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Abstract— Achieving minimal loss while satisfying an accept-  This paper is structured as follows. In Section I, we dis-
able delay profile remains to be an open problem under the RED cuss RED preliminaries. In Section 111, we formulate and/sol
queuing discipline. In this paper, we present a framework tageted . ohtimization problem. We consider two cases associated

at optimal fine tuning of the RED parameters in order to address ith instant d . b di RED
such problem. For a given traffic pattern and utilizing a statisti- with instantaneous and average queue sizes observedin a

cal analysis of finite-state Markov chains, we formulate an pti- gueue. Section IV provides our simulation results appled t
mization problem aimed at addressing the loss and delay traebff both generic queuing and TCP scenarios. Finally, Section V
of the RED queuing discipline. Our two-step iterative soluton to  concludes this paper.

the problem identifies the optimal settings of the RED parameers.

We prove the convergence of our solution and investigate itow

complexity characteristics. We apply our framework to a num Il. RED PRELIMINARIES

ber of generic queuing and TCP scenarios in order to capturedss In this section, we describe the RED algorithm and its as-

and delay performance of our algorithms versus buffer capaity . . . . . . .
and service rate. Based on our results, we argue that our motle sociated queuing models in conjunction with the arriviregfic

is capable of optimally addressing the loss-delay tradeofsf RED ~ Profile of the queue. Our objective is to identify the steathte

queues accommodating time-varying traffic profiles. distribution probability of the occupancy of a given bufthe
Index Terms—RED, Markov Chain, Optimal Parameter Fine  pehavior of which is governed by RED.

Tuning, Packet Loss, Queuing Delay.

A. The RED Algorithm

|. INTRODUCTION The average queue size of a RED queue is calculated using a

In the past years, Active Queue Management (AQMdw-pass filter with an exponential weighted moving average
schemes [5] have been proposed as key schemes to prevent
excessive loss of Internet traffic. Random Early Drop (RED) @ = (1 —wq) gr—1+ wq G 1)
[11] and Random Early Marking (REM) [15] are arguably the . . .
most widely studied AQM schemes. While both schemes fo‘ﬂhere% s the current average queue sige,, Is thg average
low the same concept of operation pertaining to early dietect 94€Ue S|z~e.at the last tlme instaa, is the Welghtln.g func-
of a congestion phenomenon, RED relies on intermediatemo&'gn' andg; is the current mstantan_equs gueue sigeis then
to react to a congestion phenomenon rather than the end no pa_red to two thresholds, a minimum thresmn and
utilized by REM. a maximum ?hresholqmam. Each arriving packet is dropped

Although random early detection schemes can potentialiffth Probabilityp given by
outperform traditional drop-tail schemes, it is often difik
to parameterize random early detection queues underetiffer
congestion scenarios. In addition, there is a need for aanst’
fine tuning of parameters to adapt to current network condi-
tions. To that end and based on simplified models, guidelin\(,:\ﬁ1
have been proposed in [7], [6], [21] for setting RED param
ts?rrr?L-JIst(i)xe'svfe;hn;(r)tsktu;:lu:f;s?enm?’ﬁ?;p:;ggiﬁd gPtE;L':i;Z:IC oPrchoosing this drop probability. Examples include chagsi

: : . as a nonlinear convex, or nonlinear concave function of the
articles, the authors of [2] and [9] have modeled RED stachasgueue size
cally, while those of [14], [20], and [19] have used a Markaovi '
model to study RED. ] -

In this paper, we perform a systematic study on the optim@l Traffic Profiling
fine tuning of RED parameters. The parameters of interest in-We consider a queuing system with the capacity<ofixed
clude the two thresholds, the probability of drop in theiinte- size packets operating under the RED queuing discipline. We
diate regime, and the instantaneous queue weighting fumctinote that a fixed packet size can represent an atomic unit-of op
Given the statistical properties of the arrival pattern ®ED eration when receiving variable length packets and thus doe
queue, our objective is to minimize its loss characteristide not represent a loss of generality. The RED queuing system is
satisfying an acceptable delay profile. The formulationwf o described by its traffic pattern and is assumed to be opgriatin
problem appears in the form of a constraint optimizatiorbproits steady-state regime. In [12] and [13], the authors dgvel
lem that can be efficiently solved in two iterative steps. model for analyzing both transient and steady-state beha¥i

—-

) f at < Qmin
€ = q‘,,?,,:qﬁ Pmazx, if dmin < qt < Gmax
]-v if qt Z qmaz

(2)

Vhile in our studyp is varied linearly from O tg;,, in the re-
ion betweeny,,,;, andg.».., there are many other possibilities
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Fig. 1. M/D/1/K approximation of the steady-state behawbRED under quasi-stationary assumptions. For clarityy dme full set of transitions associated
with & = ¢maz are shown.

