ill, we discuss the details of owenerated outputs of the neural network by adjusting the

server scheduling scheme. In Section IV, we compare the perightings of interconnections. However, it attempts teirfihg

formance of our proposed schemes together and with FTDdt the blurry effects of the gradient behavior.

server scheduling scheme. We conclude this paper in Section iterationk + 1 of resilient back-propagation learning, the

V. individual update value of each weighting function is intro
duced adaptively.

II. NEURO-FORECASTING OFPACKET TRAEFIC The adaptive update value evolves during the learning pro-

: . : . cess based on observing the error functigit] of iterationk
As pointed out in various research articles, many packgt tr%e g tiofe
|

fic sources and patterns exhibit an ON-OFF behavior. An O nd [k — 1] of iterationk — 1 as indicated by the following

OFF traffic pattern is characterized with two states. Such pa arning rule:

tern is delivering traffic at a peak rate in its active statd &sn nt Ak — 1], if ngﬁtjl] . %IZJU[_E] ~ 0
silent in its passive state. VBR video sources [2] are ambag t Aylk] = - Aglk—1], if oE[K21] oE[k] <0 (@
examples of ON-OFF traffic sources generating delay-séesti ) dwi; Owy,

traffic patterns. In this section, we propose neural-foséog Ak —1], Otherwise

techniques of ON-OFF traffic patterns. Our techniqueszetili where0 < 7~ < 1 < 5+, In other words, the adaptive learning

second order BFGS [25] and resilient back- propagauomlear (k1] OE[K
ing [21]. rule monitors the changes in the S|gn%— ws; Every

We propose the use of a fixed structure, fully connectet(!f“eI there | Ir? asgn charllge |n<(jj|cat|ng tt:jeblast;deat]? \r/]aaﬂaw
feedforward perceptron neural network for the task of fagéc . 0o large, the update value Is decreased by a factor there

ing. The perceptron network of our study consists of an inplftno sign change, the update value is slightly increasectiero
layer with six neurons, two hidden layers with twenty neu;rorjfo accelerate the convergence speed. Once the update orlue f
ach weighting function is adjusted, the weight-updatefs

in each layer, and an output layer with one neuron. The nu ri]l ol les: (1) if th o . ineidat
ber of neurons in each layer reflects our best practical fgajm ese simple rules: (1) if the error is increasing as inéa

leading to a balance between complexity and accuracy. In &}/Ia posﬂvez d(:;rl/atlve the(;/ve|ght Is decree(\jsedt bé’ t|)ts tpda
perceptron network, a neuron transfers its output as value, and (2) if the error is decreasing as indicated by aneg
tive derivative, the weight is increased by its update valtre

Zw o (g 1) f(\Pf’) (1) latter is summarized as:
—Aylk], if %’fuﬁiﬂ >0
- — : OE[k
Wherex( i |s the present output state of tii¢h neuron in layer Awij[k] = Aijlk], i aw[ﬁ] <0 ()

s andw ) is the weighting function between thjeth neuron 0, Otherwise

in Iayers — 1 and thei-th neuron in layes. Further,\pj(.s) is However, there is one exception to the rule, i.e., the previo
the combined input of thg-th neuron in layes and f is the weight-update is reverted under the following condition.
sigmoid function defined as

1 Awilk] = —Awylk—1], if ZZE=UZEH <o (p)
f(z) = pnpe (2)  Iteration ¥ of our proposed resilient back-propagation

learning scheme is then described as
The learning process of the neural network is nothing maae th

minimizing its error function. The error function of the metrk  For All Weights {

at iterationk of the learning process is defined as if (OJ(E%IT 1] %i[k > 0) then{
— 1 2 AZJ [k] - mln( + AZ][ ]v A'maa:)

ilk]

where[k] indicates the present output of the network to a given wijlk +1] = wi;[k] + Awu (k]

inputu[k] andy[k] corresponds to the actual output.
In our previous works of [29] and [31], we proposed the  €lseif(=; < 0) then{

