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Abstract

We present a statistical optimization framework for solving the end-to-end problem of pro-
gressive transmission of images over noisy channels. We consider the impacts of transmission bit
errors as well as packet erasures. To cope with the impact of random bit errors, we formulate an
optimization problem aimed at minimizing the end-to-end expected distortion of a reconstructed
image subject to rate and efficiency constraints. In order to eliminate the impact of packet era-
sures, we propose utilizing an algorithm that is capable of statistically guaranteeing the delivery
of a packet set associated with the progressive bitstream of an image source. Using receiver feed-
back, our framework is capable of effectively coping with the channel loss effects characterized
by the Gilbert-Elliott model.

Index Terms

Progressive Transmission of Images, Source Coding, Channel Coding, Random Bit Er-
ror, Packet Erasure, Gilbert-Elliott Loss Model, Statistical Guarantee of Packet Delivery.

|. INTRODUCTION

Progressive transmission of images has proven as a viable alternative of delivering images over
noisy channels. A progressive source coder provides the decoder with the capability of recon-
structing the source data at different bit rates from the prefixes of a single bitstream. Due to high
sensitivity to transmission noise, progressive transmission of images over noisy channels has to be
accompanied with appropriate channel coding or joint source-channel coding schemes. A review of
the literature reveals a rich set of articles within the context of progressive transmission of images
over noisy channels. In the area of source coding, the works of Shapiro [16] introducing embed-
ded zerotrees of wavelets, Said et al. [14] proposing set partitioning in hierarchical trees (SPIHT),
Taubman et al. [21] suggesting a progressive wavelet-based subband image coding algorithm, Or-
dentlich et al. [13] covering embedded coding of the bitplanes of a wavelet-transformed image,
and Malavar [11] suggesting yet another progressive wavelet coding technique are perhaps most
closely related to our work. In the area of channel coding and joint source-channel coding, re-
searchers have looked at two closely related but not exactly identical family of problems. These are
namely minimizing distortion or distortion-optimal problems and maximizing useful source coding
or rate-optimal problems. Rate-optimal problems have been proposed as lower complexity alter-
natives to distortion-optimal problems. Sherwood et al. [17] first proposed concatenating a source
coder bitstream with an outer cyclic redundancy check (CRC) coder and an inner rate compatible
punctured convolutional (RCPC) coder. Focusing on the rate-optimal problems and variable-length
packets with fixed data payloads, Chande et al. in [6] and [5] proposed the use of dynamic pro-
gramming and exhaustive search for protecting the source coder bitstream transmitted over Binary
Symmetric Channels (BSC) and channels with memory, respectively. Banister et al. [2] proposed
the use of a brute-force search algorithm to solve a distortion-optimal problem in a BSC to protect



JPEG2000 coded images with an outer CRC coder and an inner punctured turbo coder. They also
solved a sub-optimal problem with dynamic programming. Stankovic et al. [19] provided an algo-
rithm that was capable of accelerating the computation of the optimal strategy of [6] for the case of
fixed-length packets. Appadwedula et al. [1] relied on the exponential rate-distortion model of an
image coder to analytically solve the distortion-optimal problem for a BSC. Lu et al. [10] solved a
similar distortion-optimal problem relying on data fitting techniques for BSC’s. When attempting
at applying their approach to the case of channels with memory, their approach resulted in very
conservative estimates of channel error probability. As an alternative to directly applying channel
coding techniques in conjunction with the source coding techniques, Srinivas et al. [18] proposed
utilizing a maximum a posteriori (MAP) detector to compensate for the impacts of spatially corre-
lated compressed bitstream as well as temporally correlated channel errors. Their approach called
for the utilization of interleaving techniques when dealing with temporally correlated channel er-
rors. Without investigating the optimality of their approach, Cosman et al. [7] showed the potential
advantage of using a hybrid technique of adding channel coding to wavelet-based zerotree encoded
images and reordering the resulting embedded zerotree bitstream into packets with a small set of
wavelet coefficient trees.