RED queues accommodating a large population of random trafl. OPTIMAL FINE TUNING OF THERED FARAMETERS

fic sources the traffic generation pattern of which is desdib oy the discussion of this section, we focus on fine tuning
by a Poisson arrival process with a time varying rate. As thg the RED parameters Namefy,in, Gmaz> Pmaz, anduw, for
result of enforcing RED packet discarding mechanism with fgjven traffic pattern. We work with fixed size packets and

small averaging factor ofu, in the order of1l0~* and for a assume a deterministic service time of one packet per umét ti
slowly varying Poisson parameter, the RED queue is corsitier

to be operating in a quasi-stationary state. As such, theweeha The Case of Instantaneous Queue Size
ior of the queue can be approximated with M/G/1/K queuing . . . . -
In this section, we establish a foundation for our optimiza-

discipline. For the purpose of our study, we select the MA/1 tion problem by focusing on the case of instantaneous queue
gueuing discipline not only as a special case of M/G/1/K bu P y 9 g

as the best practical alternative considering the facttitzty’s zlrf(? Ii'\?é’wq ;;&;%n;tg;ﬁﬁziﬂzsggagf Ezteafere\:fttjjb?;tg?n
Internet network buffers provide a fixed deterministic $sszv givery, y P '

i : of being in statet wherek € {1,---, K'}. Given such proba-
rate. Fig. 1 shows such queuing system. bilities, the probability of loss for an arriving packet aR&D
For an M/D/1/K queue with a load factgr, we normalize ' P Y gp

the service time to indicate the time unit such that the aquueue Is expressed as

intensity is equal tp. Then, the steady-state probabilitigsof Gmaz K

. . . ™ k — Umin
being in state: for k € {1,---, K} form a discrete Probability Pross = Z Wk:#pnm.m + Z 7w, (6)
Density Function (PDF) the terms of which are calculated as k=gmm 1 dmaz — Gmin kE=gmaz+1
e if kefo,, K—1} Note that Equation (6) represents a statistical averagéiiohw
e = { ’T8°+PGg(<;(’) . T (3) the probability of loss in each state is calculated basedhen t
1= T FpG(K)’ if k=K gueue occupancy in comparison with the RED thresholds. In

o1 _the presence of a FIFO service discipline utilized by M/B/1/
whereG(K) = >, m; - Further, the steady-state probabilyyeuing discipline, the statistical queuing delay of a paek-
ity 7. of statek for an infinite capacity M/D/1 queuing systeMyjying at a RED queue is calculated as
with loadp is identified in Page 44 of [8] as
4 o Pppray = i me(k + 1)
T = (1= p) [T e (-1 (4) X TRk (1= s,
+ T ) ey k22 | m
Once more, we note that Equation (7) represents a stalistica
with 75° = 1 — p and7$® = (1 — p)(e” — 1). We note that average in which the delay in each state is calculated based o
depending on the choice pf the numerical evaluation of thethe queue occupancy and the probability of drop in compariso
expression of (4) faces stability issues for the valudslafger With the RED thresholds. Utilizing Equation (6) and (7), veec
than12. In such cases, the asymptotic approximation of Equaow formulate a primal constrained optimization problertth
tion (15.1.4) of [17] can be used to identify the steady-statattempts at minimizing the probability of packet loss subje

probabilities as to an upper bound,,,..,. on its statistical queuing delay. As a

dual problem, we can also attempt at minimizing the statsti
7o = C gro(k=1) _ grok (5) queuing delay of a packet subject to an upper bound on its loss

probability.

wherer is the unique negative zero of the equatios p(1 — In what follows we focus on the primal problem. The primal

e~ ")andCy = % optimization problem is formulated as

We note that a similar approach can be applied to the case of .
an M/G/1/K, or G/G/1/K queue. oy, nin - Pross (8)



