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Dynamic Neural-Based Buffer Management for
Queuing Systems with Self-Similar Characteristics

Homayoun Yousefi’zadeh Edmond A. Jonckheere

Abstract—Buffer management in queuing systems plays an im-
portant role in addressing the tradeoff between efficiency mea-
sured in terms of overall packet loss and fairness measured in
terms of individual source packet loss. Complete partitioning (CP)
of a buffer with the best fairness characteristic and complete shar-
ing (CS) of a buffer with the best efficiency characteristic are at
the opposite ends of the spectrum of buffer management tech-
niques. Dynamic partitioning buffer management techniques aim
at addressing the tradeoff between efficiency and fairness. Ease
of implementation is the key issue when determining the practi-
cality of a dynamic buffer management technique. In this paper
two novel dynamic buffer management techniques for queuing sys-
tems accommodating self-similar traffic patterns are introduced.
The techniques take advantage of the adaptive learning power of
perceptron neural networks when applied to arriving traffic pat-
terns of queuing systems. Relying on the water-filling approach,
our proposed techniques are capable of coping with the tradeoff
between packet loss and fairness issues. Computer simulations re-
veal that both of the proposed techniques enjoy great efficiency
and fairness characteristics as well as ease of implementation.

Index Terms— Neural Network Teletraffic Forecasting, Water-
Filling, Buffer Management, Packet Loss, Fairness.

I. INTRODUCTION

Neural networks are a class of nonlinear systems capable
of adaptively learning and performing tasks accomplished by
other systems. Their broad range of applications includes
speech and signal processing, pattern recognition, and system
modeling. The adaptive learning power of neural networks has
also proven useful in various contexts of the literature on com-
puter communication networks. For example, neural networks
have been successfully utilized in dynamic allocation of band-
width for Variable Bit Rate (VBR) video over Asynchronous
Transfer Mode (ATM) [9]. Systems with neural network build-
ing blocks are robust in the sense that the occurrence of small
errors in the systems does not interfere with the proper opera-
tion of the system. This characteristic of neural networks makes
them quite suitable for forecasting traffic patterns.

In [35] and [36], the absence of natural length of a burst for
the high quality, high time-resolution Ethernet LAN traffic data
was reported. The data was collected between August 1989
and February 1992 on several Ethernet LANs. This behavior
is very different from conventional telephone traffic and from
formal models of packet traffic. The available data sets veri-
fied the persistent self-similar feature of Ethernet traffic across
the network and across the time. In general, the degree of self-
similarity depends on the utilization level of the medium. For
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the Ethernet, it increases as the utilization increases. Anal-
ysis of traffic data from other networks and services such as
VBR video [7], ISDN traffic [25], Common Channel Signaling
Network (CCSN) [11], ATM traffic [41], and broadband net-
works [3] have all convincingly demonstrated the presence of
features such as long-range dependence, slowly decaying vari-
ances, and heavy-tailed distributions. These features are best
described within the context of second-order self-similarity and
fractal theory approach. Forecasting self-similar traffic patterns
is more challenging than forecasting traditional traffic patterns
considering their rich dynamics.

Reducing packet loss in queuing systems is one of the most
important issues in the design of traffic control algorithms.
Reducing packet loss in the queuing systems is equivalent to
improving efficiency and is usually considered as a perfor-
mance evaluation tool. For systems consisting of more than one
source, there is another major issue worth considering known
as fairness. Fairness provides each individual source with the
ability to take advantage of a fair portion of the shared avail-
able resources such as buffer space or server bandwidth also
known as service rate. The combination of buffer management
and server bandwidth scheduling specifies the efficiency and
the fairness of a multiple source queuing system. Accommo-
dating self-similar traffic patterns further complicates the buffer
management of multiple source queuing systems manifesting in
higher drop rates and longer queuing delays.

In this study, two different server scheduling schemes are
considered. These are namely Fixed Time Division Multi-
plexing (FTDM) and Statistical Time Division Multiplexing
(STDM). In FTDM, each source takes advantage of a pre-
assigned portion of the server bandwidth. Server bandwidth
is allocated to each source regardless of whether it has data to
transmit. In STDM, each source only utilizes an aggregate por-
tion of the server bandwidth when it has actual data to be trans-
mitted. Simply put, the difference between the two schemes is
that in FTDM there is no bandwidth sharing while in STDM the
unused portion of the server bandwidth assigned to each source
might be used to service packets generated by other sources.
FTDM is typically used for ATM switching systems with a
number of virtual paths where as STDM is typically used in
ATM queuing systems with a number of virtual channels.

There are a number of different buffer management schemes
studied in the literature as described in [37], [21], [31], [32],
and [19]. These are namely Complete Sharing (CS) with no
enforced capacity allocation mechanism, Complete Partition-
ing (CP) with equal partitioning of the available buffer capac-
ity, and Partial Sharing (PS) with dedicated portions of the
buffer space as well as a common shared portion. A survey
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of the literature shows that CS achieves optimal throughput-
delay performance. However, the work of [28] suggests that
the CS scheme may not perform well when accommodating
ill-behaved greedy sources or heavily loaded systems. There
is also another variation of CS known as the Static Threshold
(ST) scheme in which an arriving packet is accommodated if
the queue length is smaller than a given threshold. The works
of [28], [18], and [37] all propose simple implementations of
Static PS (SPS) methods with the objective of balancing the
tradeoff between efficiency and fairness. While implementation
of these schemes is relatively simple, their performance suffers
as the result of relying on static partitioning. The latter is due to
the fact that the schemes can allow packet loss in a partitioned
buffer while another partitioned buffer is not full. The work of
[27] provides a discussion of performance analysis for a class
of SPS methods.

