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Abstract— Dynamic server scheduling schemes in queuing sys-
tems accommodating delay-sensitive traffic need to addressthe
tradeoff between efficiency and fairness. For delay-sensitive traf-
fic, threshold-exceeding delay or equivalently loss is usedas a
measure of efficiency. In this paper, a pair of dynamic server
scheduling schemes for queuing systems accommodating delay-
sensitive traffic are compared. Each scheme consists of two com-
ponents. The first component attempts at forecasting the arriving
traffic patterns of the sources sharing the server bandwidthand
the second component makes the assignment of server bandwidth
among the sources. The schemes utilize BFGS and resilient back-
propagation learning in perceptron neural networks to forecast
the arriving traffic patterns, respectively. Once the traffic patterns
are forecast, the schemes rely on water-filling to make the server
bandwidth assignments max-min fair. Our simulations reveal the
efficiency and fairness characteristics of the schemes.

Index Terms— Neuro-Forecasting, Water-Filling, Server
Scheduling, Delay, Loss, Fairness.

I. I NTRODUCTION

The adaptive learning power of neural networks has proven
useful in various contexts of the literature of computer commu-
nication networks. For example, neural networks have been
successfully utilized in dynamic allocation of bandwidth for
Variable Bit Rate (VBR) video over Asynchronous Transfer
Mode (ATM) [3]. Systems with neural network building blocks
are robust in the sense that occurrence of small errors does not
interfere with their proper operation. This characteristic of neu-
ral networks makes them quite suitable for forecasting traffic
patterns.

Reducing queuing delay and packet loss is an important de-
sign issue of traffic control algorithms. For delay-sensitive traf-
fic, queuing delay has a one-to-one relationship with packetloss
and is usually viewed as a measure of efficiency. For shared
queuing systems, fairness needs to be taken into consideration
as a trade off factor. We refer to fairness as a mean of provid-
ing each individual source with the ability to take advantage of
an appropriate portion of the available resources. Examples of
such resource include server bandwidth and/or buffer space.

Fixed Time Division Multiplexing (FTDM) and Statistical
Time Division Multiplexing (STDM) are arguably two of the
most important server scheduling schemes of the literatureof
communication networks [15], [22]. While in FTDM each
source takes advantage of a fair portion of the server bandwidth
and there is no bandwidth sharing, in STDM the unused por-
tion of the bandwidth assigned to each source might be used to
service packets generated by other sources.

As described in [19], [11], [16], [17], and [9], buffer manage-
ment schemes are classified under three main categories. These

are namely Complete Sharing (CS) with no enforced capacity
allocation mechanism, Complete Partitioning (CP) with equal
partitioning of the available buffer capacity, and PartialSharing
(PS) with a common shared and dedicated portions of the buffer
space. A survey of the literature shows that CS achieves optimal
throughput-delay performance. However, it does not perform
well when accommodating greedy sources. The work of [13],
[8], and [19] all propose simple implementations of Static PS
(SPS) methods with the objective of balancing the tradeoff be-
tween efficiency and fairness. While implementation of these
schemes is relatively simple, their performance suffers asthe
result of relying on static partitioning. A dynamic buffer man-
agement scheme is classified under PS methods with the ability
to adjust the buffer size of each source according to the overall
buffer occupancy. The schemes of [23], [24], [10], and [4] are
all classified under Dynamic Push Out (DPO) which is a variant
of dynamic buffer management schemes.

Other server scheduling and buffer allocation schemes that
have been extensively discussed in the literature and can becat-
egorized under the above classifications include Earliest Dead-
line First (EDF), Complete Sharing with Virtual partitioning
(CSVP), and Generalized Process Sharing (GPS). Among the
set of articles in the literature, [7], [26], and [5] providean ap-
propriate overview of the latter techniques, respectively. In [27]
and [12], performance analysis studies of a number of buffer
management schemes are provided. The tradeoff between the
available bandwidth and buffer space is studied in [20]. The
work of [18] and [1] are among recent literature articles pro-
viding a theoretical and an intelligent treatment of the buffer
management problem, respectively. Our works of [29] and [31]
are also classified under dynamic buffer management schemes.
They can outperform the SPS scheme of [19] in terms of loss-
fairness tradeoff. Our work of [28] applies gradient-basedback-
propagation learning to forecast the overall queuing delayof a
shared buffer.

