
1

Secure Overlay Routing Using Key Pre-Distribution:
A Linear Distance Optimization Approach

Mohammed Gharib, Student Member, IEEE, Homayoun Yousefi’zadeh, Senior Member, IEEE,
and Ali Movaghar, Senior Member, IEEE

Abstract—Key pre-distribution algorithms have recently
emerged as efficient alternatives of key management in today’s
secure communications landscape. Secure routing techniques
using key pre-distribution algorithms require special algorithms
capable of finding optimal secure overlay paths. To the best of
our knowledge, the literature of key pre-distribution systems is
still facing a major void in proposing optimal overlay routing
algorithms. In the literature work, traditional routing algorithms
are typically used twice to find a NETWORK layer path from
the source node to the destination and then to find required
cryptographic paths. In this paper, we model the problem of
secure routing using weighted directed graphs and propose a
boolean linear programming (LP) problem to find the optimal
path. Albeit the fact that the solutions to boolean LP problems are
of much higher complexities, we propose a method for solving our
problem in polynomial time. In order to evaluate its performance
and security measures, we apply our proposed algorithm to a
number of recently proposed symmetric and asymmetric key
pre-distribution methods. The results show that our proposed al-
gorithm offers great network performance improvements as well
as security enhancements when augmenting baseline techniques.

Index Terms—Overlay Routing, Underlay Routing, Linear Op-
timization, Shortest Path, Directed Graphs, Key Pre-Distribution.

I. INTRODUCTION

CRYPTOGRAPHY, as a cornerstone of secure communi-
cations, requires the use of effective key management

algorithms in conjunction with routing algorithms. Trivial
secure communications between an arbitrary pair of network
nodes requires each node to store n − 1 pairwise keys in
the case of symmetric cryptography and n − 1 public keys
in the case of asymmetric cryptography where n represents
the number of network nodes. Storing such large number
of keys is not efficient if practical at all in large networks.
Key pre-distribution schemes, especially the recently proposed
algorithms of [1], [2], [3], [4] all attempt at offering more
effective alternatives requiring less resources.

Key pre-distribution schemes suggest storing a small num-
ber of keys, say k, at each node from a key pool containing all
keys. Such set of keys is named a key ring and is pre-loaded to
a node at the initialization phase of the network. Most of the

M. Gharib is with the Department of Computer Engineering, Sharif Univer-
sity of Technology, Tehran, Iran and was a visiting Scholar at the California
Institute for Telecommunications and Information Technology, University of
California, Irvine. E-mail: gharib@ce.sharif.edu

H. Yousefi’zadeh is with the Center for Pervasive Communications and
Computing, University of California Irvine. E-mail: hyousefi@uci.edu

A. Movaghar is with the Department of Computer Engineering, Sharif
University of Technology, Tehran, Iran. E-mail: movaghar@sharif.edu

key pre-distribution schemes choose the keys randomly [5],
[4], [6] but there are several others that attempt at choosing
keys in smarter ways [1], [2], [3], [7]. Since each node stores
just a few keys, there may not be a direct secure path among
some nodes. In that case, a chain of nodes in which there is a
direct path between each adjacent pair form a cryptographic
path from the source node to the destination node.

A key pool for key pre-distribution schemes that is built
based on symmetric cryptography concepts contains secret
pairwise keys. The size of the key pool in addition to the
key ring size directly affect cryptographic connectivity of a
network. In order to be able to establish a secure communi-
cation path, a source node has to find a network layer path
to a destination node first. Then, two adjacent nodes forming
a network layer hop check whether or not they have at least
one key in common. If so, they can communicate securely.
Otherwise, they have to find a cryptographic path amongst
themselves. In this paper, we refer to the network layer as
the underlay layer and the cryptographic layer as the overlay
layer. The source node encrypts a message using a pairwise
key agreed with its overlay neighbor and sends the message
to the overlay neighbor. The neighbor, in turn, decrypts the
message and encrypts it with the pairwise key agreed with
the next node on the overlay path. This will be repeated till
the message reaches the destination node. The number of
intermediate decryption-encryption steps is a very important
security factor considered for choosing a key pre-distribution
method. Trivially, longer overlay paths cause larger numbers
of intermediate decryption-encryption steps.

In the case of building key pre-distribution algorithms based
on asymmetric cryptography, the key pool has to contain the
public keys of all nodes. Thus, the key pool size is equal
to the number of nodes, n. In this case, the source node
has to first find an overlay path in order to establish secure
communication with the destination. The next step is to find an
underlay path for each hop within the overlay path. Clearly, the
message is decrypted and encrypted just by the intermediate
nodes on the overlay path and all other nodes which participate
in routing just see the encrypted message.

It is observed that routing using key pre-distribution
schemes needs a two layer algorithm capable of finding the
underlay path following the corresponding overlay path. In
order to find an overlay path to other nodes, each node has
to ask other nodes either directly or through intermediary
trusted nodes for the IDs of their stored keys implying an
already established trust relationship among nodes. One of the
inherent problems of this approach is that an adversary node

2

may advertise incorrect information in order to insert itself
inside a chosen path and then conduct possible attacks.

The main contribution of this paper is proposing a secure
routing algorithm jointly optimizing underlay and overlay
paths using key pre-distribution schemes but not requiring
explicit trust of other network nodes. More specifically, the
contributions of this paper are: i) modeling a network us-
ing key pre-distribution schemes with directed and weighted
graphs, ii) proposing a boolean LP problem for optimal
overlay routing in the resulting network graph, iii) analytically
reducing the boolean LP problem to a relaxed LP problem
and thereby solving the boolean LP in polynomial time,
and v) evaluating network performance, security, and energy
consumption characteristics of the proposed algorithm for
both symmetric and asymmetric key pre-distribution methods
operating on top of on-demand routing protocols.

We model a network with a weighted directed graph in
which all edges and vertices have their own cost. Then, we
propose a secure routing algorithm for the modeled graph
using a boolean LP problem. The objective function of our
proposed boolean LP problem appears as a linear combination
of the overlay and underlay distance. We propose a method
to solve this boolean LP problem in polynomial time and
show that it is in the general form of a two layer optimal
routing for any kind of directed or undirected graph weighted
or non-weighted. Hence, our proposed algorithm could be
used for secure routing in any network using any key pre-
distribution scheme. In order to evaluate the performance and
security strength of the proposed algorithm, we apply it to
a number of asymmetric and symmetric key pre-distribution
schemes proposed in [4], [3], and [2]. Experimental results
show that our algorithm improves network performance and
enhances network security. The performance metrics evaluated
in this work are throughput, delivery completion times, routing
control traffic, required storage in each node, and energy
consumed for encryption/decryption. The main security metric
is the average number of intermediate decryption-encryption
steps. As a second security metric, we consider the number
of compromised nodes required in order for an attacker to
compromise the secrecy of the whole network.

The rest of the paper is organized as follows. Related work
is presented in Section II. In Section III, we describe the
general problem of overlay routing, introduce our specific
formulation of the problem along with the solution to the prob-
lem, and the associated analytical work. Experimental results
are reported in Section IV. Section V contains the conclusion
of our work and a description of its target applications. Finally,
Appendix A offers the proof of optimality for the proposed
algorithm of Section III.

II. RELATED WORK

Key pre-distribution schemes are categorized into determin-
istic and probabilistic algorithms. In both categories, each
network node is pre-loaded with several keys chosen from
a key pool in the initialization phase.

Deterministic key pre-distribution algorithms ensure that
there is at least one common key between each pair of

neighboring nodes. Assuming the total number of network
nodes is n, a trivial deterministic method pre-loads each
node with n − 1 keys. Choi [8], Zhu [9], Çamtepe [1], and
Ruj [10] propose different deterministic key pre-distribution
schemes. Generally, deterministic key pre-distribution schemes
are not scalable and need a rather large storage space. Hence,
probabilistic key pre-distribution schemes are preferred over
deterministic schemes.