A dynamic buffer management scheme is classified under
PS methods with the ability to adjust the buffer size of each
source according to the overall buffer occupancy. The schemes
of [48], [49], [50], [20], and [38] are all classified under Dy-
namic Push Out (DPO) which is a variant of dynamic buffer
management schemes. The schemes investigate different issues
of the main DPO idea. In DPO, a packet that arrives to find
a partitioned buffer full pushes out the packet at the head of
the longest partitioned buffer. Although offering excellent ef-
ficiency and fairness characteristics, DPO has proven to have
a very high overhead of implementation. Relying on the max-
min proposal of [29], the dynamic buffer management scheme
of [10] proposes simpler versions of DPO in which the individ-
ual partitioned buffer length threshold, at any instant of time,
is proportional to the current amount of unused buffering in the
main buffer. Packet arrivals for a partitioned buffer are blocked
whenever the partitioned buffer length equals or exceeds the
current threshold value. In [23], the authors extend their earlier
work of [10] to regulate buffer sharing among traffic classes
with different loss priorities.

Other buffer management and scheduling schemes that have
been extensively discussed in the literature and can be cate-
gorized under the above classifications include Earliest Dead-
line First (EDF), Complete Sharing with Virtual partitioning
(CSVP), and Generalized Process Sharing (GPS). Among the
set of articles in the literature, the works of [15], [52], and
[12] provide an appropriate overview of the latter techniques,
respectively. In [53] and [27], performance analysis studies of
a number of buffer management schemes are provided. The
tradeoff between the available bandwidth and buffer space is
studied in [40]. The work of [33] and [5] are among recent lit-
erature articles providing a theoretical and an intelligent treat-
ment of the buffer management problem, respectively.

The schemes introduced in this paper are also classified un-
der dynamic buffer management schemes. They are capable of
improving the loss performance of SPS scheme of [37] while
considering fairness versus loss trade off. Unlike the family of
DPO buffer management schemes, our proposed schemes do
not need to monitor and access any information about the sta-
tus of all of the partitioned buffers. Hence, they can be imple-
mented at each buffer independently. The schemes rely on the
power of neural networks to forecast the arriving traffic patterns

of multiple source queuing systems and dynamically adjust the
buffer space partitioning according to the corresponding traffic
arrival pattern. The schemes utilize water-filling technique sat-
isfying the so-called max-min fairness property when dynam-
ically adjusting the buffer space. We note that while our pro-
posed schemes are described for fixed-length packets typically
utilized in ATM systems, they can also be applied to to variable-
length packets.

An outline of the paper follows. In Section II, we briefly
review the characteristics of self-similar packet traffic. In Sec-
tion III, we describe our proposed neural network forecasting
schemes of teletraffic patterns. In Section IV, we introduce
and analyze a typical multiple source queuing system utilized
in the context of our work. Section V provides the details of
our buffer management scheme. Section VI includes our sim-
ulation results pertaining to packet loss reduction in multiple
source queuing systems. In this section, we also compare the
performance of our proposed Dynamic Neural Sharing (DNS)
schemes with other buffer management schemes. Finally, we
conclude the paper in Section VII.

II. SELF-SIMILAR PACKET TRAFFIC

In this section, we provide a discussion of second-order self-
similarity as a statistical property of time series. Intuitively,
self-similar phenomena display structural similarities across a
significant number of time scales. The degree of self-similarity
is sometimes specified by measuring a single or a set of param-
eter(s) called Hurst parameter(s).
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the covariance stationary time series with corresponding auto-
correlation function  C�EGF obtained from averaging the original
series
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processes have the same correlation functions as
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totically approaches to  �!
'� given by Relationship (1), for large= and



. If the correlation functions of the aggregated pro-
cesses

�DC�EGF
are the same as the correlation functions of

�
or approach asymptotically to the correlation function of

�
,

then
�

is called exactly or asymptotically second-order self-
similar. Fractal Gaussian Noise (FGN) is a good example of
an exactly self-similar process with self-similarity parameterP ���WR��X6 P 6Y�

. Fractional ARIMA processes with the
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parameters
�[Z��@\��@]V�

such that
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are examples of
asymptotically second-order self-similar processes with self-
similarity parameter P �O\ M �WR��

.
Mathematically, self-similarity manifests itself in a number

of ways. In our discussion below, we assume that the constants* � �_*�`?�_*�a�� and
*�b

are finite positive integers.c The variance of sample mean decreases more slowly than
the reciprocal of the sample size. This is called slowly
decaying variance property indicating d<e-f ���gC�EGFh�i(* � = C .�0 F as = 254

with

j6X8k6%�

.c The autocorrelations decay hyperbolically rather than ex-
ponentially fast, implying a non-summable autocorrela-
tion function l �  �!
'���m4

. This is called long-range
dependence property.c The spectral density n �_� � obeys a power-law near the ori-
gin. This is the concept of

�WR n noise with the meaningn �!o/�p�+*�`Wo .rq as
o�254

with

j6tsu6O�

and
sv�>�pQw8

.
It appears that the most important feature of self-similar pro-
cesses is that their aggregated process

�gC�EGF
possesses a non-

degenerate correlation function as = 2 4
. This is differ-

ent from traditional packet traffic models with the property
that their aggregated processes

�gC�EGF
tend to second order pure

noise, i.e.,  C�EGF 2�

as = 254

.
The concept of self-similar processes provides an elegant ex-

planation for the Hurst effect phenomenon. In order to describe
the Hurst effect, we should first describe the rescaled adjusted
range. For a given set of observations

�J���x��
7�y�?�@�����������Bzx�
with sample mean

�D�Jz{�
and sample variance |}� �Jz{� , the

rescaled adjusted range denoted by the  R | statistic is given
by  �Jzx�| �Jz{� � �| �Jz{�'~ =we-� �!�x�U�HQ =w�U� �U�u����� (3)

where � �	
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. While many time series appear to be well repre-
sented by the relation � ~  �!zx�@R | �!zx���S(>* a zu� , as

z�2�4
,

with an average Hurst parameter P typically measured at 0.73
[45], observations

� �
from short-range dependent models are

known to satisfy � ~  �!zx�@R | �!zx���/(	*?b�z ��� b , as
z�254

. This
is usually referred to as the Hurst effect.