SubjectTo:  Pperay < Dnax 9) Feasible Region:

Qmax > Qmin
O S Qmin < qmaaj S K (10) QmaxT
SiNCe¢min, Gmaz,» aNdp.q @ppear as decision variables of the

0 < Pmax <1 (12) K O A

optimization problem, solving the problem yields theiriop K-1 / * / / / > O
values. I / . / . / .
Generally speaking, the problem above is categorized un- . L -

der NonLinear Integer Programming (NLIP) problems. Since ' _ _
the decision variables appear in the boundary of summations I / /

as well as within the expressions, solving the problem is not - ’ . ) )
straightforward. In specific, applying standard numeriaa T

timization approaches such as Sequential Quadratic Rmegra | / .
ming (SQP) method in conjunction with line search algorishm 1

introduce both convergence and complexity issues. In addit |

utilizing Dynamic Programming (DP) to jointly solve for the 2 N 2 N N

three decision variables yields high space- and time-cenityl - Qmin
results. In order to efficiently solve the problem, we déxesd 0 ! = - - K K

two-step iterative solution to the problem formulated abamnd

e - Fig. 2. The feasible region df,in , gmas) in their 2D space.
prove that our solution is guaranteed to converge to a logal m

imum.
In the first step, we analytically solve for the optimal valugg) and the constraint function (9) with a fixgg,q. at £ (fg +1)
Prnae ASSUMINGi, andgnq, are fixed and given. points to identify the optimal valueg,;,, ¢",..). Therefore,

the time complexity of the search algorithm is in the order of
Step 1: In the first step, we work with fixed thresholdsy(x3),
Gmin @ndgpmas. Thus, the only decision variable in solving - considering the staging approach of our solution, one can
the optimization problem ig,,.... While the cost function yeach the optimal solution by iteratively applying the fesu
is minimized for the smallest value gfnq., the constraint of the second step to the first step and vice versa. Thus, we
function (9) enforces a lower bound on the valuggf... The  ,ropose the following algorithm to solve the constraint RLI
optimal value ofp,. is then calculated at the boundary po”‘Eroblem identified by the cost function (8) and constraint
of the constraint function (9) as functions (9), (10), and (11).
— Amin
Drmaz J_r k=0 me(k + (1]2 1)1 = ke Iterative Optimization Algorithm
=i T I — L P B
F=min+1 7k Gmaz—amin T (12) o Step 1: Start from an initial assignment of thresholds
(@min, @maz) DY uniformly splitting the buffer space be-

The solution to the equation above appears as .
a PP tween them, i.e gpin, = |K/3] andgpmas = [2K/3]. In

. S (k)= D addition, set the initial iteration numbér = 0, the max-
Pmaz = ST o A D) gmin) (@maz — Gmin) imum number of iterationst,,,, = 10°, and stoppage
men (13) criterion variabled.; =0, Ly =1, = 107°.

Note that the operation associated with deriving the value o * Step 2: Calculate the optimal value;ef.... from Equation

p*... from Equation (13) has a time complexity in the order ~ (13).
of O(K). Further, the value of*,,, satisfies the constraint * Step 3: Identify the optimal values @f,;,, andg;,,, as
function (11). follows:
In the second step, we provide a reduced order search Resetthe intermediate variablg to the valuel.

strategy in order to identify the values @f ;,, andg;,,, based for (gmaz =1 to K){
on a fixed value 0p,,.. given in the first step. for (Gmin =0 t0 Gmas—1){

— If the constraint function (9) is satisfied, calculate the
Step 2: In the second step, we work with a fixed value value of the cost function (8) and store it in the inter-
Pmae Obtained by the solution of step 1. Thus, the decision mediate variabld.,.
variables in solving the optimization problem ajg;, and — If Ly > Ly, thengy,;,, < dmins Gnaz < maz, @Nd
gmaz- Considering the fact thag,,.;,, and g,... are integer L3 « Ly.

values when working with the instantaneous queue size and } /* for (¢min =0 to qmaz —1)*

paying attention to the constraint function (10), we pr@os  }/* for (gmez =1 to K)*

performing an intelligent search algorithm in the 2D spate o . Step 4: Sefl,; «— L, andLy <« Ls. If % < dor
(¢min> @maz)- Fig. 2 sketches the feasible region containing ¢ > it,, . STOP. !