Eschenauer and Gligor in [5] propose the first probabilistic
key pre-distribution algorithm in which each pair of neigh-
boring nodes have a common key with a specific probability.
The main disadvantage of the basic probabilistic key pre-
distribution is that if an attacker compromises several nodes,
many links may be potentially rendered insecure. In [6], Chan
proposes a more secure algorithm of establishing secure links
only between nodes that have at least a given number of com-
mon keys. Liu and Ning [11] propose storing bivariate poly-
nomials instead of keys requiring neighboring nodes to have
at least one common polynomial. Bechkit [3], Ruj [2], and
Çamtepe [1] propose different key pre-distribution schemes
based on combinatorial design and the use of symmetric cryp-
tography techniques in which the same keys are used for both
encryption and decryption. Other relevant key pre-distribution
schemes using asymmetric cryptography techniques in which
public-private key pairs are used for encryption and decryption
include those proposed in [4], [12], [13].

According to the national institute of standards and technol-
ogy (NIST), the key length in an asymmetric algorithm has to
be at least twice the length of an equivalent strength symmetric
algorithm. Hence, many of the proposed key pre-distribution
algorithms use symmetric key cryptography. However, the
main advantage of asymmetric schemes is that having a com-
promised node only locally affects the cryptographic neighbors
of that node. Moreover, updating a path only requires updating
the underlay paths corresponding to cryptographic hops on the
overlay path.

In the rest of this section, we describe some of the details
of three key pre-distribution schemes used in performance
evaluation. Those are symmetric unital key pre-distribution
(UKP) [3] and strong Steiner trade (SST) [2] as well as
probabilistic asymmetric key pre-distribution (PAKP) [4].

A. Symmetric Key Pre-Distribution Methods

Balanced incomplete block design (BIBD) [14] is a com-
binatorial design methodology used in key pre-distribution
schemes. BIBD arranges v distinct key objects of a key pool
into b different blocks each block representing a key ring
assigned to a node. Each BIBD design is expressed with a
quintuplet (v, b, r, k, λ) where v is the number of keys, b is
the number of key rings, r is the number of nodes sharing a
key, and k is the number of keys in each key ring. Further,
each pair of distinct keys occur together in exactly λ blocks.
Any BIBD design can be expressed with the equivalent tuple
(v, k, λ) because the relationship bk = vr always holds.

1) Unital Key Pre-Distribution: Unital design is a special
case of BIBD design using variable m to represent the design
as (m3 + 1,m + 1, 1). Bechkit [3] proposes a key pre-

3

distribution method based on unital design suggesting to pre-
load each node with t completely disjoint blocks. Referred
to as t-UKP method, the method guarantees that the total
number of nodes is at most b/2 with each distinct pair
sharing between zero to t2 common keys. It is shown that
increasing the value of t in t-UKP method leads to increasing
the probability of sharing pairwise keys between nodes but
decreasing the security strength of the network because each
node receives more keys. It is important to note that there is
a practical disadvantage in implementing t-UKP method due
to the difficulty of designing unitals for large values of m.

2) Strong Steiner Trade: Combinatorial trade or bitrade
expressed by t − (v, k) consists of sets T = {T1, T2} where
both T1 and T2 contain m blocks of size k chosen from a finite
set Π such that the blocks of T1 and T2 are completely disjoint.
In addition, each set t chosen from Π occurs in exactly the
same number of blocks of T1 as those of T2. A trade is called
Steiner if each set t chosen from Π is repeated at most once
in any of the sets T1 and T2. Furthermore, such Steiner trade
is said to be strong if any block in T1 and any block in T2
intersect each other in at most two elements.

Ruj [2] proposes a method to construct SSTs and proves
that the proposed construction method results in a 2− (qk, k)
SSTs where q is a prime number. According to the proposed
algorithm, two distinct neighboring nodes can communicate
securely if each one of them is from a different set T1 or T2
and if they store at least two common keys.

B. Probabilistic Asymmetric Key Pre-Distribution Method

Gharib et al. propose [4] the PAKP method. The method
offers a statistical guarantee of cryptographic network connec-
tivity with an average cryptographic path length in the order
of O(logk n). The authors suggest forming a key pool from
the public key of nodes and pre-loading each node with a
small number of randomly chosen public keys, say k with
k << n, instead of pre-loading each node with one public key
for each network node. Given the number of network nodes
n, they prove that storing O(

√
n) keys results in requiring just

one intermediate decryption-encryption step in average while
offering a security strength comparable to that of the method
of [8].

Table I compares some of the performance and security
characteristics of different key pre-distribution methods.

III. OVERLAY ROUTING

We open this section by noting that secure message ex-
change using key pre-distribution forms an overlay layer which
can be modeled as a graph. It is important to realize that each
hop in an overlay path may consist of several underlay hops.
Hence, solving the routing problem requires an algorithm to
find the shortest path between a source-destination pair in the
overlay network and then find a corresponding underlay path
for each overlay hop. Furthermore, the problem for asymmetric
key pre-distribution algorithms is more challenging than their
symmetric counter parts because secure links between nodes
are directional. In symmetric key pre-distribution schemes,
each pair of nodes have a bidirectional secure link if they

have a pairwise key. Otherwise, there is no direct secure link
between them. In this section, we define the secure routing
problem of asymmetric schemes and note that they can be
applied to symmetric key pre-distribution schemes by making
the links bidirectional.

A. Model Description

Secure message exchange by means of probabilistic asym-
metric key management introduces an overlay network in
which an overlay layer rides on top of the underlay layer. The
overlay layer also referred to as the cryptographic layer is
formed by the key pre-distribution scheme. It can be modeled
with a directed k-regular graph in which each vertex represents
a node in the network and each directed edge, eij , that
connects node i to node j represents a stored public key of
node j in node i. The underlay routing can be modeled as a
unit disk graph (UDG) [15].

The goal is then to find the best path from a source node
s to a destination node d. The best path is the path on which
both security and performance are optimally measured. The
security measure in this context is the number of intermediate
decryption-encryption steps that are to be minimized. The
performance metric is the shortest underlay path between
the source node and the destination node. In this paradigm,
security is typically deemed more important than performance.
In order to provide a general treatment of the problem, we
introduce a tuning parameter, i.e., the vertex cost cl that
controls the weight of security versus performance. In this
context, the overall path length is the performance metric while
the number of intermediate decryption-encryption steps is the
security metric. Choosing a high vertex cost results in a higher
cost for longer overlay paths. As a result, the path with a
smaller number of decryption-encryption steps, i.e., a shorter
overlay path length, is chosen as the optimal path.

Fig. 1 illustrates an example of routing in overlay networks.
Light blue links show the underlay connections and directed
red links represent the overlay connections. For clarity, not
all overlay links are shown in the figure. In order to send a
message to its destination node, a source node has to first
find an overlay path. There may be several overlay paths from
the source node toward the destination. Two such paths are
shown in the figure. While the first overlay path reaches the
destination through nodes 2 and 3, the second path reaches it
through node 5. In the first path, any cryptographic (overlay)
hop is formed by just one underlay hop. In the second path, the
underlay path for the first cryptographic hop from the source
node to node 5, is 2Õ3Õ4 where nodes 2, 3, and 4 are underlay
neighboring nodes. The red overlay links are directed, i.e.,
node 1 is able to send a secure message to node 5 directly but
not vice versa.

Next, we model the problem with a boolean LP problem and
then propose a method to solve this problem in polynomial
time, no worse than the time complexity associated with
solving the relaxed LP problem without boolean constraints.
To model the problem, the network is considered as a k-
regular directed graph G(V,E) in which V and E represent
sets of vertices and edges, respectively. This graph represents

4

TABLE I: A comparison of key pre-distribution schemes of interest to this paper.