A review of the literature articles reveals that there has not been any systematic study of the
subject material for the noisy channels with temporally correlated random bit errors and packet
erasures. This paper proposes a statistical optimization framework for progressive transmission of
images over such channels. The framework consists of two components the combination of which is
capable of dealing with temporally correlated random bit errors and packet erasures. The random bit
error component can be applied either as a distortion-optimal problem or as a rate-optimal problem.
Further, it can be applied to both fixed-length and variable-length packet scenarios. The statistical
packet erasure component consists of an algorithm that can guarantee the delivery of a block of
packets with a given probability. The framework also proposes the use of feedback when integrating
its components.

An outline of the paper follows. In Section II, we describe our integrated protocol. In Section
111, we review the characteristics of our proposed channel coding technique. We also analyze the
channel loss behavior relying on the Gilbert-Elliott model. In Section 1V, we discuss the random
bit error component of our optimization framework. Our discussion includes a probabilistic for-
mulation of the optimization problem along with the solution to it. In Section V, we describe the
packet erasure component of our framework. The proposed algorithm of this section is capable of
statistically compensating for packet erasures. In Section VI, we numerically validate our results.
Finally, Section VII includes a discussion of concluding remarks.

I1. DESCRIPTION OF THE END-TO-END INTEGRATED PROTOCOL

In this section, we provide a description of our end-to-end integrated protocol. We consider the
transmission of a bitstream produced by a progressive image source coder such as SPIHT [14] or
JPEG2000 [20] over a noisy channel. We assume that the bitstream is packetized into a number of
packets with a fixed or a variable number of source bits per packet. We consider errors associated
with both bit errors and packet erasures. The utilization of error detection and error correction chan-
nel codes can potentially compensate for the error effects at both bit and packet levels. Encoding the
information bits of individual packets, we note that each packet will contain source coding and/or
channel coding (parity) bits. The calculation of parity bits is done based on minimizing the expected
distortion of the reconstructed bitstream. Further, we propose the use of packet level channel coding
to compensate for the packet erasure impacts on the packetized bitstream. Such a coding scheme
treats the collection of information and parity bits in each packet as data for the purpose of packet



erasure compensation. Our integrated protocol is categorized under type Il hybrid Automatic Re-
peat reQuest (ARQ) and Forward Error Correction (FEC) protocols. In a type Il hybrid protocol,
a retransmission request is responded by transmitting a codeword containing extra parity bits for a
previously transmitted codeword. Relying on the discussion of RS codes in [22] and [4] together
with receiver feedback and erasure decoding, we propose the use of systematic rate compatible
punctured RS codes in our protocol to compensate for both random bit errors and packet erasures.
We note that the systematic rate compatible punctured RS codes together with erasure decoding out-
perform nonsystematic RS codes of [12]. Fig. 1 depicts the flowchart of our end-to-end protocol.
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Fig. 1. The flowchart of the proposed end-to-end protocol.

We assume that a bit budget B and a per round probability of delivering a packet set are given.
Our round-based protocol consists of two components. The first component is used to compen-
sate for the random bit errors. The second component is used to recover erased packets. BS 4
represents the accumulated transmitted bitstream in each round and never exceeds BSg. As-
suming a fixed packet length of L, the number of packets to transmit the bitstream is chosen as
N = min(|a82 |, | B52 B9 |) where 0 < o < 1 is a design parameter effectively splitting
the available budget B between the two components of the protocol. The optimal number of per
packet parity symbols minimizing the expected distortion of the reconstructed image is then calcu-
lated according to the discussion of Section IV. Next, the total number of data and parity packets
N’ required to statistically guarantee the delivery of the packet set is calculated according to the
discussion of Section V. After updating transmission budget Br, announcing the start time and the
duration of the round, the source proceeds with the transmission of the coded packet set to the re-
ceiver. Each packet includes a sequence number. The receiver waits for the duration of the round
before determining whether it has received N packets required to recover the packet set. At the
end of the round, the receiver sends the packet numbers of the erased packets to the source in a
single packet NAK message if it has not bot been able to recover the block of packets. The NAK
message includes a two bit per packet bitmap associated with the individual packets of the set. The
receiver sets the M S B bit associated with a packet to zero if it has been able to recover the packet.
With the M S B bit set to one, the receiver sets the LS B bit to one if it has not been able to recover
the packet due to an erasure. We also note that utilization of similar error detection and correction