w points in the 2D space dfyin, gmaz)- Hence, the o Step 5: Go back to Step 2.

search algorithm has to evaluate the values of the costifumct



We note that the time complexity of implementing the abovee determined from the traffic and queuing profile. Relying on
algorithm isO(I K?3) where I indicates the number of itera-the IID assumption, the steady-state PDF of the random vari-
tions. ableq; appearing in the form of a weighted sumtofandom
variables{g; }!_, can be numerically calculated as a scaled dis-
Theorem 1. The two-step iterative optimization algorithmcrete convolution of a number of PDFs, [16]. Further, the PDF
given in this section with decision variablgs,.., ¢min, ¢maz  Of ¢ ONly depends on a small number of random variables
converges to a local minimum. G:+-1, qt—2, and so on considering the fact that scaling factor
1 — w, is smaller than one.
The theorem is a special case of Theorem 2 for which aOnce the PDF of; is calculated, we can revert back to the

formal proof is provided in Appendix I. constrained optimization problem with the cost functiong8d
constraint set (9), (10), and (11). In the latter case, a raw ¢
B. The Case of Average Queue Size straint related to the variable, is added to the constraint set

In this subsection, we generalize the formulation of the prgls
vious section to the case of average queue size.
We open our discussion by indicating that our objective Note that the impact of working with the average queue size on
to first express the current average queue gjzim terms of the optimization problem is that the steady-state proliasil
the current instantaneous queue gjzeThe latter is equivalent appearing in the cost and constraint functions are now akpen
to providing the solution to the first-order difference e ing on the RED parameter, representing a new decision vari-
expressed by (1) with inpuf; and outputy;. Relying on the able of the optimization problem. While one can still uglithe
method of successive calculations and starting from th&ini two-step recursive optimization approach to solve theltiegu
conditiongy, the following pattern is observed. problem, the closed-form expression identified )y, in the
. first step does not hold any longer. Rather, a numerical opti-
k- mization approach such as Sequential Quadratic Progragnmin
g = (L—wy)'qo + ) wg(l—wg) g (14) (SQP) [3] should be used in conjunction with a line search al-
k=1 gorithm such as the one proposed by [18] to calculate theegalu
Since the equation has a unique solution, it is sufficienetify ;... andw} in the first step.
that Equation (14) satisfies the original equation. Relyang ~ SQP relies on the Lagrangian theory to convert an optimiza-

0<w, <1 a7

induction, we start from Equation (1) to note that tion problem in its standard form to one without constraints
We define the Lagrangian function of the original problem of
g = (1 —wg)q—1 + weGs (15) the first step as
= (I—wg)((1—wg) "0
! ! L = Pross + M(Pperay — Dmaz)
- R ) + N (Pmas — 1) + As(wg — 1) (18)
+ Z wq(l _ wq‘) —k— qk) + wyds maz 3(Wq
k=1 " where the parameters, A2, and A3 are the Lagrange multi-
B - . — - - - pliers. Having defined the Lagrangian function of the firepst
= (1-wg)'qo + qu(l wg) "k + wqle the necessary conditions for optimality are representethéy
kjl Karush-Kuhn-Tucker (KKT) conditions described below.
= (=w)'a0 + > wa(l—wg)' ™G VL0 wy) =0
b=t )\T((PL*)ELAY — Diaz)) =0 (19)
arriving at the right hand side of Equation (14). A3 (Praz —1) =0
Analyzing the solution (14), we notice that it consists of a Aj(wg —1) =0

transient and a steady-state term. Considering the faich tha oL oL oL oL o i
1 —w, < 1, the transient ternfl — w,)'q, goes to zero in WhereVL = [z=—, FL, 55, 75;] and the coefficients, ™,
steady-state. The steady-state solution is thus exprassed  \2", A\3™ are Lagrange multipliers at the local optimum. Posi-
tive multipliers indicate active constraints. We now gettiee
t
g Theorem 1to express:
qt = qu(l - wq)t ka (16)
k=1 Theorem 2: The two-step iterative optimization al-