III. NEURAL NETWORK FORECASTING OF PACKET
TRAFFIC

As pointed out in various research articles, many packet traf-
fic sources and patterns exhibit an ON-OFF behavior. An ON-
OFF traffic pattern is characterized by two states. Such a pattern
is delivering traffic at a peak rate in its active state and is silent
in its passive state. Aggregate Ethernet traffic patterns [35] and
VBR video sources [7] are among the examples of ON-OFF
traffic patterns. In this section, we propose two neural-based
techniques of forecasting ON-OFF traffic patterns. While our
first technique takes advantage of a first order gradient-based
back propagation learning, our second technique utilizes a sec-
ond order Quasi-Newton back propagation learning.

The main idea of forecasting self-similar traffic patterns with
fixed structure neural networks is related to the original propos-
als of [43] and [14] in which fixed structure feedforward percep-
tron neural networks with back propagation learning are pro-
posed as potential modeling tools of nonlinear systems. The de-
tails of such a modeling task can be found in [24]. Treating self-
similar traffic patterns as a class of nonlinear dynamical sys-
tems, we use perceptron networks with back propagation learn-
ing to model aggregated self-similar traffic patterns as an alter-
native to stochastic and chaotic systems approaches proposed
in [35], [13], [4], and [2]. Our modeling approach provides
an attractive solution for traffic modeling and has the advan-
tage of simplicity compared to the previously proposed mod-
eling approaches namely stochastic and deterministic chaotic
map modeling. The promise of neural network modeling ap-
proach is to replace the analytical difficulties encountered in
the other modeling approaches with a straightforward computa-
tional algorithm. As opposed to the other modeling approaches,
neural network modeling does not investigate identification of
appropriate maps neither does it introduce a parameter or a set
of parameters describing the fractal nature of traffic. It, hence,
need not cope with the complexity of estimating multifractal
Hurst parameters [35], [16] and/or fractal dimensions [13]. The
proposed neural network forecasting schemes of this work sim-
ply take advantage of using a fixed structure nonlinear system
with a well defined analytical model that is able to forecast a
traffic pattern after learning the dynamics of the pattern through
the use of information available in a number of traffic samples.
Interestingly and as proposed by Gomes et al. [22], neural net-
works can also be utilized as appropriate estimators of the Hurst
parameter.

The fixed structure, fully connected, feedforward perceptron
neural network utilized for the task of forecasting in our study
consists of an input layer with eight neurons, three hidden lay-
ers with twenty neurons in each layer, and an output layer with
one neuron. Fig. 1 illustrates the structure of the neural net-
work. In our perceptron network, a neuron transfers its output
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Input Layer

.....
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Fig. 1. The fixed structure neural network used for the task of traffic forecast-
ing.
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as � CI�BF ~ � ��� n��^� � ��� C�� � F ~ � ��� � C � F ~ � Qt�����"��� n��V� CI�BF ~ � �U� (5)

where � CI�BF ~ � � is the present output state of the � -th neuron in
layer � and

��CI� � F ~ � � is the weighting function between the � -th
neuron in layer � QO� and the � -th neuron in layer � . Further,� CI�BF ~ � � is the combined input of the � -th neuron in layer � andn is the sigmoid function defined as

n �J�<�H� �� Mg� .�  (6)

To consider the threshold effects, each neuron in layer � is as-
sumed to have an extra input with a fixed value of

Q��
in addi-

tion to its inputs from the neurons in layer � Q+� . The learning
process of the neural network is nothing more than minimizing
its energy function � . The energy function of the network at
iteration



of the learning process is defined as

� ��� �� ��¡?�¢Q{£¤�V� � (7)

where
£ �

indicates the present output of the network to a given
input ¥ � and

¡ �
corresponds to the actual output.

In our current work, we propose the use of two iterative learn-
ing schemes. They are namely the first order gradient-based
back propagation and BFGS Quasi-Newton back propagation
learning schemes.

A. The First Order Gradient-Based Back Propagation Learn-
ing

Our proposed gradient-based back propagation learning
scheme overcomes the mismatch between the actual outputs
and the generated outputs of the neural network by adjusting
the weightings of interconnections in the opposite direction of
the gradient vector and its momentums. It is categorized under
first degree unconstrained optimization methods and therefore
has the advantage of simplicity as well as low space complex-
ity. The latter makes the scheme attractive from the standpoint
of implementation in intermediate buffers with limited memory
resources. Iteration



of our proposed gradient-based learning

scheme is described asc Form the gradient � ���O¦ � RV¦/�§� .c Utilize a quadratic interpolation line search method to find¨ � minimizing � ������Q ¨ � � �V� .c Find the vector of weighting functions’ changes as© �§� L , �>Q ¨ �Dª�«ª�¬�­ M¯® � © �°�V� (8)

with
®

denoting the momentum term.c Set
� � L ,°�	� � M © � � .

We refer the reader to Appendix C of [8] for further details of
the line search methods.