Scheme Type Storage Link Communication Captured Node Intermediate Encryption- Mobility
Number Overhead Resiliency Decryption Steps Support

2-UKP Symmetric O(k) O(n2) O(kn) O(
√
n) O(Underlay Path Length) Limited

SST Symmetric O(k) O(n2) O(kn) O(2.3q) O(Underlay Path Length) Limited
PAKP Asymmetric O(k) O(kn) O(kn) O(n) O(logk n) Yes

Fig. 1: An example of overlay routing.

an asymmetric key pre-distribution method in which each node
stores public keys of exactly k other nodes and has directed
links to these nodes. Therefore, each edge ei,j in graph G
represents the public key of node j which is stored in node
i. Furthermore, in order to model the path length equivalent
to each edge in the overlay layer, a cost exactly equal to
the shortest underlay path length from node i to node j is
assigned for each edge eij within graph G. Moreover, an
additional cost factor associated with intermediate encryption-
decryption steps is assigned to each vertex in the graph. Now,
we can define the optimal path from the source node s to the
destination node d as the path with the overall lowest cost from
the source node to the destination node on graph G(V,E).

For an asymmetric key pre-distribution method, we know
that the value of k is in the order of O(

√
n) and rather small in

comparison with the number of nodes n. Hence, we propose
that each node stores a lookup table containing information
about stored keys. Moreover, we propose to keep the cost of
each edge in the lookup table. The storage needed to store
such table is in the order of O(nk log n) bits. The lookup
table contains n rows with each row containing the ID of the
public keys stored by its corresponding node. Since G(V,E) is
a static graph, all nodes can be pre-loaded with a lookup table
in the initialization phase of the network. The pre-loaded table
does not contain the cost of edges at this stage. At the network
operation phase, each node finds the underlay path length
associated with its overlay neighbors by sending simple route
requests. In the case of stationary networks, this operation is
performed just once at the network initiation phase. In the
case of mobile networks, each node has to periodically ask
its overlay neighbors for their lookup table update. Note that,

since the average of overlay path length is about 2 hops for
values of k in the order of O(

√
n), the number of requests

is also in the order of O(
√
n). We note that the cost of all

vertices is the same representing the cost of an intermediate
decryption-encryption step. All together, each node needs to
store a lookup table and routing information in addition to the
k keys. The storage complexity of storing routing information
is in the order of O(n) for proactive protocols and O(e) for
on-demand routing protocols where e stands for the number
of communicating pairs [16].

B. Problem Formulation

In this section, we formulate an LP problem the answer
to which identifies the optimal and most secure path. The
problem is to find the path from a source node s to a
destination node d with the lowest cost. The proposed LP
problem is a boolean problem in which all decision variables
assume a value of zero or one. Table II explains the associated
notation.

min
x(i,j),xj

∑
(i,j)∈E

j∈{1,··· ,n}

[x(i,j)c(i,j) + xjcj] (1)

Subject To:
∑

(s,i)∈E

x(s,i) = 1 (2)

∑
(i,s)∈E

x(i,s) = 0 (3)

∑
(i,d)∈E

x(i,d) = 1 (4)

∑
(d,i)∈E

x(d,i) = 0 (5)

∑
(i,j)∈E
i6=s
j 6=d

x(i,j) = xj (6)

∑
(i,j)∈E
i 6=s
j 6=d

x(i,j) = xi (7)

x(i,j) ∈ {0, 1} (8)
xi ∈ {0, 1} (9)

The answer to this LP problem identifies the value of the
boolean decision variables x(i,j) for each edge (i, j) and also
xi for each vertex i such that the total path cost is minimized
under the given constraints. The value of x(i,j) is one if the

5

edge (i, j) is chosen as an edge on the optimal path and
is set to zero otherwise. Similarly, the value of xi for each
corresponding vertex i is equal to one if the path goes through
the vertex or zero otherwise.

TABLE II: The table of notations.

n Number of network nodes
k Size of key ring
cl Cost of vertex l
(i, j) Directed link from node i to node j
c(i,j) Cost of link (i, j)
xl Boolean value showing whether vertex l is on a path
x(i,j) Boolean value showing whether link (i, j)

is on a path
X n× n matrix solution of the LP problem
Υ(i,j) Set of vertex disjoint paths from node i to node j
νl Element l within set Υ(i,j)

ζl Cost associated with νl
γl Decision variable associated with νl

The proposed LP problem has six constraints: the first and
second constraints guarantee that the source node s is the
starting point and does not include any loop. The third and
fourth constraints ensure that the destination node d is the end
point. The fifth constraint guarantees that if an edge (i, j) is
on the optimal path then node j is chosen as a path vertex.
The sixth constraint guarantees that if vertex i is chosen on
a path, then it has an outgoing edge with a boolean variable
equal to one.

Since each outgoing edge should connect to another vertex,
the LP problem could be rewritten by removing the vertex
variables xjs. The revised problem is described as follows:

min
x(i,j)

∑
(i,j)∈E

j∈{1,··· ,n}

(c(i,j) + cj)x(i,j) (10)

Subject To:
∑

(s,i)∈E

x(s,i) = 1 (11)

∑
(i,s)∈E

x(i,s) = 0 (12)

∑
(i,d)∈E

x(i,d) = 1 (13)

∑
(d,i)∈E

x(d,i) = 0 (14)

∑
(i,j)∈E
i 6=s

x(i,j) =
∑

(j,k)∈E
j 6=d

x(j,k) (15)

x(i,j) ∈ {0, 1} (16)

where

x(i,j) =

{
1, If edge (i, j) is on the optimal path
0, Otherwise

(17)

The number of variables in the boolean LP problem is k× n,
i.e., the number of edges in the k-regular graph. The solution
to this problem, for each pair of source and destination nodes,
is a boolean vector representing the values of x(i,j). We note
that all elements of such vector are equal to zero except for

the edges on the optimal path. In the next section, we propose
the details of our method for solving the boolean LP problem.

C. Solution Approach
In this section, we propose a method to solve the boolean

LP problem of the previous section in polynomial time. It is
known that standard LP problems with real-valued decision
variables are solvable in polynomial time [17]. A number of
techniques may be used to solve LP problems with boolean
and integer constraints. Examples include branch and bound
[18], branch and cut [19], randomized rounding [20], and
the combination of the interior point method with column
generating techniques [21]. In some cases, the problem is
solved via approximation algorithms [22]. Categorically, all
such algorithms either solve the problem with a time complex-
ity much higher than that of solving a relaxed LP problem or
cannot guarantee identifying the global optimal solution.

The strength of our algorithm is in solving the boolean
LP problem with a time complexity not exceeding that of
solving the relaxed LP problem while guaranteeing to identify
the optimal solution. We note that our solution approach
is generic and can be used to solve a graph optimization
problem without any direct relationship with key management
or wireless networks.

Our proposed solution is in essence the solution to an LP
problem derived by relaxing all of the boolean constraints
in the original problem. In Appendix A, we prove that the
solution to the relaxed LP problem is the solution to the
boolean LP problem.

We start our discussion by noting that the answer to the
problem, for each pair of source and destination nodes, could
be represented as an n × n boolean matrix k × n unknown
elements and (n − k) × n zero elements. Each row in this
matrix contains at most one element equal to one and all
other elements are zeros. The collection of one elements in
the matrix together represent the optimal path.

First, we propose to look at the relaxed LP problem applying
the condition x(i,j) ∈ [0, 1] instead of x(i,j) ∈ {0, 1}. The
relaxed problem could be solved in polynomial time using
any LP solver such as simplex method [23], interior point
method [17], or a recently proposed method based on random
walks [24]. The output of the solver will be an n× n matrix
expressing the values of decision variables x(i,j) for each edge
(i, j) ∈ E but it may contain non-integer values. Hence, we
just need to start from the row corresponding to the source
node, pick the first non-zero element in the row, go to the next
row in the matrix according to the column number of the first
non-zero element of the current row, and repeatedly take the
next step until reaching the destination node. The pseudocode
of the proposed algorithm is shown in Algorithm III.1.