In this paper, we focus on the issue of server scheduling
rather than buffer management for delay-sensitive traffic.We
introduce a family of server scheduling schemes classified un-
der dynamic STDM schemes. The schemes rely on neuro-
forecasting methods applied to individual arriving patterns of a
number of delay-sensitive traffic sources sharing a single server.
Once the traffic patterns are forecast, the schemes utilize water-
filling technique to dynamically adjust the assignment of server
bandwidth. In this paper, we use the terms server bandwidth
and service rate interchangeably. Our schemes can be applied
to both fixed- and variable-length packets.

An outline of the paper follows. In Section II, we de-
scribe our proposed neural network forecasting schemes of tele-
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traffic patterns. In Section III, we discuss the details of our
server scheduling scheme. In Section IV, we compare the per-
formance of our proposed schemes together and with FTDM
server scheduling scheme. We conclude this paper in Section
V.

II. N EURO-FORECASTING OFPACKET TRAFFIC

As pointed out in various research articles, many packet traf-
fic sources and patterns exhibit an ON-OFF behavior. An ON-
OFF traffic pattern is characterized with two states. Such pat-
tern is delivering traffic at a peak rate in its active state and is
silent in its passive state. VBR video sources [2] are among the
examples of ON-OFF traffic sources generating delay-senstivie
traffic patterns. In this section, we propose neural-forecasting
techniques of ON-OFF traffic patterns. Our techniques utilize
second order BFGS [25] and resilient back-propagation learn-
ing [21].

We propose the use of a fixed structure, fully connected,
feedforward perceptron neural network for the task of forecast-
ing. The perceptron network of our study consists of an input
layer with six neurons, two hidden layers with twenty neurons
in each layer, and an output layer with one neuron. The num-
ber of neurons in each layer reflects our best practical findings
leading to a balance between complexity and accuracy. In our
perceptron network, a neuron transfers its output as
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in layer s − 1 and thei-th neuron in layers. Further,Ψ(s)
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the combined input of thej-th neuron in layers andf is the
sigmoid function defined as
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The learning process of the neural network is nothing more than
minimizing its error function. The error function of the network
at iterationk of the learning process is defined as

E[k] =
1

2
(y[k] − ϑ[k])2 (3)

whereϑ[k] indicates the present output of the network to a given
inputu[k] andy[k] corresponds to the actual output.

In our previous works of [29] and [31], we proposed the
use of first and second order BFGS gradient-based back-
propagation learning scheme. We noted that at the cost
of higher complexity, a second order BFGS gradient-based
method could outperform a first order gradient-based method
in terms of learning speed. In our current work, we propose
the use of resilient back-propagation [21] in addition to second
order Quasi-Newton BFGS learning scheme [25].

The details of BFGS back-propagation learning scheme are
described in [31]. Similar to the BFGS back-propagation learn-
ing scheme, the resilient back-propagation learning scheme
overcomes the mismatch between the actual outputs and the

generated outputs of the neural network by adjusting the
weightings of interconnections. However, it attempts at filtering
out the blurry effects of the gradient behavior.

In iterationk + 1 of resilient back-propagation learning, the
individual update value of each weighting function is intro-
duced adaptively.