B. BFGS Quasi-Newton Back Propagation Learning

The BFGS Quasi-Newton back propagation learning scheme
also overcomes the mismatch between the actual outputs and

the generated outputs of the neural network by adjusting the
weightings of interconnections. However, it is categorized un-
der second degree gradient-based unconstrained optimization
methods and therefore has much better convergence character-
istics compared to any variation of the standard back propa-
gation learning including our first learning scheme. Although
quicker convergence of second degree gradient-based methods
comes at the cost of requiring to calculate the inverse Hessian
matrix in every iteration, BFGS learning avoids such a per iter-
ation calculation as explained below. In iteration


 M �
of learn-

ing, BFGS approximates the inverse Hessian matrix
ª�±_«ª�¬ ±­_²<³ by

a positive definite matrix ´ � L , in the form of

´ � L , � ´ � M �h� M�µ_¶­�· ­ µ ­¸ ¶­ ¸�­ � ¸�­B¸ ¶­¸ ¶­ ¸�­ Q · ­ µ ­@¸ ¶­ L ¸�­ µ_¶­/· ­¸ ¶­ ¸�­
(9)

where
Z��D�¹�§� L , Q+�§� and

]��g� ª�«ª�¬�­_²<³ Q ª�«ª�¬�­ . We note
that the space complexity of the scheme is higher than that of
first degree back propagation learning schemes due to requiring
to save the elements of ´ � . Iteration



of our proposed BFGS

learning scheme is then described asc Form the gradient � ���	¦ � R^¦/�°� .c Calculate matrix ´ � as described in Equation (9).c Utilize a quadratic interpolation line search method to find¨ � minimizing � �J�°��Q ¨ � ´ � � �V� .c Set
� � L ,¢�º� � Q ¨ � ´ � � � .

We refer the reader to Section 1.7 of [8] for further details of
BFGS algorithm.

The following discussion is applied to both learning schemes
described above. In iteration



of learning, both schemes prop-

agate the input vector ¥ � in the forward direction through the
network until reaching to the output

£ �
. During the propaga-

tion process, all of the combined inputs � CI�BF and output states� CI�BF for each neuron are set. In iteration



, the neural network
input vector ¥ � consists of samples

£�� .�» through
£¤� . , of the

actual traffic pattern. The difference between sample
£S�

of the
actual traffic pattern and the neural network output

¡<�
is used to

adjust the weighting functions of the network accordingly. In
the next iteration, sample

£�� .�» of the actual traffic pattern is
discarded, samples

£�� .�¼ through
£¤�

of the actual traffic pattern
are used as the new input vector, and sample

£�� L , is used as
the new actual output. The neural network continues process-
ing more information in consecutive iterations of the learning
phase until the absolute error � is less than a specified error
bound ½ . Once the absolute error is within the specified error
bound ½ , the self-generated output of the neural network can be
used to forecast a given traffic pattern. The network can inde-
pendently self-generate samples by discarding the oldest input
sample, shifting the input samples by one, and using its output
as the most recent input sample. Since the neural network is
utilizing sigmoid function, we assume the traffic pattern is ac-
tive if the generated output of the neural network is above the
threshold of


'�I¾
and passive otherwise. A continuous sequence

of learning is carried even after the network is trained consid-
ering the fact that the network can only predict a small number
of iterations at any time independently before the output error
exceeds the acceptable error bound ½ .



5

The number of samples required for the first time training
of the neural network depends on the complexity of the traffic
pattern dynamics. The time complexity and the space complex-
ity of the first order gradient-based back propagation scheme
are respectively ¿ �UÀ!Áu� and ¿ �JÁu� where

Á
is the number of

weighting functions in the network and
À

is the number of iter-
ations. Similar complexity terms for the BFGS back propaga-
tion scheme are respectively identified as ¿ �UÀ!Áu� and ¿ �JÁ � � .
However, the number of iterations

À
for BFGS learning is usu-

ally an order of magnitude smaller than the similar quantity
for gradient-based learning. Hence, the tradeoff between the
two approaches is the better time complexity of BFGS learning
versus better space complexity of the first order gradient-based
learning.

Further, the complexity characteristics of both neural learn-
ing schemes are typically better than those of statistical model-
ing schemes such as fractional ARIMA processes or the com-
plexity of calculating fractal dimensions such as correlation
dimension. However, wide variations of

À
prevent us from

making a strong claim about the complexity advantage of our
neural learning schemes compared to other modeling schemes.
Nonetheless combining the straight forward way of implemen-
tation with the analysis of complexity, we claim that our pro-
posed neural network schemes provide elegant approaches for
the task of traffic forecasting. Further, it is important to note
that the schemes of this section can be utilized to model any
traffic pattern aside from the fact that the emphasis of our work
is on self-similar traffic traffic forecasting.

IV. MULTIPLE SOURCE QUEUING SYSTEM

A. Queuing System Analysis

Our application testbed relies on a multiple source queuing
system as illustrated by Fig. 2. The multiple source queuing
system consists of a number of ON-OFF sources sharing an
available buffer space. The sources can also be thought of as the
arriving traffic patterns of the buffer. Depending on the choice
of buffer management scheme, the queuing system can include
dedicated partitions assigned to individual traffic patterns.

S
1


S
2


S
3


SWITCH


Fig. 2. The structure of a multiple source queuing system.

In our discussion, we view each individual source and its cor-
responding buffer as a separate First In First Out (FIFO) queu-
ing system. Next, we provide a queuing analysis for each source
within the multiple source queuing system. In our FIFO model,
there is a finite capacity buffer storing arrived packets before
they get transmitted. The occupancy of the buffer is determined

by the flow of the arriving packets and the rate at which the
packets are serviced. In this model, a queue is identified by its
buffer capacity Â , and its server capacity Ã E§Ä"Å . In each queue,
the arrival rate is compared with the service rate to determine
whether the size of the queue is increasing or decreasing as well
as whether the queue is losing packets.