As an example, consider the network of Fig. 1 with six
nodes and a key ring size equal to two, i.e., n = 6 and k = 2.
In this example, the value of the tuning parameter, i.e., the
vertex cost cl for all vertices l, is set to 2. According to our
proposed algorithm, each node at the initialization phase of
the network is pre-loaded with two randomly chosen keys and
a lookup table. The lookup table of this example is shown in
Table III.

6

Algorithm III.1: OPTIMALPATHFINDER(s, d,G(V,E))

comment: s and d are the source and the destination nodes.

BooleanLP ← BLPDEFINER(s, d,G(V,E));

comment: BLPdefiner function returns the boolean LP problem.

RelaxedLP ← RELAX(BooleanLP);

comment: Relax function returns the relaxed LP problem.

X ← LPSOLVER(RelaxedLP);

comment: LPsolver function returns the solution of the relaxed

LP problem as an n× n matrix X .

Path← s;

NextHop← s;
while d /∈ Path

NextHop← COLUMNNUMBER(X,NextHop);
comment: ColumnNumber function returns the column

number of the first non-zero element in the

corresponding row.

Path← CONCATENATE(Path,NextHop);

TABLE III: The lookup table of the source node in Fig. 1.

Node 1st overlay 1st neighbor 2nd overlay 2nd neighbor
number neighbor underlay neighbor underlay

path length path length
1 2 1 5 4
2 1 1 3 1
3 5 2 6 1
4 2 2 3 1
5 4 1 6 1
6 1 3 4 1

The lookup table of each node is only partially populated at
the network initialization phase. At that phase, the contents of
columns 3 and 5 of the table above associated with underlay
path lengths are not available. The latter implies that a global
advance knowledge of the underlay network topology is not
required for the operation of our proposed method. However, it
is assumed the cryptographic network topology is known. Such
assumption is reasonable as cryptographic topology is formed
at the time of making key assignments by the key distribution
method when the associated information is readily available.
Note that key assignment is infrequently changed remaining
relatively static even in the presence of mobility. The storage
overhead of saving the cryptographic (overlay) topology is in
the order of O(kn).

Columns 3 and 5 of the table can be populated in the net-
work initialization phase relying on an information exchange
mechanism used between cryptographic (overlay) neighboring
pairs in multiple steps. In each step, one-hop overlay neighbors
share updates about the underlay path lengths of other nodes as
they learn that information. In the first step, nodes learn about
the underlay path lengths to their one-hop overlay neighbors.

In the second step, nodes learn about the underlay path lengths
to their two-hop overlay neighbors and so on. The average
number of steps necessary matches the average number of
cryptographic hops which is in the order of O(logk n) [4].
Underlay network contents of lookup tables can be updated
as a function of time or link qualities. In the context of the
example of Table III, the elements of underlay path length are
populated in row 1 after the first step, rows 2 and 5 after the
second step, and rows 3, 4, and 6 after the third step.

Having explained the process of loading and populating the
lookup tables, we can now focus on finding the optimal path
from source node 1 to destination node 6. Considering a vertex
cost of cl = 2, the output of the relaxed LP problem solved
with the interior point method is the matrix shown in Equation
(18).

X =



0 0.45 0 0 0.55 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

 (18)

According to our proposed algorithm and starting from the
source node, we begin by checking the first row. The first
non-zero element in the first row is the second element. Thus,
we consider node number 2 as the first node on the path and
go to the second row. In the second row, the first non-zero
element is the third element. Hence, the second hop points to
node number 3. Completing the steps, the extracted path will
be 1Õ2Õ3Õ6 starting from the source node and ending at the
destination node.

In Appendix A, we prove all paths extracted from matrix
X are optimal and the path identified by Algorithm III.1 is
one of those optimal paths. In the context of current example,
the latter means the other path extracted from matrix X , i.e.,
1Õ5Õ6 is also optimal. Here, the cost of the optimal path is
equal to 7.

IV. SIMULATION AND EXPERIMENTAL RESULTS

In this section, the performance of our proposed algorithm
is evaluated for a number of key pre-distribution algorithms.

A. Simulation Settings

In order to evaluate the performance of our proposed
algorithm, we apply it to three key pre-distribution methods,
namely, 2-UKP, SST, and PAKP running on top of ad-hoc on-
demand distance vector (AODV) routing protocol. We note
that our intent is not to compare different key pre-distribution
methods against each other, but rather to illustrate how our
proposed algorithm can be agnostically applied to solve the
secure overlay routing problem of a variety of choices of
routing protocols and key pre-distribution methods.

Network simulator NS2 [25] running on Linux is used for
our simulations. We choose the interior point method [17] as
our LP solver due to its practical efficiency.

A random network for a number of nodes, starting from
100 and increasing to 200 nodes in increments of 10 is

7

simulated in a 300 × 300 square meter area. In order to be
able to evaluate key pre-distribution algorithms, we generate
a fully connected underlay network. The nodes are assumed
to be mobile following the random walk mobility model
of NS2. The range of movements within the random walk
mobility model is set with varying speeds in the interval
[0 5] meters per second and zero pause times. Further, the
distance model with a communication range of 100 meters
is chosen for message exchange among nodes. We note that
the choice of distance model is not taking away from the
practicality of evaluation as it can be replaced with a more
sophisticated wireless channel model proposed in [26]. The
channel bandwidth is set to 1Mbps. While not limited to
AODV, all simulations are performed using AODV routing
protocol. Different scenarios are simulated with a different
number of connections between 10 and 20. All connections are
chosen randomly but once selected the same connections are
used for comparing different algorithms in order to keep the
comparisons fair. The generated traffic is FTP running on TCP
Tahoe. For each connection, the source node sends a file with
an average size of 5MB to its destination. All simulations are
repeated 20 times and the results represent the average values
calculated over all runs.

For the key pre-distribution phase in the 2-UKP scenario,
the unital design of [27] with unitals of order m = 4 is used to
simulate a 100 node network. For larger networks, the design
of [28] is used to generate unitals of order m = 5. The order
of unitals is chosen as the minimum value required to generate
key rings equal to the number of nodes. Since the key ring
size is directly related to the order of selected unitals, the key
ring size is set to 10 for networks with 100 nodes and 12 for
larger networks.

To keep the simulation scenarios fair, the key ring size in
SST method is set to k = 10. We set q = 11 as the best prime
number satisfying the inequality q > k. Clearly, the maximum
number of possible key rings with the chosen parameters is
2q2 = 242.

For the PAKP method, we set k = 10 to satisfy the
relationship k = O(

√
n) and also measure up fairly in

comparison to other methods. The value of the vertex cost
in PAKP method is set to n − 1 in order to guarantee a
pair of cryptographic hops is never chosen instead of a single
cryptographic hop for the purpose of improving performance.

To use the proposed optimal routing method for 2-UKP
and SST, we use bidirectional edges between each pair of
nodes that share a pairwise key. We note that both methods
first identify the underlay path and then for each hop on the
underlay path choose the shortest overlay path. Accordingly,
the cost of each underlay link is calculated and stored in
the lookup table of each node. The implementation of the
algorithm exactly follows what was explained in the previous
section.

B. Throughput and Latency Comparisons
In this subsection, the measurement results of network

throughput associated with successful packet delivery and
latency associated with average FTP completion times are
reported.