The adaptive update value evolves during the learning pro-
cess based on observing the error functionE[k] of iterationk

andE[k − 1] of iterationk − 1 as indicated by the following
learning rule:
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where0 < η− < 1 < η+. In other words, the adaptive learning
rule monitors the changes in the sign of∂E[k−1]

∂wij
.
∂E[k]
∂wij

. Every
time there is a sign change indicating the last update value was
too large, the update value is decreased by a factorη−. if there
is no sign change, the update value is slightly increased in order
to accelerate the convergence speed. Once the update value for
each weighting function is adjusted, the weight-update follows
these simple rules: (1) if the error is increasing as indicated
by a positive derivative, the weight is decreased by its update
value, and (2) if the error is decreasing as indicated by a nega-
tive derivative, the weight is increased by its update value. The
latter is summarized as:

∆wij [k] =











−∆ij [k], if ∂E[k]
∂wij

> 0

∆ij [k], if ∂E[k]
∂wij

< 0

0, Otherwise

(5)

However, there is one exception to the rule, i.e., the previous
weight-update is reverted under the following condition.

∆wij [k] = −∆wij [k − 1], if ∂E[k−1]
∂wij

∂E[k]
∂wij

< 0 (6)

Iteration k of our proposed resilient back-propagation
learning scheme is then described as

For All Weights {

if (∂E[k−1]
∂wij

.
∂E[k]
∂wij

> 0) then{

∆ij [k] = min(η+.∆ij [k − 1], ∆max)

∆wij [k] = −sign(∂E[k]
∂wij

.∆ij [k])

wij [k + 1] = wij [k] + ∆wij [k]
}

else if(∂E[k−1]
∂wij

.
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< 0) then{

∆ij [k] = max(η−.∆ij [k − 1], ∆min)
wij [k + 1] = wij [k] − ∆wij [k − 1]
∂E[k]
∂wij

= 0

}

else if(∂E[k−1]
∂wij

.
∂E[k]
∂wij

= 0) then{

∆wij [k] = −sign(∂E[k]
∂wij

.∆ij [k])

wij [k + 1] = wij [k] + ∆wij [k]
}

}
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The flow of information for both learning methods is as fol-
lows. In iterationk of learning, both schemes propagate the
input vectoru[k] in the forward direction through the network
until reaching to the outputϑ[k]. During the propagation pro-
cess, all of the combined inputsΨj and output statesxj for each
neuron are set. In the adjustment process of the weighting func-
tions, the learning schemes propagate the output layer error to
the preceding layer via the existing connections and repeatthe
operation until reaching the input layer. In other words, output
error moves from the output layer -just in the opposite direc-
tion of the movement of the original information- one layer at
a time until reaching the input layer. In iterationk of the learn-
ing, the neural network input vectoru[k] consists of samples
ϑ[k − 8] throughϑ[k − 1] of the actual traffic pattern. The dif-
ference between sampleϑ[k] of the actual traffic pattern and the
neural network outputy[k] is then used to adjust the weighting
functions of the network accordingly. In the next iteration, sam-
ple ϑ[k − 8] of the actual traffic pattern is discarded, samples
ϑ[k − 7] throughϑ[k] of the actual traffic pattern are used as
the new input vector, and sampleϑ[k + 1] is used as the new
actual output. The neural network continues processing more
information in consecutive iterations of the learning phase until
the errorE[k] is less than a specified boundε. Once the error
is within the specified boundε, the self-generated output of the
neural network can be used to forecast a given traffic pattern.
The network can independently self-generate samples by dis-
carding the oldest input sample, shifting the input samplesby
one, and using its output as the most recent input sample. Since
the neural network is utilizing sigmoid function, we assumethe
traffic pattern is active if the generated output of the neural net-
work is above the threshold of0.5 and passive otherwise. A
continuous sequence of learning is carried even after the net-
work is trained considering the fact that the network can only
predict a small number of iterations at any time independently
before the output error exceeds the acceptable error boundε.

The number of samples required for the first time training of
the neural network depends on the complexity of the dynam-
ics of the traffic pattern. The time complexity and the space
complexity of BFGS back-propagation scheme of [29] are re-
spectivelyO(N) andO(N2) whereN is the number of weight-
ing functions in the network andι is the number of iterations.
Similar complexity terms for resilient back-propagationscheme
are respectively identified asO(ιN) andO(N). However, the
number of iterationsι for resilient back-propogation learning is
usually smaller than the similar quantity for BFGS learning.