codes along with the employment of timeout mechanisms can effectively cope with the impacts of
random bit errors and packet erasures in the transmission of single packet NAK and control mes-
sages. For simplicity, we assume that the transmission of single packet NAK and control messages
are error free in the rest of our discussion. The source then retransmits an extra number of packets
in order to compensate for packet erasures in the channel. The number of extra packets is again
calculated from the statistical guarantee algorithm of Section V. Once the receiver has recovered
the block of packets, it aims at recovering the source coding bits in each packet. In the first round,
each packet contains image data and parity symbols and is directly decoded to recover image data.
In the second and later rounds, each packet includes incremental redundant symbols. The receiver
thus needs to append them to the previously uncorrectable packets. In either case, the contents of
the receiver buffer are decoded. If there are no uncorrectable packets and the collective number of
source coding bits BS4 is less than BSg, another set of rounds is initiated starting from the first
round. However, if uncorrectable packets exist, the receiver requests extra redundant symbols for
those N packets by setting per packet bits of those packets to (M SB, LSB) = (1,0) in the NAK
message. If uncorrectable packets exist but their RS code has reached the length of the mother
code, the transmission of the current set is started from the first round after checking the available
budget. Otherwise, another round of delivering extra redundant symbols initiates. The amount of
redundancy is determined by increasing the error correcting capability of each packet of the first
round to an amount calculated from the optimization algorithm of Section IV for the second round
and beyond. Next, the source packetizes extra parity bits using appropriate header paddings and
choosing N = min(Np, La%J). It will then transmits the packets to the receiver. The entire set
of rounds and consequently the image transmission terminate under one of the two following con-
ditions: (1) the entire bitstream B.Sg has been received with no uncorrectable blocks, and (2) the
transmission budget is exhausted. The image is reconstructed using all of the packets preceding the
first uncorrectable packet immediately after the transmission is terminated. We note that although
the second termination scenarios involve distortion, a perfect image reconstruction is possible under
the first scenario.

I1l. CHANNEL CODING AND LOSS ANALYSIS

In this section, we first describe our proposed channel coder properties and then continue by
providing an analysis of the Gilbert-Elliot channel loss model of [8]. We note that a rate compatible
punctured RS channel coder converts & information bits (packets) into a sequence of n;-bit (n;-
packet) blocks wherei = 1, -- -, . For the first sequence, (n1 —k) parity bits (packets) are appended
to k£ data bits (packets). The sequences n; for j = 2,---,r are obtained by appending n; — n;_1
bits (packets) to the previous n;_ bits (packets). We also note that the combined channel code n;
is capable of correcting up to ¢, = ["l’T_’“J bit (packet) errors.

In order to calculate the error rate of a block utilizing an RS(n, k) coder, we consider the
two-state Gilbert-Elliott loss model representing a channel with temporally correlated loss. In the
Gilbert-Elliott model, bit (packet) loss is described by a two-state Markov chain. The GOOD state
represents the loss of a bit (packet) with probability €5 while the BAD state represents the loss of
a bit (packet) with probability e g where eg >> 5. The GOOD state also introduces a probability
- of staying in the GOOD state and a probability 1 — ~y of transitioning to the BAD state while the
BAD state introduces a probability g of staying in the BAD state and a probability 1 — /3 of transi-
tioning to the GOOD state. Typically, the parameters y and 3 are measured from the observed loss
rate and average burst length. In [9], we provide effective ways of measuring the parameters of the
Gilbert-Elliott loss model. For the Gilbert-Elliott loss model, the probability of receiving exactly &



bits (packets) from n transmitted bits (packets) is described as
P(n,k) = P(n,k,G) + P(n,k, B) @)

The recursive probabilities of receiving exactly k bits (packets) from n transmitted bits (packets)
and winding up in the GOOD state and the BAD state are respectively given by

P(n,k,G) = eg[yP(n—1,k,G) + (1 - B)P(n —1,k, B)] @
+ (I-eq)[yPln—1,k-1,G) + (1 -B)P(n—1,k—1,B)]

and

P(n,k,B) = ep[(1-7v)P(n—1,k,G) + BP(n —1,k,B)] 3)
+ (1-e)[1—7v)P(n—-1,k—1,G) + BP(n—1,k—1,B)]

for n > k > 0 and the initial conditions

P(0,0,G) = gss = 524 P(1,0,G) = eg [7gss + (1 — B) bss]