Our numerical evaluations have supported the observatam tgorithm given in this section with decision variables
the set of discrete random variablgg }¢ _, are Independently Pmaz; Wq; Gmin, dmaz CONVErges to a local minimum.
and ldentically Distributed (1ID) in the steady-stateRecall
that the distribution of discrete random variablgs}!_, can A formal proofis givenin Appendix .
Next, we investigate potential implications of utilizingea-
"Note that the IID assumption does not lead to the loss of gditeas we  age queue lengths rather than instantaneous queue lengths o
utilize it to reduce the complexity of numerically calcutef the resulting PDF ﬂ@e second step of our proposed algorithm. In the latter sce-

of ¢;. The PDF ofg; can be numerically calculated even in the absence of t )
1ID property albeit with a higher complexity. nario, we note that the search of the second step has to be



performed over a continuous x K space to identify;’,. ~ queue sizes utilizing three different choices of load faptas-
andgq;,.,. In order to perform the search over the feasiblgociated with a Poisson arrival pattern. As observed froen th
region of the K x K space, a quantized grid covering thdigure, the loss performance of ORED is by far better than that
triangle with edges at coordinaté$, 0), (K,0), and (K, K) of SRED for both cases of instantaneous and average queue siz
is formed. Therefore, the complexity of the search is muand all three choices ¢f

higher depending on the granularity of the quantization.gri
The time complexity of implementing the above algorithm is
I'max(O(K| %2 Nlog N) wherel, G, and N indicate the
number of iterations, the grid size, and the degree of qtiadra
estimation identified by SQP method, respectively.

With a large grid size and when, is fixed, e.g.w, = 0.002,
the complexity of the problem is reduced to that instantaseo
queue size.

At the end of this section, the following remarks are in or- ]
der. First, the dual problem of our optimization problem for ﬁg\tw.; ¥
both cases of instantaneous and average queue size isembtai .
by swapping the cost function (8) with the constraint fuoiati 01 A ueue Size (%) 100 500
(9). The dual problem can then be solved relying on a similal
two-step iterative approach described in this section.oSec
it is important to emphasize on the fact the derivation of our @
optimization results is independent of the traffic profiledab

—e— ORED 84%
1 —8— SRED 84%
T —a— ORED 92%
—%— SRED 92%
—%— ORED 99%
—e— SRED 99%)

Loss (%)

o B N W A O O N © ©
P s

as discussed in the Section II-B. In fact, optimization hssu 9 e
are valid for as long as the steady-state probabilities wighie 8 —a SRED 88%
each state can be identified either analytically or numbyica 71 —»— ORED 96
6 4 —%— SRED 96%)|
IV. SIMULATION RESULTS ;j o ) f;’:;fjjj
In this section, we validate the performance of our opti- 3 3]
mal RED algorithm via NS2 [1] simulations. The topology of 2 é
our experiments includes a single server queue the behaivior 1 % %
which is governed by RED. We experiment with fixed length] o > o
20 100 200 300 400 500