0.75

0.77

0.79

0.81

0.83

0.85

0.87

0.89

0.91

0.93

0.95

100 110 120 130 140 150 160 170 180 190 200

Th
ro

u
gh

p
u

t
(M

b
p

s)

No. of Nodes

PAKP Flooding

PAKP Op�mized

2-UKP Flooding

2-UKP Op�mized

SST Flooding

SST Op�mized

(a)

0.75

0.77

0.79

0.81

0.83

0.85

0.87

0.89

0.91

0.93

0.95

10 11 12 13 14 15 16 17 18 19 20

)
Th

ro
u

gh
p

u
t

(M
b

p
s

No. of Connec�ons

PAKP Flooding

PAKP Op�mized

2-UKP Flooding

2-UKP Op�mized

SST Flooding

SST Op�mized

(b)

Fig. 2: A comparison of average network throughput under
random walk mobility model for different key pre-distribution
methods as a function of (a) number of nodes and (b) number
of connections.

Fig. 2 represents a throughput comparison of different sce-
narios. Fig. 2a expresses throughput for 10 fixed connections
and a different number of nodes. It is observed that the
most effective factor impacting throughput is the underlay
path chosen in different scenarios. For both SST and 2-
UKP methods, the proposed routing algorithm represents a
reasonable throughput improvement, especially, in the case of
SST in which there is a lower probability of sharing a pairwise
key between two adjacent nodes. Since the symmetric key
pre-distribution methods find the underlay path and then the
shortest overlay path for each hop on the underlay path, the
total path length cannot be optimal.

In the case of PAKP method, there is no considerable
improvement as the result of applying our proposed routing al-
gorithm. This is alluded to the fact that routing is based on the
shortest overlay path from the source node to the destination
and the high vertex cost compared to a underlay hop cost.
Furthermore and since the underlay network is chosen such
that all nodes have a path to each other, increasing the number
of nodes leads to increasing the number of neighbors for
each node in turn resulting in improving network throughput.
However, the improvement is not significant since the network
is not very large. While not reported here, we have observed
that the throughput improvements in the case of large networks
are much more significant.

Fig. 2b represents throughput measures for a different
number of connections starting from 10 and increasing to 20 in
a 100 node setting. Since increasing the number of connections
leads to increasing congestion, the network throughput is
slightly decreased as the number of connections increases.
Nonetheless, the figure clearly illustrates the improvement in
network throughput as the result of applying our algorithm.

8

1500

2000

2500

3000

3500

4000

4500

100 110 120 130 140 150 160 170 180 190 200A
v

er
ag

e
F

T
P

 C
o

m
p

le
ti

o
n

(s
ec

)
T

im
e

No. of Nodes

PAKP Flooding

PAKP Optimized

2-UKP Floooding

2-UKP Optimized

SST Flooding

SST Optimized

(a)

2000

2500

3000

3500

4000

4500

5000

5500

10 11 12 13 14 15 16 17 18 19 20

A
ve

ra
ge

 F
TP

 C
o

m
p

le
�

o
n

(s

e
c)

Ti
m

e

No. of Connec�ons

PAKP Flooding

PAKP Op�mized

2-UKP Flooding

2-UKP Op�mized

SST Flooding

SST Op�mized

(b)

Fig. 3: A random walk mobility comparison of average FTP
completion time using different key pre-distribution methods
as a function of (a) number of nodes and (b) number of
connections.

Next, average FTP completion times are reported as the
metric of latency. Each connection starts sending a 5MB file at
a time randomly chosen within the interval [0, 60] seconds. The
FTP completion time is calculated as the time interval starting
from the transmission time of the first packet and ending at
the receipt of the complete file at the receiver. The average
FTP completion time is illustrated in Fig. 3 for a different
number of nodes and a different number of connections. The
FTP completion time improvement for the proposed algorithm
in SST and 2-UKP is very clear. Since the underlay path length
is the most effective factor on FTP completion time, there
is no significant difference between the optimized and non-
optimized PAKP results, similar to the case of throughput. Fig.
3a and Fig. 3b present the improvements in FTP completion
time as the result of increasing the number of nodes and the
number of connections.

C. Traffic and Storage Overhead Comparisons

In this subsection, we first report the results of measuring
the routing traffic generated for sending encrypted files of
5MB size. In symmetric key pre-distribution algorithms, each
node has to send the IDs of all keys stored in its key ring
inside the routing packets. Accordingly, the size of routing
packets is increased. In contrast, PAKP does not need to send
any extra information in its routing packets. Nonetheless, each
node needs to trust other nodes with which it communicates in
standard key pre-distribution schemes of interest. Implement-
ing the proposed algorithm eliminates the need for trusting
other nodes in addition to decreasing the routing traffic. Fig.
4 represents the generated routing traffic size measured in
Megabytes. The improvements in the volume of routing traffic
as the result of applying our proposed algorithm is very clear

15

25

35

45

55

65

75

85

95

105

115

100 110 120 130 140 150 160 170 180 190 200

)
R

o
u
�

n
gT

ra
ffi

c
(M

B

No. of Nodes

PAKP Flooding

PAKP Op�mized

2-UKP Flooding

2-UKP Op�mized

SST Flooding

SST Op�mized

(a)

15

25

35

45

55

65

75

85

95

105

10 11 12 13 14 15 16 17 18 19 20

R
o

u
�

n
gT

ra
ffi

c
(M

B
)

No. of Connec�ons

PAKP Flooding

PAKP Op�mized

2-UKP Flooding

2-UKP Op�mized

SST Flooding

SST Op�mized

(b)

Fig. 4: A random walk mobility comparison of average routing
traffic volume for different key pre-distribution methods as a
function of (a) number of nodes and (b) number of connec-
tions.

for all schemes. As expected, increasing the number of nodes
or the number of connections results in increasing routing
traffic in the network.

Next, we discuss the storage overhead on a per node basis.
The storage required for different key pre-distribution schemes
is also measured as a performance metric. Table IV represents
a comparison of the average required storage in each node
for different schemes. Table data are derived for a network
with 100 nodes and 10 communicating pairs where each node
stores 10 keys. Each symmetric key length is considered to be
80 bits. In order to achieve an equivalent strength asymmetric
algorithm, an asymmetric key length of 160 bits using elliptic
curve cryptography (ECC) is utilized.

D. Energy Consumption and Security Strength Comparisons

In this subsection, we provide experimental results as-
sociated with energy consumption and security strength of
different methods.

First, we compare the energy consumption associated with
performing encryption and decryption using different key pre-
distribution schemes before and after applying our proposed
algorithm. In order to compensate against the faster speed of
symmetric cryptography in comparison to asymmetric cryp-
tography, we force each pair of nodes to agree on a pairwise
key for encryption and decryption in the PAKP method. The
key agreement process is done using elliptic curve cryptog-
raphy using Diffie-Hellman method [29]. Fig. 5 represents
a comparison of the average energy cost of encryption and
decryption associated with different methods before and after
applying our proposed algorithm. The energy consumption is
calculated according to [30].

9

TABLE IV: A storage comparison of different key pre-distribution schemes.

Number of Lookup Table Key Key Ring Average Routing Total Storage
Scheme Links Size (Kb) Size (b) Size (b) Information Stored Required in Each

in a Node (b) Node (Kb)
2-UKP 8404 65.66 80 800 20.92 66.46

SST 1588 12.41 80 800 22.68 13.21
PAKP 1000 7.81 160 1600 10 9.38

1800

2800

3800

4800

5800

6800

100 110 120 130 140 150 160 170 180 190 200

En
e

rg
y

co
n

su
m

p
�

o
n

(J

o
u

le
)

No. of Nodes

PAKP Flooding

PAKP Op�mized

2-UKP Flooding

2-UKP Op�mized

SST Flooding

SST Op�mized

Fig. 5: A comparison of energy cost associated with encryption
and decryption of different methods before and after applying
our proposed overlay routing algorithm.

0

1

2

3

4

5

6

7

8

100 110 120 130 140 150 160 170 180 190 200

A
ve

ra
ge

 n
u

m
b

e
r

o
f

D
-E

st

e
p

s

No. of Nodes

PAKP Flooding

PAKP Op�mized

2-UKP Flooding

2-UKP Op�mized

SST Flooding

SST Op�mized

Fig. 6: The average number of decryption-encryption steps for
a different number of nodes.