P(0,0,B) = by = 222 P(L0,B) = ep[1—)ges + Bbs]

Further, we note that the probability of bit loss in the GOOD state ¢ can be measured in terms
of the average received signal-to-noise ratio in the GOOD state SN R, the utilized modulation
scheme, and the number of transmit/receive antennas. For example utilizing BPSK modulation in a
single transmit single receive antenna environment, we have

eq = 0.5 {1— \/SNRg/(1+SNRg)} (5)

Similarly, the the probability of bit loss in the BAD state € g can be measured. Utilizing Equation
(1) along with Equation (2) and Equation (3), the probability of a block loss is given by

n

\I/(n,tc,EG,gB,’y,,B) =1- Z P(?’L,’L) (6)

1=n—tc

1V. BIT ERROR CORRECTION

In this section, we discuss the protection of the source coding bits in a packet set associated
with a progressive bitstream. We propose the use of rate compatible punctured RS error correction
codes in each packet. The main goal of this section is to introduce an optimization framework that
minimizes the expected distortion of the reconstructed image due to random bit errors in a single
round of transmission.

A. Optimization Formulation

We assume the original size of the bitstream is BSg and so far BS 4 bits of the bitstream have
been delivered. Hence, the remaining number of the bits in the bitstream have to be packetized into
N fixed-length packets with length L. The choice of packet length L has to avoid segmentation in
the data link and network layer protocols in order to preserve the effectiveness of channel coding
operation at the bit level. Once the packet length L is chosen, the number of packets N for the
first round is selected such that the collection of packets contains a number of source coding bits
less than or equal BSg — BSa. Weset N = min(|aBZ |, | 2527554 |) where the parameters
are defined in Section Il. Denoting R; and C; respectively as the source and the channel coding
bits associated with packet i for ¢ € {1,---, N}, we observe that R; + C; = L. We recall that



utilizing our proposed channel coding scheme introduces a channel code rate of r; = % for packet
1. The optimization problem is aimed at finding the parity assignment of each packet C; such that a
measurement of the expected distortion is minimized. The expected distortion can be calculated as
the probabilistic average of distortions associated with recovering the first i — 1 packets in a given
packet set and failing to recover packet ; withi € {1,---, N + 1} as

N+1 1—1
E[D] = D%y + D ¥:D;iy (1 -9y) (7
i=2 j=1

In Equation (7), ¥; with ¢ € {1,---, N} is the failure probability of recovering packet i, ¥ n41 2
1, D; with ¢ > 1 is the distortion of a reconstructed image with the first ¢+ packets, and Dy =
02. is the source variance. The distortion D; is a function of the aggregate receiving rate b; =

;:1 R; and can be approximated by utilizing data fitting techniques. In [1], the authors propose
an approximation of the rate-distortion function in the form of

4
Dz(bz) = Zhje_ljbi (8)
j=1

where h; and [; are parameters that are identified independently for different classes of images.
Further, the probabilities ¥; for i+ = {1,---, N} can be calculated from Equation (6) by setting
n=Landt, = L%J. Making note that for the fixed-length packet 7 specifying the data rate R; is
equivalent to specifying the parity rate C;, the optimization problem of the first round is expressed
as

i, ) ?
N

Subject To: > (L — C;) < BSg — BS4 (10)
i=1

0<C; <L, i€{l,---,N} (12)

While Constraint (10) shows that the number of source coding bits in the N packets adds up to
no more than the number of bits in the remaining part of bitstream, Constraint (11) places a lower
and an upper bound on the per packet channel coding bits. We note that the problem of (9) is sub-
ject to discrete constraints applied to available channel coding variables C'4,---,Cx. It is hence
categorized under NonLinear Programming (MINLP). Under the assumption of feasibility, the so-
lution to the standard problem can provide a close estimate of the MINLP solution. Assuming the
solution to the optimization problem of the first round specifies a per packet set of channel coding
bits {C1, - - -, Cn'} and source coding bits {L — C1,---, L — Cn}, the optimization problem of the
rounds beyond the first round are specified with the same cost function as Equation (7) for the per
packet source coding bits of the first round but a different number of channel coding bits, ¥; = 0
for previously delivered packets, and the constraint set below.