III. SERVER SCHEDULING UTILIZING WATER-FILLING

The main idea of our server scheduling scheme revolves
around partitioning the available server bandwidth of a shared
buffer among a number of traffic sources according to their traf-
fic generation patterns. Prediction of the traffic generation pat-
tern can be done utilizing the neuro-forecasting schemes ofSec-
tion II.

Consider the general assignment of a single server bandwidth
with capacityCB in bits per time unit for the queuing system
illustrated in Fig. 1. Packet sizes are assumed to be fixed and
L bits long. Therefore, the server capacity in packets per time
unit is expressed asCP = ⌊CB

L
⌋. The buffer space is shared
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Fig. 1. Quad source queuing system used for assignment of theserver band-
width.

following CP scheme. Further, the buffer space is assumed to
be large enough warranting that there would be no loss due to
buffer overflow. However, each source can accrue loss as the
result of delay, i.e., packets arrived within a time epoch have to
be serviced or else they are lost.

We propose the use of water-filling approach to assign the
available server bandwidth among the sources. We utilize the
following notation during an epoch with lengthK to describe
the water-filling approach.

• I(i)[k]: The input rate of thei-th source at timek.
• O(i)[k]: The output rate of thei-th source at timek.
• Q(i)[k]: The queuing rate of thei-th source at timek.
• B(i)[k]: The number of queued packets of thei-th source

at timek.
• L(i): The loss rate of thei-th source at the end of epoch.
• B(i): The dedicated server bandwidth of thei-th source.

For a given multiple source queuing system accommodatingn

sources, let us assume that sourcei is generating packets with
the rateI(i)[k] during a time epoch with lengthK, i.e., k ∈
{1, · · · , K}. Then, the queue size of sourcei at timek + 1 is
described as

B(i)[k + 1] = B(i)[k] + Q(i)[k] (7)

The loss rate of sourcei at the end of epoch is identified as

L(i) =

K
∑

k=1

I(i)[k] −

K
∑

k=1

O(i)[k] (8)

Sourcei is guaranteed not to experience any packet loss due to
delay by the end of epoch if

K
∑

k=1

I(i)[k] =

K
∑

k=1

O(i)[k] (9)

Hence, sourcei requests a dedicated server bandwidth in per
packet per time unit in a given time epoch as

B(i) =

∑K

k=1 I(i)[k]

K
(10)

For an ordered set ofB(1) ≤ · · · ≤ B(n), our proposed
water-filling approach assigns a dedicated portion of the server
bandwidthb(i) to sourcei during the given epoch as

Case 1: IfCP ≥
∑n

j=1 B(j)

b(i) = B(i) , 1 ≤ i ≤ n (11)
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Case 2: IfCP <
∑n

j=1 B(j)

b(i) =

{

B(i) , 1 ≤ i ≤ h
CP −

∑

h

j=1
B(j)

n−h
, h + 1 ≤ i ≤ n

(12)

whereh is an integer satisfying the following condition

B(h) ≤
CP −

∑

h

j=0
B(j)

n−h
≤ B(h+1) (13)

0 ≤ h ≤ n − 1

for B(0) △
= 0.