Fig. 5 shows significant improvements in energy consump-
tion of SST and 2-UKP schemes after applying our proposed
algorithm. In the case of PAKP scheme, there is no significant
improvement to energy consumption since the overlay path
length almost remains the same before and after applying our
proposed algorithm.

Next, we compare the security strengths of different meth-
ods. While network security may be affected by many factors,
two factors are of special importance. The first factor is the
number of intermediate decryption-encryption steps. In all key
pre-distribution methods, messages may have to be decrypted
and encrypted several times on their route from source to
destination nodes since there may be no direct secure path
between some pairs of nodes. A higher number of intermediate
decryption-encryption steps increases the probability of an
adversary node accessing messages. Fig. 6 shows the average
number of decryption-encryption steps associated with differ-
ent methods.

As mentioned earlier, the proposed algorithm allows for
addressing the trade off between performance and security.
Furthermore, the average number of intermediate decryption-
encryption steps is the same for our proposed algorithm and
the algorithm of [4] considering the applied vertex cost.
In other methods, especially in SST, there is a significant
improvement in the average number of decryption-encryption
steps after applying our proposed algorithm.

The second factor that directly affects the security of a key
pre-distribution methods is the number of compromised nodes
an attacker needs in order to compromise the security of the
network as a whole. Since distributed keys are public in PAKP,
an attacker can only retrieve the private key of a compromised
node itself and no other security information will be lost.
Therefore, an attacker needs to compromise all nodes in a
PAKP network in order to compromise the whole network.
In symmetric key pre-distribution methods, compromising a
single node may affect the security of many other links not
directly related to the node since the keys distributed between
nodes are secret. In 2-UKP method, an attacker needs to
compromise just O(m2) = O(

√
n) nodes in order to retrieve

all keys of the key pool. In SST method, an attacker needs
to compromise O(ηq) nodes with η = 2.3 in order to retrieve
all keys of the key pool. The number of compromised nodes
leading to compromising the whole network in our simulated
scenarios are reported below. Our results show that an attacker
needs just 13 nodes to compromise a network implementing
2-UKP key pre-distribution with unitals of order m = 4. This
number is 24 for unitals of order m = 5. For SST key pre-
distribution scheme, this number is 25 associated with the
choice of q = 11. For PAKP, this number is always n − 1,
i.e., 199 in the case of 200-node simulation scenario.

We close this section by commenting on specific effects of
mobility and the scalability of our proposed algorithm. First,
we note that the mobility results of Fig. 2, 3, and 4 represent
similar patterns as those of stationary networks not reported
here albeit the fact that traffic overheads are about 10% higher
and delays are about 10% to 20% longer in the cases of
mobile scenarios of our experiments. Second, we note that
our algorithm scales well in practice and performs robustly
with respect to the changes of factors such as node numbers,
data loads, and transmission ranges. While not shown here,
our experiments with 500 nodes covering a variety of loads
and transmission ranges have revealed no significant impact
to the pattern of reported results.

V. CONCLUSION

In this paper, we proposed an optimal secure overlay
routing method using key pre-distribution and solved the
associated boolean LP problem in polynomial time. We noted
the main advantage of our algorithm as being able to solve
the optimal routing problem for any graph either directed or
undirected as well as weighted or unweighted. We discussed
the space complexity of the proposed algorithm to be the
storage needed for a lookup table with a size in the order of
O(nk log n) bits. Using network simulator NS2, the proposed
algorithm was simulated for a number of different symmetric

10

and asymmetric key pre-distribution algorithms running on
top of AODV routing protocol. The results showed that the
use of the proposed algorithm has a significant impact on
improving a variety of performance metrics, i.e., decreasing
average FTP completion time, reducing routing control traffic,
increasing throughput, and improving energy consumption of
decryption and encryption. The results also showed that the
use of our algorithm enhances the security strength of the
network by decreasing the number of intermediate decryption-
encryption steps thereby significantly reducing the need for
trusting additional nodes.

We conclude this section by discussing the applications of
interest to our work. We view our work as a more practical
alternative for use in secure network routing applications re-
quiring key distribution. Examples of such applications include
pre-planned MANETs used in mission critical and emergency
response networks. In such applications, public key infras-
tructure (PKI) or identity-based cryptography (IBC) methods
are used as the key distribution methods. Both PKI and IBC
methods need infrastructure and also central servers having
knowledge of the complete set of keys and their assignments.
Such applications are also typically involved with routing in
multiple encrypted and decrypted domains and are subject to
high overheads associated with IP address mappings between
routing domains with isolated address spaces. Our proposed
work introduces a low overhead alternative eliminating the
need for infrastructure and central servers as well as the need
for multiple routing domains at the cost of storing a small
number of per node keys and negligible additional cost of
encryption-decryption.

APPENDIX A
PROOF OF OPTIMALITY OF ALGORITHM III.1

In this appendix, we prove that the answer of the relaxed
LP problem identified by Algorithm III.1 is in fact the answer
to the original boolean LP problem of Section III-B.

Assumption A.1: For any source-destination pair, there ex-
ists at least one path from the source node to the destination.

Under the assumption above, there exists at least one
optimal path from a source node to its destination. We prove
that our proposed algorithm will find this path. We further note
that there may exist more than one path with the same optimal
objective function value and therefore the optimal path may
not be unique.

Let set P be the set of all optimal paths containing at least
one path. The boolean LP problem returns an optimal path
pi ∈ P as its solution. Now, we prove the following lemmas.

Lemma A.2: The output of the relaxed boolean LP prob-
lem solved using any LP solver forms a directed graph
Gout(Vout, Eout). The directed graph contains just one starting
vertex, i.e., the source node and just one terminal vertex, i.e.,
the destination node in addition to a set of intermediate nodes.
Moreover, the directed graph does not contain any loop.

Proof: Constraint (11) guarantees that there exists an
outgoing non-zero edge from the source node. Constraint (13)
guarantees that there exists at least one non-zero incoming
edge to the destination. Constraint (15) guarantees that in-
termediate nodes can be neither the starting nor the terminal

 𝒙(𝟏,𝟐) =
𝟏

𝟔
 𝒙(𝟐,𝟑) =

𝟏

𝟔

 𝒙(𝑺,𝟏) =
𝟏

𝟔
 𝒙(𝟑,𝑫) =

𝟏

𝟔

 𝒙(𝑺,𝟒) =
𝟐

𝟔
 𝒙(𝟒,𝑫) =

𝟐

𝟔

𝒙(𝑺,𝟓) =
𝟑

𝟔
 𝒙(𝟔,𝑫) =

𝟑

𝟔

 𝒙(𝟓,𝟔) =
𝟑

𝟔

(a)

(b)

Fig. 7: A sample solution of the relaxed LP problem derived by
an LP solver contains just vertex disjoint paths: (a) the output
graph, and (b) the equivalent single edge VDP representation.

vertex because if they have a non-zero incoming edge, then
they should have an outgoing edge. Moreover, since graph
Gout is the optimal solution for the problem and any loop may
introduce extra cost, there exists no loop within the graph.

definition A.3: A set of vertex disjoint paths (VDPs) is
defined as the set of paths with a common starting vertex
i and a common ending vertex j without any other common
intermediate vertices. We refer to such a set as Υ(i,j). We
represent element l within this set as νl and the associated
cost and decision variable as ζl and γl, respectively.

Lemma A.4: If graph Gout contains a number of VDPs, say
m, then the value of all link decision variables x(i,j) on each
VDP is the same.

{x(i,j)|(i, j) ∈ νl} = {x(j,k)|(j, k) ∈ νl},
∀νl ∈ Υ(i,j), l ∈ {1, 2, ...,m}, i, j, k ∈ {1, 2, ..., n}

(19)
Therefore, each VDP can be replaced with a single equivalent
edge containing a link decision variable equal to one of its
link decision variables. Furthermore, the cost of the equivalent
edge is equal to the sum of the costs of all edges and vertices
on the path.