use of first and second order BFGS gradient-based back- Ak = max(n Ak — 1], Apin)

propagation learning scheme. We noted that at the cost wijlk + 1] = w;;[k] — Aw;;[k — 1]

of higher complexity, a second order BFGS gradient-based %i[’ﬂ 0

method could outperform a first order gradient-based method Y

in terms of learning speed. In our current work, we propose else If(dE [k— 1] OE[K] _ — 0) then{

the use of resilient back-propagation [21] in addition tocsel COwiy

order Quasi-Newton BFGS learning scheme [25]. Aw;; k] = —Sign(aaik] A;lk])
The details of BFGS back-propagation learning scheme are wijlk + 1] = wi;[k] + Aw”[ ]

described in [31]. Similar to the BFGS back-propagatiomnriea }

ing scheme, the resilient back-propagation learning sehemn

overcomes the mismatch between the actual outputs and the

dEk 1] 8E‘[k




The flow of information for both learning methods is as fol- S |:>
lows. In iterationk of learning, both schemes propagate the 1
input vectoru[k] in the forward direction through the network < |:>

2
s,

—

until reaching to the output[k]. During the propagation pro-

cess, all of the combined inpuds; and output states; for each

neuron are set. In the adjustment process of the weightimg; fu

tions, the learning schemes propagate the output layer terro

the preceding layer via the existing connections and refheat S E>
operation until reaching the input layer. In other wordstpoiti

error moves from the output layer -just in the opposite dire€ig. 1. Quad source queuing system used for assignment setier band-

tion of the movement of the original information- one layéer avidth.

a time until reaching the input layer. In iteratiérof the learn-

ing, the neural network input vectark] consists of samples following CP scheme. Further, the buffer space is assumed to
Y[k — 8] through?[k — 1] of the actual traffic pattern. The dif- be large enough warranting that there would be no loss due to
ference between samplgk| of the actual traffic pattern and thebuffer overflow. However, each source can accrue loss as the
neural network outpuj[£] is then used to adjust the weightingresult of delay, i.e., packets arrived within a time epocvetta
functions of the network accordingly. In the nextiteratisam- be serviced or else they are lost.

ple 9[k — 8] of the actual traffic pattern is discarded, samples We propose the use of water-filling approach to assign the
Y[k — 7] through?[k] of the actual traffic pattern are used aavailable server bandwidth among the sources. We utilige th
the new input vector, and samplgk + 1] is used as the new following notation during an epoch with lengfk to describe
actual output. The neural network continues processingemahe water-filling approach.

information in consecutive iterations of the learning phastil o IW[K]: The input rate of the-th source at timé:.

the errorE[k] is less than a specified bouad Once the error . O [k]: The output rate of thé-th source at timé:.

is within the specified bound the self-generated output of the o Q()[k]: The queuing rate of theth source at timé.

neural network can be used to forecast a given traffic pattern, B()[k]: The number of queued packets of thth source
The network can independently self-generate samples by dis at timek.

carding the oldest input sample, shifting the input samples . 1(9): The loss rate of théth source at the end of epoch.
one, and using its output as the most recent input sampleeSin , B(: The dedicated server bandwidth of thth source.

the neural network is ut|I|Z|ng Slngld function, we assutime For a given mu|t|p|e source queuing system accommodaﬁing

traffic pattern is active if the generated output of the newe&  sources, let us assume that sourée generating packets with
work is above the threshold of5 and passive otherwise. Athe ratel([k] during a time epoch with lengti, i.e., k €

continuous sequence of learning is carried even after the ng| ... K}, Then, the queue size of sourcat timek + 1 is

work is trained considering the fact that the network cary onjescribed as

predict a small number of iterations at any time indeperigent 4 4 ,

before the output error exceeds the acceptable error baund BOk+1] = BY[K] + QK] (7
The number of samples required for the first time training qfhe loss rate of sourciat the end of epoch is identified as

the neural network depends on the complexity of the dynam-

ics of the traffic pattern. The time complexity and the space ‘ K K

complexity of BFGS back-propagation scheme of [29] are re- LW =310k — > 0D k] (8)

spectivelyO(N) andO(N?) whereN is the number of weight- k=1 k=1

ing functions in the network andis the number of iterations. soyrce; is guaranteed not to experience any packet loss due to