data packets of size#)24 bytes and in the case of utilizing TCP Queue Size (K)
flows ACKnowledgment (ACK) packets of siZ@ bytes. In our
experiments, all of the values @f,;,., ¢maz, aNAK arenormal- b)
izedand expressed as multiples of a size of a data packet. The
RED queue is fed with UDP Poisson arrival patterns, FTP afig. 3. A performance comparison of ORED and SRED in the cdse o
rival patterns utilizing TCP Reno, and HTTP arrival patterr@/érage queue size, for a fixed normalized service rate ofpasket per
e . second,Dmaer = 100msec, and a Poisson arrival pattern with load fac-
utilizing TCP Reno. The queue is assumed to offeloamal- ors ) € {88%,96%,99%}. The case of (a) instantaneous queue size with
izedservice rate of one packet per second. The latter allowswugs= 1, and (b) average queue size are is considered.
to examine the performance of our optimal algorithm under th
M/D/1/K queuing model as well as TCP traffic patterns mapped Next, we investigate the performance of our scheme in con-
to G/G/1/K queuing models. junction with TCP traffic where the sources adjust their $ran
Viewing the queue capacity and the maximum delay mission rate according to the received ACK packets. We note
thresholdD,,,... as our design parameters, our experiments sptnat in the experiments with TCP traffic sources, we numeri-
over two sets. In the first set of experiments, we investigate cally generate the PDF af;, as opposed to utilizing the dis-
loss performance of our proposed solution for a fixggl,, and cussion of Section II-B. Starting with pre-determined el wf
varying queue sizes. In the second set of experiments, vesinVSRED parameters and adjusting RED parameters as an experi-
tigate the loss performance of our proposed solution foreaifixment progresses, our approach works by counting the freguen
K and varying delay thresholds. We compare the performamgiequeue occupancy as a million packet moving average. Fig. 4
of our solution with that of standard RED. We note that the pdlustrates the results of feeding the queue with FTP and PITT
rameters of standard RED are selected from the defaulhgsttitraffic patterns for the case of average queue size. The three
of NS2 representing the best heuristic and numerical firmlingurves in each figure are associated with an aggregate traffic
in the literature. Thus, the parameters of standard REDetre gattern generated hy, 10, and100 sources. As observed from
at ¢Gmin = 5 Gmaz = 15, andp,,. = 0.1. For the case of the figures, ORED is still by far outperforming SRED.
average queue size, standard RED usgs- 0.002. In the second set of experiments, the queue size is fixed. Uti-
In the discussion and figures below, our optimal RED arlzing a Poisson arrival with a load factor pf= 0.99, Fig. 5(a)
standard RED algorithm are referred to as ORED and SREiDystrates the loss performance of ORED as a function of de-
respectively. Fig. 3 illustrates the comparison result®RBED lay threshold for four different values df. Fig. 5(b) shows
with those of SRED for the case of instantaneous and averagmilar results for a traffic pattern generatedliy=TP sources.
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Fig. 4. A performance comparison of ORED and SRED for agdestaf-
fic patterns generated by (g}, 10,100} FTP, and (b){1, 10,100} HTTP
sources. A fixed normalized service rate of one packet pemse® . =
100msec, and the case of average queue size is considered.

Fig. 5. A performance comparison of ORED as a functiotDgf . for four
different choices of queue siz& € {50, 100,200, 500} with (a) a Poisson
arrival pattern identified by = 0.99, and (b) an aggregate traffic patternlof
FTP sources. The case of instantaneous queue sizewyith 1 is considered.

The curves show that increasing the valuelbf.. will result  approach spanned over two scenarios working with instanta-
in reducing the loss by servicing more packets staying in th@ous and average queue sizes. For a given traffic pattern and
queue for a longer period of time. utilizing a statistical analysis approach based on a fistite
_The results of SRED are not shown for clarity but exhibjarkoy chain, we formulated and efficiently solved an opti-
similar patterns. We have observed that each curve of SRighyation problem aimed at addressing the loss and delag-trad
is a_lways above the curve of ORED for the same chmqﬁ’of off of a RED queue. Relying on an iterative two-step approach
While not shown here due to space shortage, our experimentgjiyr sojution to the problem identified the optimal settings o
the case of average queue size and in a broad range of paramgie RED parameters. We proved the convergence of our al-
selections have led to observing results consistent witlseth gorithms and investigated their low complexity charastégs.
reported here. _ _ _ We applied our algorithms to a variety of scenarios, inaigdi
Considering the relatively low complexity of our algoritsm generic queuing and TCP scenarios, in order to capture their
associated with an average valuelof= 10 for Poisson ex- |55 and delay performance versus buffer capacity andcgervi
periments and’ = 25 for TCP experiments we argue that ate Based on our results, we argued that our model is capabl

applying our technique to identify optimal settings of RE® p f optimally addressing the loss-delay tradeoff of RED qgeu
rameters is highly desired. As the subject of our °n9°i”g<W°raccommodating time-varying traffic profiles.

we are currently in process of investigating the possibiit
reducing the complexity of the search algorithm in the sdcon
phase of our optimization algorithm. APPENDIXI

PROOF OFTHEOREM 2

V. CONCLUSIONS Let us make note of the fact that the cost function of Equa-

In this paper, we presented optimal algorithms for the firteon (8) consists of a finite number of terms, one per queue oc-
tuning of the parameters of the RED queuing discipline. Ogupancy state. These terms are all positive, with a lowentou
of zero. As such, the positive cost function of Equation @3 h

alower bound. Next, we observe that the cost function of Equa
tion (8) can only decrease in each step considering the tipgra

2We note that the increased number of iterations in the caatliaing TCP
sources is related to applying the moving averaging tectenfor identifying
the PDF ofg;.
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for optimality defined below.

nual Simulation Symposium, 2004.
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