ζl =
∑

(i,j)∈νl

(c(i,j) + cj), l ∈ {1, 2, ..,m} (20)

Proof: According to Constraint (15), the sum of the link
decision variables of the incoming edges is equal to the sum
of the link decision variables of all outgoing edges for each
intermediate vertex. In the case of VDPs, each node has just
one incoming and one outgoing non-zero edge. Therefore, the
value of the link decision variable of one should be equal to
that of the other. Thus and as shown by the sample example
of 7, we can substitute each VDP with an equivalent edge.

11

Lemma A.5: If the output graph contains just VDPs, then
the total cost of each path is equal to the total cost of any
other path on the output graph.

ζ1 = ζ2 = ... = ζm (21)

Proof: Assume the output graph Gout contains m VDPs.
According to Lemma A.4, substitute all VDPs with their
equivalent single edge representations and further calculate all
costs and variables for the new graph. Due to Constraint (11),∑m
l=1 γl = 1. Assume the cost of νl is more than that of other

terms. In this case, removing νl and adding the value of its link
decision variable to one of other paths, reduces the total value
of the objective function. Therefore, the output graph Gout
has no optimal value. As such, if the output graph generated
with the LP solver contains several vertex disjoint paths, then
the costs of all paths are equal.

Lemma A.6: If the output graph Gout contains several paths
with just one common intermediate node, then the values of
decision variables on all edges on each sub-path are equal.
Furthermore, the total costs of all sub-paths from the common
to the destination node are equal. Likewise, the costs of all
sub-paths from the source to the common node are equal.

Proof: Just like the proof of Lemma A.4, the values of
decision variables on all edges of each sub-path are equal.
Hence, we can substitute each sub-path with an equivalent
edge as transitioned from Fig. 8a to Fig. 8b. Due to Constraint
(15), the sum of all decision variables on incoming edges
is equal to the sum of decision variables on all outgoing
edges where that summation is lower than or equal to 1.
Suppose there are m outgoing edges from the common to
the destination node. Hence, all outgoing sub-paths are of
equal cost following Lemma A.5. Since all sub-paths from
the common to the destination node have equal costs, all sub-
paths from the source to the common node should have an
equal cost to keep the solution optimal.

Lemma A.7: If the output graph contains several paths with
just one common intermediate node, then exactly p equal cost
paths exist where p is the product of the number of source
to the common intermediate node paths and the number of
intermediate node to destination paths.

Proof: According to Lemma A.6, the output graph has
several equal cost sub-paths, i.e., v, to the intermediate com-
mon node. There are also several equal cost sub-paths from
the intermediate node to the destination, i.e., w. Clearly, any
combination of v sub-paths and w sub-paths can form a path
from the source node to the destination. As illustrated by Fig.
8c, the number of equal cost paths from the source to the
destination is hence equal to p = v × w.

Theorem A.8: If the output graph Gout(Vout, Eout) con-
tains several common intermediate nodes, the cost of any
path on Gout is equal to others. Thus, the graph Gout can be
represented with an equivalent graph containing several VDPs
in which all of those VDPs have the same cost.

Proof: According to Lemma A.5, all vertex disjoint sub-
paths from a common node to a destination node can be
substituted with equal cost equivalent edges. Furthermore, we
can replace the common node with several VDPs according to
Lemma A.7. Hence, we can start from a common intermediate

 𝒙(𝟏,𝟐) =
𝟏

𝟒
 𝒙(𝟑,𝟒) =

𝟏

𝟑

 𝒙(𝑺,𝟏) =
𝟏

𝟒
 𝒙(𝟒,𝑫) =

𝟏

𝟑

 𝒙(𝟐,𝟓) =
𝟏

𝟒
 𝒙(𝟓,𝟑) =

𝟏

𝟑

 𝒙(𝑺,𝟓) =
𝟐

𝟒
 𝒙(𝟕,𝑫) =

𝟐

𝟑

 𝒙(𝑺,𝟔) =
𝟏

𝟒
 𝒙(𝟔,𝟓) =

𝟏

𝟒
 𝒙(𝟓,𝟕) =

𝟐

𝟑

S

Type equation here.

6

Type equation here.

5

Type equation here.

D

4

Type equation here.

2

Type equation here.

1

Type equation here.

7

Type equation here.

3

Type equation here.

(a)

(b)

(c)

Fig. 8: A sample output graph containing just one intermediate
common node: (a) output graph, (b) equivalent form contain-
ing the common node, and (c) equivalent vertex disjoint paths.

node placed close to the destination node, remove all common
nodes one by one and end up with a new graph containing
just several equivalent cost VDPs. The graph Gout can then
be represented with an equivalent graph containing several
equivalent cost vertex disjoint paths.

Corollary A.9: If the boolean LP problem defined in Sec-
tion III-B is relaxed and solved using an LP solver, any
output path solution is optimal. Hence, any directed graph
G(V,E) can be modeled with the boolean LP problem defined
in Section III-B and solved in polynomial time. Since each
undirected graph could be represented as a directed graph in
which all edges are bidirectional, the problem of finding such
optimal path in any graph is solvable in polynomial time.

Proof: According to Theorem A.8, the output graph can
be shown in an equivalent form that contains several equal
cost paths. It is also clear that no other path of lower cost
exists because such path makes the output graph non-optimal.
Hence, any path within the output graph resulted from solving
the relaxed boolean LP problem is optimal.

We conclude from Corollary A.9 that if the optimal path
between the source node and the destination is unique, the
output graph will contain just one path from the source to
the destination while the decision variables x(i,j) of all edges
within the path assume a value of one. Otherwise, the output
graph may have several equal cost paths.

12

REFERENCES

[1] S. Camtepe and B. Yener, “Combinatorial design of key distribution
mechanisms for wireless sensor networks,” Networking, IEEE/ACM
Transactions on, vol. 15, no. 2, pp. 346–358, April 2007.

[2] S. Ruj, A. Nayak, and I. Stojmenovic, “Fully secure pairwise and
triple key distribution in wireless sensor networks using combinatorial
designs,” in INFOCOM, 2011 Proceedings IEEE, April 2011, pp. 326–
330.

[3] W. Bechkit, Y. Challal, A. Bouabdallah, and V. Tarokh, “A highly
scalable key pre-distribution scheme for wireless sensor networks,”
Wireless Communications, IEEE Transactions on, vol. 12, no. 2, pp.
948–959, February 2013.

[4] M. Gharib, E. Emamjomeh-Zadeh, A. Norouzi-Fard, and A. Movaghar,
“A novel probabilistic key management algorithm for large-scale
manets,” in Advanced Information Networking and Applications Work-
shops (WAINA), 2013 27th International Conference on, March 2013,
pp. 349–356.

[5] L. Eschenauer and V. D. Gligor, “A key-management scheme
for distributed sensor networks,” in Proceedings of the 9th ACM
Conference on Computer and Communications Security, ser. CCS ’02.
New York, NY, USA: ACM, 2002, pp. 41–47. [Online]. Available:
http://doi.acm.org/10.1145/586110.586117

[6] H. Chan, A. Perrig, and D. Song, “Random key predistribution schemes
for sensor networks,” in Security and Privacy, 2003. Proceedings. 2003
Symposium on, May 2003, pp. 197–213.

[7] M. Gharib, M. Minaei, M. Golkari, and A. Movaghar, “Expert
key selection impact on the manets’ performance using probabilistic
key management algorithm,” in Proceedings of the 6th International
Conference on Security of Information and Networks, ser. SIN ’13.
New York, NY, USA: ACM, 2013, pp. 347–351. [Online]. Available:
http://doi.acm.org/10.1145/2523514.2523556

[8] T. Choi, H. B. Acharya, and M. Gouda, “The best keying protocol for
sensor networks,” in World of Wireless, Mobile and Multimedia Networks
(WoWMoM), 2011 IEEE International Symposium on a, June 2011, pp.
1–6.