Similar complexity terms for resilient back-propagaticheme delay by the end of epoch if

are respectively identified &(.N) andO(N). However, the

=

number of iterations for resilient back-propogation learning is ot @ K @)
usually smaller than the similar quantity for BFGS learning Z I'k] = Z O"[K] 9)
k=1 k=1
I1l. SERVER SCHEDULING UTILIZING WATER-FILLING Hence, sourcé requests a dedicated server bandwidth in per

The main idea of our server scheduling scheme revolveacket per time unit in a given time epoch as

around partitioning the available server bandwidth of aatha K 1)

buffer among a number of traffic sources according to thair tr B = M (10)
fic generation patterns. Prediction of the traffic genergpiat- K

tern can be done utilizing the neuro-forecasting schem8sof For an ordered set oB(Y) < ... < B our proposed
tion 1. water-filling approach assigns a dedicated portion of tihneese

Consider the general assignment of a single server bartiwigandwidths() to source during the given epoch as
with capacityCp in bits per time unit for the queuing system
illustrated in Fig. 1. Packet sizes are assumed to be fixed apgse 1: IfCp > Z;'Lzl B
L bits long. Therefore, the server capacity in packets peg tim
unit is expressed a§p = | %2 |. The buffer space is shared b =BU | 1<i<n (11)



Case 2: IfCP < Z?:l B(J) Double Intermittency Map (DIM)
0 { BW | 1<i<h 1 i
b =4 cpoS pw ' (12) /
—5— , h+1<i<n 08 ."T:A
1 // !
whereh is an integer satisfying the following condition //.)/_ . /
0.6 — DIM
-
Cp— h BW > /1/ 77777 Y=X
pm < Cr %75) < g+ (13) o yA / —
0< h <n-1 /- /
A 0.2 ’~ |
for B(O) = 0. /
We observe that the water-filling approach of Equation (12) 0 . 1 . .
starts by dividing the server bandwidth equally among all of 0 0.2 04 06 d o8 1
then sources until the first source reaches its requested serve x

bandwidthB™), then it fixes the assigned server bandwidth for
the first source td3(") and divides the remaining unallocatedy , A sample drawing of the double intermittency map. Bgend IM
server bandwidth among the remaining sources equally, andlcates the path traversed by the map through consedteiations.
so on. Consequently, the sources with lower requestedrserve
bandwidth are more likely to receive their requested server
bandwidth in full while the other sources receive equalebaf parameters; = 0.01, o = 0.05, m = 5,¢1 = 1.73, co =
the remaining server bandwidth guaranteed not to be less t1?47.49 to obtain different traffic patterns for different sources.
the assigned shares of the sources fully receiving theirested The self-similar traffic pattern generated by a number ohsuc
server bandwidth. We note that our proposed water-filling smaps can be thought of as a delay-sensitive VBR video pattern
lution is max-min fair according to definition of [14]. The-so We note that the volumes of traffic generated by different
lution has a linear complexity and is hence quite practicahf sources are not the same because of using a different num-
an implementation stand point. In [30], we also prove thet ttber of per source packet generators. The traffic generated by
water-filling solution provided above is the solution to gtio each source is collected and sent to a shared buffer. Based on
mal resource allocation problem for a class of piecewisealin utilizing the CP buffer allocation scheme, the shared hiffe
utility functions. Because the same resource allocatioblem partitioned into four per source dedicated portions. Angy
can be applied to the current bandwidth allocation problgen, packets are sentto the dedicated portion allocated to threso
conclude that our proposed water-filling approach is ogtima While delay-sensitive packets are assumed not to be logibdue
buffer overflow, they are lost if not serviced by the end ofdim
V. SIMULATION RESULTS epoch. At the output of the buffer, our proposed server sahed