Using the following notationcXÆ C � F� : The input rate of the � -th buffer at time



.c Ã C � F� : The output rate of the � -th buffer at time



.cºÇ C � F� : The queuing rate of the � -th buffer at time



.cXÈ C � F� : The loss rate of the � -th buffer at time



.c Â C � F� : The queue size of the � -th buffer at time



.c Â C � F : The buffer capacity of the � -th buffer.
the state of the queue for each buffer is specified byÆ C � F� � Ã C � F� M Ç C � F� M È C � F� (10)

at any instant of time as shown in Fig. 3. Note that besides the
values of Ç C � F� that could be positive or negative, all of the other
values are always positive. Originally, the queue is empty. It

L
(i)
k


I
(i)
k


Q
(i)
k

O
(i)
k


Fig. 3. The queuing diagram of the É -th source at time Ê .
begins to form when the buffer input rate exceeds the service
rate. Hence, the queue rate Ç C � F� and the loss rate È C � F� remain
zero as long as the input rate is less than or equal the service
rate, i.e.,

Ã C � F� �ÌË Æ C � F� � Æ C � F� 6 Ã E§Ä"ÅÃ E§Ä"Å � Æ C � F� � Ã E§Ä"Å (11)

The queue size Â C � F� begins to increase as soon as the input rate
exceeds the service rate Ã EGÄÍÅ . While the queue is not empty,
the output rate is always equal to the queue server capacity. In
this scenario, the total queuing rate is the difference between
the input rate and the queue server capacity. The loss rate is
zero at this stage. The queue keeps growing in size and finally
becomes full if the input rate remains higher than the queue
server capacity. In that situation, the queuing rate is zero and
the excess input rate is the packet loss rate asÈ C � F� � Æ C � F� Q Ã C � F� (12)

with Ã C � F� � Ã E§Ä"Å . The effect of a change in the input rate
is not immediately appeared if there are packets in the queue
waiting to transmit. It is the queuing rate that changes according
to Ç C � F� L , � Ç C � F� M Æ C � F� L , Q Æ C � F� (13)
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The queue size begins to decrease when the input rate becomes
less than the server capacity, i.e., Æ C � F� 6 Ã EGÄÍÅ . As the result,
the queuing rate goes below zero, i.e., Ç C � F� 6t


. The queue be-
comes empty if this situation lasts. The output rate is obtained
from the following equation,

Ã C � F� � Ë Ã E§Ä"Å � Â C � F� $X
Æ C � F� � Â C � F� �	
 (14)

The behavior of the queuing system described above is ruled
by the Î R Î R<� queuing discipline. Analyzing the packet ar-
rival rate of such a queuing system is a rather complicated task.
Previously proposed techniques of analysis such as Lindley’s
Integral Equation described in [39] and Section 8.2 of [34] rely
on stochastic theory approaches. The solution to Lindley’s Inte-
gral Equation may be obtained under certain conditions by rely-
ing on spectrum factorization and transform theory techniques.
As an alternative, we propose the use of our neural network
schemes of Section III to learn the dynamics and forecast the
packet arrival of the queuing system.

B. ON-OFF Source Analysis

Having described the multiple source queuing system uti-
lized in our study, we now focus on the ON-OFF traffic pattern
of individual sources. In our system, we represent the traffic
pattern of a typical ON-OFF source by an artificially generated
pattern. The traffic pattern can be generated by a single chaotic
map or an aggregate of such maps. Generally speaking, an ON-
OFF source is generating traffic at a peak rate when it is active
and becomes active as soon as the state variable of the describ-
ing chaotic map goes beyond a threshold value. The source
becomes passive as soon as the state variable goes below the
threshold value. We utilize double intermittency map in our
packet generation process as it generates a self-similar traffic
pattern according to what is reported in [13]. The describing
equation of double intermittency map is

� � L ,°�ÌÏ Ð , M � � MgÑ , � E � ��
ÓÒ � � Òº\Q Ð � M � � MgÑ � �h�°Q � � �_E ��\�Ò � � Ò%�
(15)

where � � represents the discrete state variable of the map and
the rest of the symbols represent various parameters with the
property

Ñ�, � , .1Ô ³ .�ÕÕ�Ö . Fig. 4 illustrates a sample drawing of
double intermittency map. As observed in the figure, the itera-
tive map requires multiple samples to move from one segment
to another. We select initial conditions in the range of � �X×~ 
'�����@
'� A^� along with a fixed threshold value of

\��5
��IØ
and

parameters Ð , �y
�� 
���� Ð � �y
'� 
?¾'� = �;¾'� Ñ�, �m����Ø^A�� Ñ � ���Ù-Ø<� Ú?Û
to obtain different traffic patterns for different sources.

As an alternative, one may use different threshold values with
fixed initial conditions to achieve varying traffic patterns.

It is proven in [6] that the binary trace of the autocorrela-
tion of the double intermittency map with Ð , � Ð � ��


de-
cays slowly. However, it is unclear whether this property is
preserved with nonzero albeit small values of Ð , and Ð � and
whether the Hurst parameter is continuous. Nonetheless, nu-
merical simulations seem to indicate that the Hurst parameter is
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Fig. 4. A sample drawing of the double intermittency map. The legend IM
indicates the path traversed by the map through consecutive iterations.

continuous and that for small values of Ð , and Ð � the Hurst pa-
rameter can be approximated as P �>��� ,E . , �+
'��ØV¾ . Identi-
fying an approximation of the value of the Hurst parameter for
traffic aggregates obtained from a set of double intermittency
maps is not straightforward. However, our numerical experi-
ments have identified the range ~ 
��IØ����B
��IØ?Ø�� for aggregates ofA�


to
¾�


sources.