S(CI—C) <NL; Cl=Ci, i€R; Ci < Cl< Limag—(L—Ci), i €F(12)
1€EF

where N = min(Np, [a%J), Lnaz is the mother code length, F and R indicate the set of failed
and recovered packets, C; and C! with 7 € F U R denote the current and the previous collective
number of parity bits for packet . While the formulations of this section specify a distortion-optimal
problem, it can be easily changed to reflect a rate-optimal problem.



B. Optimization Solution

In this section, we provide a discussion of solving the optimization problems of Section 1V-A.
Relying on the Lagrangian theory [3], we convert the problem of the first round to an optimization
problem without constraints. The unconstrained minimization problem is defined as

ming LGp = ming{E[D] + A (XY, C; — NL+ BSgr — BS4) + N, i (C; — L)}
(13)
where Q = {C1,---,Cn} and the parameters A, u1,-- -, ux are the Lagrange multipliers.

Taking into consideration the discrete nature of our problem and considering the fact that (9), (10),
and (11) are convex, we propose deploying Sequential Quadratic Programming (SQP) technique to
solve the problem. In SQP, the necessary conditions for optimality are represented by Karush-Kuhn-
Tucker (KKT) conditions described below.

OLG OLGp OLGp OLG LG
VIGD(X) = [T 5o “ox Tui " o) = 0

Further, \*, uf > 0 fori =1,---, N if associated with an active inequality at the optimal point 2%,
ie.,

(15)

>0 : if YN, 0f=NL~-BSa pr>0 : if Cf =1L
A*=0 : otherwise p; =0 : otherwise

A variant of the quasi-Newton method [15] can then be used to iteratively find the solution to the
optimization problem. We note that utilizing a variant of the quasi-Newton method is equivalent to
solving a quadratic estimation of the problem in every iteration. The time complexity of solving the
optimization problem is O(I dlog d) where I indicates the number of iterations and d indicates the
degree of the overall quadratic estimation. The solution to the optimization problem of the second
round and beyond is similar and is skipped here. We have observed that an average of ten and no
more than twelve iterations are required for the convergence of our proposed optimization algorithm
of the first round. The associated numbers for the algorithm of the second round and beyond depend
on the number of lost packets but are generally smaller than the ones in the first round. Hence, the
complexity results are quite good compared to other recursive optimization approaches such as
dynamic programming introducing a time complexity in the order of O(d?).

V. STATISTICAL RECOVERY FROM PACKET ERASURE

We now turn our focus on the statistical recovery of the packets associated with the bitstream of a
progressive source coder in an erasure channel. We assume that individual packets of the set contain
both source coding and/or parity bits the collection of which is treated as data for the purpose of
packet erasure compensation. Similar to what was discussed in the previous section, we propose
utilizing rate compatible punctured RS codes at the packet level to compensate for packet erasures.
However, our approach in this section relies on providing a statistical guarantee for delivering a
packet set. The term statistical guarantee of the packet set delivery is used to indicate that a packet
set can be successfully delivered with a probability better than a given threshold assuming the speci-
fications of the packet erasure channel are known. Our earlier work of [23] introduces the following
algebraic placement algorithm with a time complexity of O(z k) to calculate the smallest number
of required transmitted packets u = k + z in order to guarantee the receipt of at least k£ packets with
a probability IT or better for a system governed by the Gilbert or Gilbert-Elliott loss models.

Statistical Guarantee for Packet Delivery Algorithm



o Initialize D(k, k) = vF 52225 + %1 (1 - B)52525
o for (z=1 to k){
- Calculate P(k + z, k)
- Update D(k + z,k) = D(k+ z—1,k) + P(k+ z,k)
- IfD(k+ z,k) > 11 Break
Yrrfor (z=1 to k)*
« Report the number of required packets, n = k + z