We observe that the water-filling approach of Equation (12)
starts by dividing the server bandwidth equally among all of
then sources until the first source reaches its requested server
bandwidthB(1), then it fixes the assigned server bandwidth for
the first source toB(1) and divides the remaining unallocated
server bandwidth among the remaining sources equally, and
so on. Consequently, the sources with lower requested server
bandwidth are more likely to receive their requested server
bandwidth in full while the other sources receive equal shares of
the remaining server bandwidth guaranteed not to be less than
the assigned shares of the sources fully receiving their requested
server bandwidth. We note that our proposed water-filling so-
lution is max-min fair according to definition of [14]. The so-
lution has a linear complexity and is hence quite practical from
an implementation stand point. In [30], we also prove that the
water-filling solution provided above is the solution to an opti-
mal resource allocation problem for a class of piecewise linear
utility functions. Because the same resource allocation problem
can be applied to the current bandwidth allocation problem,we
conclude that our proposed water-filling approach is optimal.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of our server
scheduling method by applying it to a quad source system
where the traffic of the sources consist of artificial traffic pat-
terns generated by10, 20, 30, and 60 individual double in-
termittency map packet generators. In order to generate self-
similar traffic patterns, we utilize double intermittency map [6].
According to what is reported in [6], the map generates a self-
similar traffic pattern. An individual double intermittency map
generates traffic at a peak rate when it is active and becomes ac-
tive as soon as the state variable of the describing chaotic map
goes beyond a threshold value. The source becomes passive as
soon as the state variable goes below the threshold value. The
describing equation of double intermittency map is

x[k+1] =

{

ǫ1 + x[k] + c1x[k]m : 0 ≤ x[k] ≤ d

−ǫ2 + x[k] + c2(1 − x[k])m : d ≤ x[k] ≤ 1
(14)

wherex[k] represents the discrete state variable of the map and
the rest of the symbols represent various parameters with the
propertyc1 = 1−ǫ1−d

dm . Fig. 2 illustrates a sample drawing of
double intermittency map. As observed in the figure, the itera-
tive map requires multiple samples to move from one segment
to another. We select initial conditions in the range ofx0 ∈
[0.1, 0.3] along with a fixed threshold value ofd = 0.7 and
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Fig. 2. A sample drawing of the double intermittency map. Thelegend IM
indicates the path traversed by the map through consecutiveiterations.

parametersǫ1 = 0.01, ǫ2 = 0.05, m = 5, c1 = 1.73, c2 =
267.49 to obtain different traffic patterns for different sources.
The self-similar traffic pattern generated by a number of such
maps can be thought of as a delay-sensitive VBR video pattern.

We note that the volumes of traffic generated by different
sources are not the same because of using a different num-
ber of per source packet generators. The traffic generated by
each source is collected and sent to a shared buffer. Based on
utilizing the CP buffer allocation scheme, the shared buffer is
partitioned into four per source dedicated portions. Arriving
packets are sent to the dedicated portion allocated to the source.
While delay-sensitive packets are assumed not to be lost dueto
buffer overflow, they are lost if not serviced by the end of time
epoch. At the output of the buffer, our proposed server schedul-
ing scheme is applied.

We compare the performance of three different server
scheduling schemes, namely, FTDM and two dynamic STDM
schemes. We note that in FTDM, a round-robin service
scheduling scheme is applied to four dedicated buffers. Server
bandwidth will be wasted if there is no packet ready to be trans-
mitted. In the two STDM schemes, the server bandwidth is
assigned relying on BFGS or resilient back-propagation neuro-
forecasting schemes in conjunction with the water-filling result
of Section III. Each of the last two methods has a potential to
outperform FTDM scheme by relying on forecasting the arriv-
ing traffic patterns. The process of utilizing our proposed dy-
namic server scheduling scheme works as follows. We utilize
an independent neural network per an aggregated traffic pattern.
Originally, we allow the neural networks to learn the dynamics
of the underlying traffic patterns. During the original learning
period, FTDM server scheduling is utilized. Once the neural
networks have learned the dynamics of the traffic patterns, we
proceed with applying consecutive epochs of server schedul-
ing. At the beginning of each epoch, individual portions of the
server bandwidth are assigned proportional to the arrival pat-
tern of the sources and utilizing the water-filling approachof
Section III. The assignments remain in effect for as long as
none of the conditions below is violated: (1) the forecasting
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errors remain within the acceptable threshold boundε, (2) the
number of samples predicted ahead is not passed the moving
average of accurately predicted samples in all of the previous
epochs, and (3) the current epoch has not ended. If conditions
(1) or (2) above are violated in the middle of the epoch, the ded-
icated portions of the buffer space are reset to the default values
of FTDM scheme for the rest of the epoch. Server bandwidth is
assigned according to the packet arrival pattern of the sources
at the beginning of the next epoch and so on.