In this section, we evaluate the performance of our ser/E¥ scheme is applied. )
scheduling method by applying it to a quad source systemwe compare the performance of three dlfferer!t server
where the traffic of the sources consist of artificial traffie-p Scheduling schemes, namely, FTDM and two dynamic STDM

terns generated by0, 20, 30, and 60 individual double in- Schemes. We note that in FTDM, a round-robin service
termittency map packet generators. In order to generate séfheduling scheme is applied to four dedicated buffersieger
similar traffic patterns, we utilize double intermittencppis]. Pandwidthwill be wasted if there is no packet ready to bestran
According to what is reported in [6], the map generates a seﬁF'tt?d- In thg two STDM schem'es, the server ban'dW|dth is
similar traffic pattern. An individual double intermittgnmap  2sSigned relying on BFGS or resilient back-propagatiomaeu
generates traffic at a peak rate when it is active and becornes'grecasting schemes in conjunction with the water-filliagutt
tive as soon as the state variable of the describing chaatc nPf Section lll. Each of the last twq methods has a potentlal_ to
goes beyond a threshold value. The source becomes passivegerform FTDM scheme by relying on forecasting the arriv-

soon as the state variable goes below the threshold value. 1} traffic patterns. The process of utilizing our proposgs d
describing equation of double intermittency map is namic server scheduling scheme works as follows. We utilize

an independent neural network per an aggregated traffierpatt
€1 + z[k] + ciz[k]™ : 0<uz[k] <d Originally, we allow the neural networks to learn the dynesni
olk+1] = { —eo + x[k] +c2(1 —z[k])™ : d<=z[k] <1 of the underlying traffic patterns. During the original leiag
(14) period, FTDM server scheduling is utilized. Once the neural
wherex[k] represents the discrete state variable of the map ametworks have learned the dynamics of the traffic patteres, w
the rest of the symbols represent various parameters with firoceed with applying consecutive epochs of server schedul
propertyc; = “(j};d. Fig. 2 illustrates a sample drawing ofing. At the beginning of each epoch, individual portionslod t
double intermittency map. As observed in the figure, thaiterserver bandwidth are assigned proportional to the arrig&l p
tive map requires multiple samples to move from one segmeatn of the sources and utilizing the water-filling approath
to another. We select initial conditions in the rangergf€  Section Ill. The assignments remain in effect for as long as
[0.1,0.3] along with a fixed threshold value @f = 0.7 and none of the conditions below is violated: (1) the forecasgtin




errors remain within the acceptable threshold boan) the
number of samples predicted ahead is not passed the movi
average of accurately predicted samples in all of the ptevio
epochs, and (3) the current epoch has not ended. If consglitio
(1) or (2) above are violated in the middle of the epoch, thte de
icated portions of the buffer space are reset to the defaluleg

of FTDM scheme for the rest of the epoch. Server bandwidth
assigned according to the packet arrival pattern of thecesur
at the beginning of the next epoch and so on.

In order to evaluate the efficiency and fairness of differ
ent scenarios, we compare their overall and their most\assi
source loss rates together. Once more, we only considey-dela
related loss events, i.e., packets that are not transnattéee
end of epoch. Our experiments span over different choices
service rate and a moderately loaded queuing system. Irxeur e
periments, we rely on the same discrete time scales for heth Eig. 4. Plots of single source delay-caused loss versusalizen service rate
neural network and the traffic generating intermittency snap for the quad source queuing system using FTDM, BF-STDM, aBeSRDM

Fig. 3 and Fig. 4 respectively show plots of total packet loS§ver scheduling.
and the most passive source packet loss rate versus nogthaliz
se_rvice rate for the quad source gueuing system. The abbreviy is worth mentioning that reducing the epoch length de-
ations BF-STDM and RB-STDM in the figures are used 10 d@yeases the overall and single source loss rates of both DNS
note our proposed water-filling STDM schemes utilizing BFGR,ethods at a higher cost of server scheduling. Further, e no
learning and resilient back-propagation learning, reBpelg. ¢ the performance of different methods are very diffeean
the result of having to work with a heavily utilized system.