The quantities of interest in the algorithm above are described as follows. P(k+ z, k) the probability
of receiving &k packets from k& + z transmitted packets is given by Equation (1). The recursive
equations (2) and (3) are utilized to calculate P(k + z,k). We note that in the case of capturing
packet erasure the Gilbert loss model can be utilized. It is a special case of the Gilbert-Elliott model
with e = 0 and eg = 1. The closed form probability of P(k + z, k) under the Gilbert model can
also be found in [23]. Further, D(k+ z, k) the probability of receiving & packets or more from k+ z
transmitted packets is defined as

k+z
D(k+2,k) = 3 P(k +i,i) (16)
i=k

V1. NUMERICAL ANALYSIS

In this section, we present our simulation results based on the protocol of Section Il and the
discussion of the sections following it. For our simulation, we consider the transmission of a SPIHT
[14] encoded 512 x 512 x 8bpp gray scale Lena image over a channel characterized by correlated
loss. We utilize Gilbert-Elliott and Gilbert loss models to describe the bit errors and packet erasures,
respectively. We set the transition probabilities of both models as v = 0.99873 and g = 0.875
corresponding to an average burst length of 8. Besides the trivial choice of error probabilities in the
case of Gilbert model, per state error probabilities of the Gilbert-Elliott model are calculated based
on Equation (5) with SNRs = 10SN Rp. In our experiments, we use rate compatible punctured
RS codes with a maximum length 255 over GF'(256). Further, we set @ = 0.2, By = 512 x 512,
and BSgr = 512 x 512 for a compression ratio of 8. For our statistical packet delivery algorithm,
we select IT = 0.95. The set of parameters associated with the Lena image in Equation (8) are set as
(hi, ha, h3, by, b1, 12,13, 14) = (1276.7,117.2,26.9, 279.1, 331.8472,11.2685, 1.5792, 50.2822).

Fig. 2 shows the plots of PSNR = 10log;, % versus SN R for three different values of the
packet length L. Our choices of packet lengths guarantee that there is no segmentation/reassembly
of UDP or ATM packets over Ethernet and/or IEEE 802.11 frames. For a given packet size, the
plots describe how the quality of the reconstructed image improves as the average signal-to-noise
ratio increases. Every point in the curves indicates an average value taken over 5 simulations. The
plots show a similar pattern with different choices of the packet size. The quality of the recon-
structed image remains at PSNR = 14.53dB for any choice of SNR¢ below a low threshold.
The threshold moves from SN R = 3dB in the case of L = 100Bytes to SNRg = 9dB in the
case of L = 200Bytes. For our given budget of By = 512 x 512, increasing SN R¢ beyond the
low threshold improves the quality of the reconstructed image until reaching a high threshold. The
average value of the high threshold is at PSN R = 34.2dB. The quality of the reconstructed image
remains near perfect for any choice of SN R beyond the high threshold. Assuming availablity of
transmission budget, the quality of the reconstructed image can improve to 39.4dB at an ideal case
not shown here. The high threshold moves from SNRg = 7dB in the case of L = 100Bytes to
SNRg = 16.8dB in the case of L = 200Bytes. Fig. 3 shows sample images corresponding to the
low, medium, and high signal-to-noise ratio regions in Fig. 2 for the choice of L = 100Bytes.
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Fig. 2. Plots of PSNR versus SN R for different choices of the packet size.

Fig. 3. A comparison of the original and reconstructed sample Lena images for three different values of SN R¢ using
L = 100Bytes. Clockwise from the top left: the original image, the reconstructed image at SNR¢ equal to 3.5dB,
4.5dB, and 7d B, respectively.



VII. CONCLUSIONS

In this paper, we presented a statistical optimization framework for progressive transmission of
images over noisy channels characterized by temporally correlated loss. Relying on rate compatible
punctured RS codes, our framework was able to compensate for random bit errors as well as packet
erasures. We considered the impacts of transmission over channels with memory represented by
the Gilbert-Elliott model. In order to cope with random bit errors, we introduced an optimization
framework to minimize the expected distortion of a reconstructed image. We recursively solved our
optimization problem with a relatively low time complexity. Next, we provided an algorithm that
was capable of statistically compensating for packet erasures. Relying on the receiver feedback,
we integrated our bit error and packet erasure results in the form of a type Il hybrid FEC-ARQ
algorithm. Finally, we numerically validated our results. We are currently in process of optimizing
the bandwidth allocation between the two components of our framework. Further, we are extending
our work to one-to-many transmission scenarios.
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