In order to evaluate the efficiency and fairness of differ-
ent scenarios, we compare their overall and their most passive
source loss rates together. Once more, we only consider delay-
related loss events, i.e., packets that are not transmittedat the
end of epoch. Our experiments span over different choices of
service rate and a moderately loaded queuing system. In our ex-
periments, we rely on the same discrete time scales for both the
neural network and the traffic generating intermittency maps.

Fig. 3 and Fig. 4 respectively show plots of total packet loss
and the most passive source packet loss rate versus normalized
service rate for the quad source queuing system. The abbrevi-
ations BF-STDM and RB-STDM in the figures are used to de-
note our proposed water-filling STDM schemes utilizing BFGS
learning and resilient back-propagation learning, respectively.
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Fig. 3. Plots of total packet delay-caused loss versus normalized service rate
for the quad source queuing system using FTDM, BF-STDM, and RB-STDM
server scheduling.

The packetized simulation results have been obtained from an
iterative algorithm with a total number of one million iterations
per choice of server bandwidth. In each case, the fit is taken
over the discrete intervals with acceptable accuracy of predic-
tion. To consider practical overhead of managing the buffer, we
select an epoch length of5000 samples.

It is clearly observed from the figures that under BF-STDM
and RB-STDM schemes, the total and per source loss rate com-
pared to FTDM scheme are reduced. The results shown under
our dynamic STDM scenarios are interpreted as the evidence
that the tradeoff between fairness and efficiency has been ad-
dressed. Comparing the results of FTDM and dynamic STDM
schemes show the higher efficiency of the latter two methods.
We also observe that both fairness and efficiency characteristics
of the results of RB-STDM scenario outperform the results of
BF-STDM scenario.
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Fig. 4. Plots of single source delay-caused loss versus normalized service rate
for the quad source queuing system using FTDM, BF-STDM, and RB-STDM
server scheduling.

It is worth mentioning that reducing the epoch length de-
creases the overall and single source loss rates of both DNS
methods at a higher cost of server scheduling. Further, we note
that the performance of different methods are very different as
the result of having to work with a heavily utilized system.

In what follows, we mention some of the practical findings in
the implementation of our experiments. We note that the origi-
nal convergence of the learning scheme is time consuming be-
cause of the rich dynamics of the traffic pattern. In addition, all
of the convergence results of BF-STDM are strongly affected
by the choice of initial conditions of the weighting functions
and the minimum acceptable error boundε. Our observation
is somewhat different in the case of RB-STDM. While the lat-
ter method is not very sensitive to the choice of initial condi-
tions of the weighting functions, the effects of the acceptable
error boundε remain significant. We have observed that set-
ting ε = 0.1 and the initial values of the weighting functions
randomly between0.01 and0.09 yields best practical results
while avoiding biasing and saturation. The remaining parame-
ters of resilient back-propagation learning are set according to
what is proposed in [21]. We have also observed that thousands
of samples in the original learning period are required. Ad-
ditionally, we have observed that the speed of convergence of
resilient back-propagation is usually better than that of BFGS
back-propagation learning for the same choices of traffic pat-
terns and initial conditions.

V. CONCLUSION

In this paper, we provided a dynamic server scheduling
scheme as an application of adaptive neuro-forecasting. We
utilized BFGS and resilient back-propagation learning schemes
in a fixed structure neural network to forecast traffic patterns.
Based on our forecasting results, we provided dynamic server
scheduling schemes to improve the delay performance of Statis-
tical Time Division Multiplexing while considering the fairness
issue. Our dynamic STDM schemes relied on the water-filling
approach. Our experimentation utilized a multiple source queu-
ing system accommodating artificially generated self-similar
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traffic patterns resembling VBR video traffic. We compared the
performance of different server scheduling schemes and con-
cluded that our dynamic STDM schemes were able to address
the trade off between fairness and delay.
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