V. BUFFER MANAGEMENT UTILIZING WATER-FILLING

The main idea of our neural-based buffer management
scheme revolves around partitioning the available space of a
shared buffer among a number of traffic sources according to
their traffic generation patterns. Forecasting of the traffic gen-
eration pattern can be done utilizing one of the neural network
learning schemes of Section III.

Consider the general assignment of a given buffer space with
capacity Â�Ü among a number of sources as illustrated in Fig.
5. The buffer space is partitioned into a common portion with

S
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S
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S
3


B
C


B
1


B
2


B
3


Fig. 5. General assignment of the buffer space ( ÝHÞ ) for a three source queuing
system.

a fixed size Â�ß and a number of dedicated per source portions.
We propose the use of water-filling approach to set the size of
the dedicated portions of the buffer. We follow the notation of
Section IV.A to describe the water-filling approach. For a given
multiple source queuing system accommodating � sources, let
us assume that source � is generating packets with the rate Æ C � F�
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in a time epoch with length à , i.e.,

 × � �?��á�á�á"� à � . Further,

assume that the queue size of the dedicated portion of the buffer
to source � at the beginning of the epoch is given by Â C � F� . Then
the queue size of source � at time


 M �
is described asÂ C � F� L , � Â C � F� M Ç C � F� (16)

where all of the quantities in Equation (16) are defined in Sec-
tion IV.A. Source � is guaranteed not to experience any packet
loss during the epoch ifÂ C � F� Ò Â C � Fãâ 
 × � ����á�á�á"� à � (17)

Hence, the requested dedicated buffer space of source � in the
time epoch can be identified asÂ C � F � ä3åVæ��ç-è ,"éIêIêIê é Ü1ë Â C � F� (18)

Defining Â�ìtí� Â�Ü Q Â¢ß as the remaining buffer space after
assigning the common portion of the buffer and for an ordered
set of Â C , F Ò>á�á�árÒ Â C�îVF , our proposed water-filling approach
assigns a dedicated portion of the buffer space ï C � F to source � as

Case 1: If Â ì $ l î�Bð , Â CI�BFï C � F � Â C � F ����Ò � Ò � (19)

Case 2: If Â�ì 6 l î�Bð , Â CI�BF
ï C � F �iË Â C � Fñ�5��Ò � ÒXòó�ô . l	õöU÷ ³ óùø ö!úî .�û �¹ò M ��Ò � Ò � (20)

where
ò

is an integer satisfying the following condition

Â C û F Ò ó ô . l õö!÷?ü óHø ö!úî .�û Ò Â C û L , F (21)
ÓÒ ò Ò � QX�
for Â C � F í�+
 .

We observe that the water-filling approach of Equation (20)
starts by dividing the remaining buffer space equally among
all of the � sources until the first source reaches its requested
buffer space Â C , F , then it fixes the assigned buffer space for
the first source to Â C , F and divides the new remaining buffer
space among the remaining sources equally, and so on. Con-
sequently, the sources with lower requested buffer space are
more likely to receive their requested buffer space in full while
the other sources receive equal shares of the remaining buffer
space guaranteed not to be less than the assigned shares of the
sources fully receiving their requested buffer space. We note
that our proposed water-filling solution is max-min fair accord-
ing to definition of [29]. The solution has a linear complex-
ity and is hence quite practical from the implementation stand
point. In [54], we also prove that the water-filling solution pro-
vided above is the solution to an optimal resource allocation
problem for a class of piecewise linear utility functions. Be-
cause the same resource allocation problem can be applied to
the current buffer management problem, we conclude that our
proposed water-filling approach is optimal.

VI. SIMULATION RESULTS

In order to investigate the performance of our proposed
buffer management scheme, we utilize a triple source system.
The traffic patterns of the first, second, and third source con-
sist of an aggregate pattern generated by

A?

,
Ú-


, and
¾V


in-
dividual double intermittency map packet generators, respec-
tively. We observe that the aggregate traffic patterns exhibit
self-similar characteristics with Hurst parameters in the range
of ~ 
��IØ����B
��IØ?Ø�� . We apply the proposed neural network fore-
casting schemes of Section III to predict the input rate of each
buffer, i.e., Æ C � F� with � × � �?�@�'�BA�� over the discrete time



. We

note that the volumes of traffic generated by different sources
are not the same because of using a different number of per
source packet generators.

First, we show that our proposed neural learning schemes
are able to forecast self-similar traffic patterns. Fig. 6 illus-
trates and compares the number of generated packets by a sin-
gle source double intermittency map and the trained neural net-
work. We have utilized the first order gradient-based training
scheme of Section III.A. Fig. 7 shows similar results for an ag-
gregate source double intermittency map. Applying thousands
of learning iterations, the single and aggregate traffic pattern
have been followed within the specified error range for an av-
erage of

Ú��
and

¾VÙ
samples ahead, respectively. An interest-

ing observation is that applying the neural network modeling
scheme to an aggregate source traffic pattern consistently pro-
duces better results compared to a single source traffic pattern
in terms of the number of accurate post training samples. The
observation is expected as increasing the number of sources re-
duces the degree of self-similarity in an aggregate traffic pat-
tern.

Modeling Results of Single Source Double Intermittency Map
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Fig. 6. First order neural network modeling results of a single source double
intermittency map.