LE+04 3 In what follows, we mention some of the practical findings in
the implementation of our experiments. We note that the-orig

4 nal convergence of the learning scheme is time consuming be-
\ cause of the rich dynamics of the traffic pattern. In addijtadh

\ = of the convergence results of BF-STDM are strongly affected

1.E+04

1E+03 ~—

—e—FTDM
1.E+02 N —aA—BF-STDM

\\ —=—RB-STDM

1.E+01

Loss Probability (x1.0E-05)

1.E+00
1 2 3 4 5 6 7 8 9 10

Normalized Service Rate

L
; 1E+03

—a— BF-STDM by the choice of initial conditions of the weighting funat®
N —=—RB-STD and the minimum acceptable error boundOur observation
LE02 L \\ is somewhat different in the case of RB-STDM. While the lat-
\'\.‘\ ter method is not very sensitive to the choice of initial cend
4 1 | tions of the weighting functions, the effects of the accblgta
error bound: remain significant. We have observed that set-
8 ting e = 0.1 and the initial values of the weighting functions
randomly betweer.01 and0.09 yields best practical results
while avoiding biasing and saturation. The remaining paam
_ _ _ ters of resilient back-propagation learning are set aéogrib
Fig.3. Pl o ttal packet delay caused 03 versus amsece (et s proposed in [21]. We have also observed that thorssand
server scheduling. of samples in the original learning period are required. Ad-
ditionally, we have observed that the speed of convergefice o
The packetized simulation results have been obtained fromrasilient back-propagation is usually better than that BES
iterative algorithm with a total number of one million itéens  back-propagation learning for the same choices of traffte pa
per choice of server bandwidth. In each case, the fit is takins and initial conditions.
over the discrete intervals with acceptable accuracy ddipre
tion. To consider practical overhead of managing the buffer
select an epoch length 8000 samples.

It is clearly observed from the figures that under BF-STDM In this paper, we provided a dynamic server scheduling
and RB-STDM schemes, the total and per source loss rate ca@oheme as an application of adaptive neuro-forecasting. We
pared to FTDM scheme are reduced. The results shown undglized BFGS and resilient back-propagation learningescés
our dynamic STDM scenarios are interpreted as the eviderine fixed structure neural network to forecast traffic patter
that the tradeoff between fairness and efficiency has been Based on our forecasting results, we provided dynamic serve
dressed. Comparing the results of FTDM and dynamic STDbtheduling schemes to improve the delay performance agStat
schemes show the higher efficiency of the latter two methodigal Time Division Multiplexing while considering the faiess
We also observe that both fairness and efficiency charatitari issue. Our dynamic STDM schemes relied on the water-filling
of the results of RB-STDM scenario outperform the results afpproach. Our experimentation utilized a multiple souteegy
BF-STDM scenario. ing system accommodating artificially generated selfdsimi

Loss Probability (x1.0E-05)
]

1E+01

1 2 3 4 5 6 7

Normalized Service Rate
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traffic patterns resembling VBR video traffic. We compare th28] H. Yousefizadeh, “A Neural-Based Technique for Estiimg Self-

performance of different server scheduling schemes and con  Similar Traffic Average Queving Delay,” IEEE Communicasdretiers,
. ctober .
cluded that our dynamic STDM schemes were able to addressj H. vousefizadeh, E.A. Jonckheere, J.A. Silvester,fiting Neural Net-
the trade off between fairness and delay. works to Reduce Packet Loss in Self-Similar Teletrafficé?at,” In Proc.
of IEEE ICC, 2003.
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