[9] S. Zhu, S. Setia, and S. Jajodia, “Leap: Efficient security mechanisms
for large-scale distributed sensor networks,” in Proceedings of the
10th ACM Conference on Computer and Communications Security, ser.
CCS ’03. New York, NY, USA: ACM, 2003, pp. 62–72. [Online].
Available: http://doi.acm.org/10.1145/948109.948120

[10] S. Ruj and B. Roy, “Key predistribution using combinatorial designs
for grid-group deployment scheme in wireless sensor networks,” ACM
Trans. Sen. Netw., vol. 6, no. 1, pp. 4:1–4:28, Jan. 2010. [Online].
Available: http://doi.acm.org/10.1145/1653760.1653764

[11] D. Liu and P. Ning, “Establishing pairwise keys in distributed
sensor networks,” in Proceedings of the 10th ACM Conference
on Computer and Communications Security, ser. CCS ’03. New
York, NY, USA: ACM, 2003, pp. 52–61. [Online]. Available:
http://doi.acm.org/10.1145/948109.948119

[12] A. Liu and P. Ning, “Tinyecc: A configurable library for elliptic curve
cryptography in wireless sensor networks,” in Information Processing in
Sensor Networks, 2008. IPSN ’08. International Conference on, April
2008, pp. 245–256.

[13] Z. Liu, J. Ma, Q. Huang, and S. Moon, “Asymmetric key pre-distribution
scheme for sensor networks,” Wireless Communications, IEEE Transac-
tions on, vol. 8, no. 3, pp. 1366–1372, March 2009.

[14] E. F. Assmus and J. D. Key, Designs and their codes. Cambridge
University Press, 1992.

[15] M. Huson and A. Sen, “Broadcast scheduling algorithms for radio
networks,” in Military Communications Conference, 1995. MILCOM
’95, Conference Record, IEEE, vol. 2, Nov 1995, pp. 647–651 vol.2.

[16] X. Hong, K. Xu, and M. Gerla, “Scalable routing protocols for mobile
ad hoc networks,” Network, IEEE, vol. 16, no. 4, pp. 11–21, Jul 2002.

[17] N. Karmarkar, “A new polynomial-time algorithm for linear
programming,” Combinatorica, vol. 4, no. 4, pp. 373–395, Dec.
1984. [Online]. Available: http://dx.doi.org/10.1007/BF02579150

[18] R. J. Vanderbei, Linear Programming: Foundations and Extensions.
Springer, 2000.

[19] M. Padberg and G. Rinaldi, “A branch-and-cut algorithm for the
resolution of large-scale symmetric traveling salesman problems,” SIAM
Rev., vol. 33, no. 1, pp. 60–100, Feb. 1991. [Online]. Available:
http://dx.doi.org/10.1137/1033004

[20] P. Raghavan and C. D. Thompson, “Randomized rounding: a technique
for provably good algorithms and algorithmic proofs,” Combinatorica,
vol. 7, no. 4, pp. 365–374, 1987.

[21] A. Vannelli, “An adaptation of the interior point method for solving the
global routing problem,” Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, vol. 10, no. 2, pp. 193–203, Feb
1991.

[22] V. V. Vazirani, Approximation Algorithms. Springer, 2001.
[23] K. G. Murty, Linear programming. John Wiley & Sons, 1983.
[24] D. Bertsimas and S. Vempala, “Solving convex programs by random

walks,” J. ACM, vol. 51, no. 4, pp. 540–556, Jul. 2004. [Online].
Available: http://doi.acm.org/10.1145/1008731.1008733

[25] (2014). [Online]. Available: http://www.isi.edu/nsnam/ns/
[26] H. Yousefi’zadeh and H. Jafarkhani, “An optimal power-throughput

tradeoff study for mimo fading ad-hoc networks,” Communications and
Networks, Journal of, vol. 12, no. 4, pp. 334–345, Aug 2010.

[27] S. D. Stoichev and V. D. Tonchev, “Unital designs in planes of order
16,” Discrete Applied Mathematics, vol. 102, no. 12, pp. 151 – 158,
2000.

[28] (2014) Experimental results of the search for unitals
in projective planes of order 25. [Online]. Avail-
able: http://sdstoichev1.wordpress.com/2012/02/16/experimental-results-
of-the-search-for-unitals-in-projective-planes-of-order-25/

[29] “Ieee standard specifications for public-key cryptography,” IEEE Std
1363-2000, pp. 1–228, Aug 2000.

[30] N. Potlapally, S. Ravi, A. Raghunathan, and N. Jha, “A study of the
energy consumption characteristics of cryptographic algorithms and
security protocols,” Mobile Computing, IEEE Transactions on, vol. 5,
no. 2, pp. 128–143, Feb 2006.

[31] Y. Zhou, Y. Fang, and Y. Zhang, “Securing wireless sensor networks:
a survey,” Communications Surveys Tutorials, IEEE, vol. 10, no. 3, pp.
6–28, Third 2008.

[32] J. V. D. Merwe, D. Dawoud, and S. McDonald, “A survey on
peer-to-peer key management for mobile ad hoc networks,” ACM
Comput. Surv., vol. 39, no. 1, Apr. 2007. [Online]. Available:
http://doi.acm.org/10.1145/1216370.1216371

Mohammed Gharib received the B.S. degree from
Baghdad university of Technology, Iraq, in 2007 and
M.S. degree from the Sharif University of Tech-
nology, Tehran, Iran in 2009. In September 2010,
he joined performance and dependability laboratory
(PDL) where he is working toward his PhD degree
in computer engineering department at Sharif Uni-
versity of Technology, Tehran, Iran. During the year
2014, he was a visiting research scholar in California
Institute for Telecommunications and Information
Technology, University of California Irvine, Irvine.

His research interests include mobile ad hoc networks, wireless sensor
networks, peer-to-peer networks, and their security aspects.

Homayoun Yousefi’zadeh received E.E.E and Ph.D.
degrees from the Dept. of EE-Systems at USC in
1995 and 1997, respectively. Currently, he is an
Adjunct Professor at the Department of EECS at
UC, Irvine. In the recent past, he was a Consulting
Chief Technologist at the Boeing Company and the
CTO of TierFleet. He is the inventor of several US
patents, has published more than seventy scholarly
reviewed articles, and authored more than twenty
design articles associated with deployed industry
products. Dr. Yousefi’zadeh is/was with the editorial

board of IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,
IEEE COMMUNICATIONS LETTERS, IEEE Wireless Communications
Magazine, IEEE JSTSP, and Journal of Communications Networks. He was
the founding Chairperson of systems’ management workgroup of the Storage
Networking Industry Association and a member of the scientific advisory
board of Integrated Media Services Center at USC. He is a Senior Member
of the IEEE and the recipient of multiple best paper, faculty, and engineering
excellence awards.

13

Ali Movaghar is a professor in the department of
Computer Engineering at Sharif University of Tech-
nology in Tehran, Iran. He received his B.S. degree
in Electrical Engineering from the University of
Tehran in 1977, and M.S. and Ph.D. degrees in Com-
puter, Information and Control Engineering from the
University of Michigan, Ann Arbor, in 1979 and
1985, respectively. He visited the Institute National
de Recherche en Informatique et en Automatique
in Paris, France and the department of Electrical
Engineering and Computer Science at the University

of California, Irvine in 1984 and 2011, worked at AT&T Information Systems
in Napervile, IL in 1985-1986, and taught at the University of Michigan, Ann
Arbor in 1987-1989. His research interests include performance/dependability
modeling and formal verification of wireless networks and distributed real-
time systems. He is a Senior Member of the IEEE and the ACM.