We note that the convergence of the learning scheme is time
consuming because of the rich dynamics of the traffic pattern.
In addition, all of the convergence results are strongly affected
by the choice of initial conditions of the weighting functions
and the minimum acceptable error bound ½ . This is specially
important as we have observed situations in which the optimal
values of the weighting functions only reflect a local optimum
rather than a global optimum. While this is expected due to the
nature of the utilized learning algorithms, the effects typically
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Modeling Results of Aggregate Source Double Intermittency Map  
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Fig. 7. First order neural network modeling results of a ý"þ aggregate source
double intermittency map.

show in quicker divergence from the acceptable error bounds.
Setting ½ �O
'��� and the initial values of the weighting functions
randomly between


'� 
'�
and


�� 
?Û
yields best practical results

while avoiding biasing and saturation. We have also observed
the convergence of BFGS back propagation learning is eight to
ten times faster than the first order gradient-based back prop-
agation learning for the same choices of parameters. Further,
its accuracy in terms of the number of samples followed in the
post training phase is about 10% better than that of the first
order back propagation learning. Another important consider-
ation is that improving the accuracy of the forecasting process
in terms of the number of samples could result in a better ef-
ficiency, it should not affect the fairness characteristics of the
utilized scheme. In addition, we have utilized the hybrid lin-
ear/nonlinear learning scheme of [42]. However, we have not
found much better convergence results compared to BFGS back
propagation learning scheme.

Next, the traffic generated by each source is collected and
sent to a shared buffer in a round robin manner. Depending
on the buffer management scheme, the shared buffer may be
partitioned into a common portion and three dedicated portions.
In the latter case, the arriving packets of each source are first
destined to the portion of the buffer dedicated to the source.
Packets are only sent to the common portion of the buffer if the
dedicated portion is full. Packets are lost if there is no space
available either in the dedicated or the common portion. At the
output of the buffer, the server utilizes either FTDM or STDM
scheduling schemes to service the three dedicated portions of
the buffer and the common portion.

We compare the performance of five different buffer man-
agement scenarios. In the first scenario, CS scheme is deployed,
i.e., there is only one queue for all of the sources. It is associated
with Â�ß � Â�Ü and Â , � Â � � Â `¢�%
 in Fig. 5. The second
scenario is a simple implementation of CP scheme in which the
capacity of the buffer is distributed equally among the sources.
It is associated with Â�ß �9
 and Â , � Â � � Â `3� ,` Â¢Ü in
Fig. 5. The third scenario is a simple implementation of SPS
scheme that has three equal portions for the three sources with
an additional common portion available to all of the sources.
It is associated with Â ß�ÿ��


and Â ,{� Â � � Â ` ÿ�Y

in

Fig. 5. The last two scenarios are the dynamic assignment of

the buffer space relying on the water-filling result of Section V
in conjunction with the neural forecasting schemes of Section
III. It is important to note that the neural forecasting schemes
are applied continuously, i.e., the training continues even af-
ter reaching the acceptable error bound. We refer to the neu-
ral forecasting schemes as DNS schemes. They are associated
with the general case of Fig. 5. The last two scenarios are, in
fact, generalizations of the third scenario keeping the common
portion size fixed and adjusting the buffer space size of each
source dynamically according to their traffic arrival patterns.
Each of the last two methods have a potential to outperform the
other buffer management schemes as they rely on forecasting
the arriving traffic patterns. The process of utilizing our pro-
posed dynamic buffer management scheme works as follows.
We utilize an independent neural network per traffic pattern.
Originally, we allow the neural networks to learn the dynamics
of the underlying traffic patterns. During the original learning
period, the dedicated portions of the buffer space are set accord-
ing to the default values of the third scenario. Once the neural
networks have learned the dynamics of the traffic patterns, we
proceed with applying consecutive epochs of buffer space allo-
cation. At the beginning of each epoch, individual portions of
the buffer space are assigned proportional to the arrival pattern
of the sources and utilizing the water-filling approach of Sec-
tion V. The assignments remain in effect for as long as none
of the conditions below are violated: (1) the forecasting errors
remain within the acceptable threshold bound ½ , (2) the number
of samples predicted ahead is not passed the moving average of
the accurately predicted samples in all of the previous epochs,
and (3) the current epoch has not ended. If conditions (1) or (2)
above are violated in the middle of the epoch, the dedicated por-
tions of the buffer space are reset to the default values of SPS
scenario for the rest of the epoch. To consider practical over-
head of managing the buffer, we have selected an epoch length
of
��
�
?


samples. The dedicated portions are set according to
the packet arrival pattern of the sources at the beginning of the
next epoch and so on.

In order to evaluate the efficiency and fairness of differ-
ent scenarios, we compare their overall and their most passive
source loss rates together. Our experiments span over different
choices of the buffer size with a fixed service rate and a mod-
erately loaded queuing system. In our experiments, we rely on
the same discrete time scales for both the neural network and
the traffic generating intermittency maps.

Fig. 8 and Fig. 9 respectively show plots of total packet
loss and the most passive source packet loss rate versus nor-
malized buffer size diagram for the triple source queuing sys-
tem in presence of FTDM scheduling algorithm. Fig. 10 and
Fig. 11 show plots of the same quantities in presence of STDM
scheduling algorithm. In the figures, we use the abbreviations
DNS1 and DNS2 to denote first degree gradient-based dynamic
neural sharing and BFGS dynamic neural sharing, respectively.
The simulation results have been collected over ten million it-
erations per choice of buffer size.

It is clearly observed from the figures that for both FTDM
and STDM scheduling algorithms under DNS1 and DNS2 sce-
narios, the total loss rate compared to CP scenario as well as per
source loss rate compared to CS and/or SPS scenarios are re-
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Fig. 8. Total packet loss rate versus buffer size diagram for the triple
source queuing system using CP, SPS, DNS1, and DNS2 in presence of FTDM
scheduling algorithm.
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Fig. 9. Single source packet loss rate versus buffer size diagram for the triple
source queuing system using CP, SPS, DNS1, and DNS2 in presence of FTDM
scheduling algorithm.

1.000E+00


1.000E+01


1.000E+02


1.000E+03


1.000E+04


1.000E+05


1.000E+06


1.000E+07


1.000E+08


0
 2
 4
 6
 8
 10
 12


Normalized Buffer Size


Lo
ss

 P
ro

ba
bi

lit
y 

(x
1.

0E
-0

9)



CP

SPS

DNS1

DNS2

CS


Fig. 10. Total packet loss rate versus buffer size diagram for the triple source
queuing system using CP, SPS, DNS1, DNS2, and CS in presence of STDM
scheduling algorithm.
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Fig. 11. Single source packet loss rate versus buffer size diagram for the triple
source queuing system using CP, SPS, DNS1, DNS2, and CS in presence of
STDM scheduling algorithm.

duced. The results provided under DNS1 and DNS2 scenarios
are interpreted as the evidence that the tradeoff between fair-
ness and efficiency has been addressed. Comparing the results
of SPS, DNS1, and DNS2 scenarios show the higher efficiency
of the latter two methods. We also observe that both fairness
and efficiency characteristics of the results of DNS2 scenario
outperform the results of DNS1 scenario. As mentioned before,
the price is the higher space complexity of DNS2 compared to
that of DNS1.

An important observation is that reducing the epoch length
decreases the overall and single source loss rates of both DNS
methods at a higher cost of buffer management. For an epoch
length of

¾V

DNS1 and DNS2 loss rates are almost matching

the overall and single source loss rates of CS and CP, respec-
tively. Utilizing the standard variant of DPO buffer manage-
ment scheme also leads to efficiency and fairness character-
istics similar to the case of utilizing CS and CP, respectively.
Utilization of the other variants of DPO typically leads to trad-
ing a lower overhead of implementation with a lower loss per-
formance. Further, we note that the performance of different
methods are very different as the result of applying different
methods for traffic management of a heavily utilized system.

In addition, it is worth mentioning that the results of the plots
may resemble short-range dependent plots in which logarithmic
loss curves drop linearly with the increase of the buffer size. As
indicated by [17] and other research articles, the plots of loss
versus buffer size in the case of self-similar traffic patterns are
expected to become flat for an increase in the buffer size be-
yond a certain threshold. As indicated previously, the range of
measured Hurst parameters indicate that the traffic patterns are
self-similar. The observations are mostly justified by the mod-
erate levels of server utilization. For heavily utilized servers
operating close to full capacity, the observations are consistent
with the previously reported observations.

In what follows, we discuss some of the important aspects of
the implementation of our experiments. We start by comment-
ing on the choice of our neural network type and structure. We
considered perceptron, Hopfield, and Kohonen networks and
selected fixed-structure perceptron neural networks due to sim-
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plicity of implementation. The number of neurons in each layer
reflects our best overall practical findings leading to a balance
between complexity and accuracy. We observed that there is a
significant improvement in the learning performance when go-
ing from a single hidden layer structure to a double hidden layer
structure. However, increasing the number of hidden layers be-
yond two does not have the same effect and is thus not justified
considering the overhead of calculations. Further, small vari-
ations in the number of neurons of the input and each of the
two hidden layers do not have the same effect on the learning
performance. We anticipate that the best choice of the struc-
ture should be related to the degree of self-similarity captured
through the measure of the Hurst parameter or another quantity.

We close this section by mentioning that the results presented
in our current work point to some predictability of traffic that
can be viewed as a source of contradiction with the results pre-
sented in [46] and [47]. We point out that besides the difference
in the nature of traffic traces obtained from artificial traffic gen-
erators and TCP traffic simulators, the key difference is that the
utilized neural network of our study represents a time-varying
system considering continuous readjustment of the weighting
functions where as the results of those articles are obtained from
a set of stationary models.

VII. CONCLUSION AND FUTURE WORK

In this paper, we provided dynamic buffer management
schemes as an application of adaptive neural learning systems.
We utilized two different learning schemes for a fixed structure
perceptron neural network to forecast teletraffic patterns. Our
proposed schemes were the first order gradient-based learning
and BFGS Quasi-Newton learning. Based on our forecasting
results, we provided dynamic buffer management schemes to
improve the loss performance of static partial sharing buffer
management scheme while considering the fairness issue. Our
dynamic buffer management schemes relied on the water-filling
approach. Our experimentation utilized a multiple source queu-
ing system accommodating artificially generated self-similar
traffic patterns. We compared the performance of different
buffer management schemes, namely complete sharing, com-
plete partitioning, static partial sharing, and dynamic neural
sharing in presence of different server scheduling algorithms,
fixed time division multiplexing and statistical time division
multiplexing. We concluded that our dynamic neural sharing
schemes were able to offer the best solutions considering the
trade off between fairness and loss issues as well as practicality
of implementation.

We note that our dynamic neural sharing schemes are best
suited for the class of sources with a life span exceeding the
duration of the original learning period. In order to apply
our schemes to short-lived sources, we are investigating poten-
tial ways of improving the speed of standard traffic learning
schemes. We are also studying the applicability of statistical
offline learning methods to the dynamics of short-lived sources.
Our future work further aims at applying our schemes to a set
of real traffic traces.
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