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Abstract— Achieving minimal loss while satisfying an accept-
able delay profile remains to be an open problem under the RED
queuing discipline. In this paper, we present a framework targeted
at optimal fine tuning of the RED parameters in order to address
such problem. For a given traffic pattern and utilizing a statisti-
cal analysis of finite-state Markov chains, we formulate an opti-
mization problem aimed at addressing the loss and delay tradeoff
of the RED queuing discipline. Our two-step iterative solution to
the problem identifies the optimal settings of the RED parameters.
We prove the convergence of our solution and investigate itslow
complexity characteristics. We apply our framework to a num-
ber of generic queuing and TCP scenarios in order to capture loss
and delay performance of our algorithms versus buffer capacity
and service rate. Based on our results, we argue that our model
is capable of optimally addressing the loss-delay tradeoffof RED
queues accommodating time-varying traffic profiles.

Index Terms— RED, Markov Chain, Optimal Parameter Fine
Tuning, Packet Loss, Queuing Delay.

I. I NTRODUCTION

In the past years, Active Queue Management (AQM)
schemes [5] have been proposed as key schemes to prevent
excessive loss of Internet traffic. Random Early Drop (RED)
[11] and Random Early Marking (REM) [15] are arguably the
most widely studied AQM schemes. While both schemes fol-
low the same concept of operation pertaining to early detection
of a congestion phenomenon, RED relies on intermediate nodes
to react to a congestion phenomenon rather than the end nodes
utilized by REM.

Although random early detection schemes can potentially
outperform traditional drop-tail schemes, it is often difficult
to parameterize random early detection queues under different
congestion scenarios. In addition, there is a need for constant
fine tuning of parameters to adapt to current network condi-
tions. To that end and based on simplified models, guidelines
have been proposed in [7], [6], [21] for setting RED parame-
ters. However, most studies on RED are based on heuristics or
simulations rather than a systematic approach. Of the literature
articles, the authors of [2] and [9] have modeled RED stochasti-
cally, while those of [14], [20], and [19] have used a Markovian
model to study RED.

In this paper, we perform a systematic study on the optimal
fine tuning of RED parameters. The parameters of interest in-
clude the two thresholds, the probability of drop in the interme-
diate regime, and the instantaneous queue weighting function.
Given the statistical properties of the arrival pattern of aRED
queue, our objective is to minimize its loss characteristicwhile
satisfying an acceptable delay profile. The formulation of our
problem appears in the form of a constraint optimization prob-
lem that can be efficiently solved in two iterative steps.

This paper is structured as follows. In Section II, we dis-
cuss RED preliminaries. In Section III, we formulate and solve
our optimization problem. We consider two cases associated
with instantaneous and average queue sizes observed in a RED
queue. Section IV provides our simulation results applied to
both generic queuing and TCP scenarios. Finally, Section V
concludes this paper.

II. RED PRELIMINARIES

In this section, we describe the RED algorithm and its as-
sociated queuing models in conjunction with the arriving traffic
profile of the queue. Our objective is to identify the steady-state
distribution probability of the occupancy of a given bufferthe
behavior of which is governed by RED.

A. The RED Algorithm

The average queue size of a RED queue is calculated using a
low-pass filter with an exponential weighted moving averageas

qt = (1− wq) qt−1 + wq q̃t (1)

whereqt is the current average queue size,qt−1 is the average
queue size at the last time instant,wq is the weighting func-
tion, andq̃t is the current instantaneous queue size.qt is then
compared to two thresholds, a minimum thresholdqmin and
a maximum thresholdqmax. Each arriving packet is dropped
with probabilityp given by

p =







0, if qt < qmin

ǫi = q−qmin

qmax−qmin
pmax, if qmin ≤ qt < qmax

1, if qt ≥ qmax

(2)
While in our studyp is varied linearly from 0 topmax in the re-
gion betweenqmin andqmax, there are many other possibilities
of choosing this drop probability. Examples include choosing
p as a nonlinear convex, or nonlinear concave function of the
queue size.

B. Traffic Profiling

We consider a queuing system with the capacity ofK fixed
size packets operating under the RED queuing discipline. We
note that a fixed packet size can represent an atomic unit of op-
eration when receiving variable length packets and thus does
not represent a loss of generality. The RED queuing system is
described by its traffic pattern and is assumed to be operating in
its steady-state regime. In [12] and [13], the authors develop a
model for analyzing both transient and steady-state behavior of



Fig. 1. M/D/1/K approximation of the steady-state behaviorof RED under quasi-stationary assumptions. For clarity, only the full set of transitions associated
with k = qmax are shown.

RED queues accommodating a large population of random traf-
fic sources the traffic generation pattern of which is described
by a Poisson arrival process with a time varying rate. As the
result of enforcing RED packet discarding mechanism with a
small averaging factor ofwq in the order of10−3 and for a
slowly varying Poisson parameter, the RED queue is considered
to be operating in a quasi-stationary state. As such, the behav-
ior of the queue can be approximated with M/G/1/K queuing
discipline. For the purpose of our study, we select the M/D/1/K
queuing discipline not only as a special case of M/G/1/K but
as the best practical alternative considering the fact thattoday’s
Internet network buffers provide a fixed deterministic service
rate. Fig. 1 shows such queuing system.

For an M/D/1/K queue with a load factorρ, we normalize
the service time to indicate the time unit such that the arrival
intensity is equal toρ. Then, the steady-state probabilitiesπk of
being in statek for k ∈ {1, · · · , K} form a discrete Probability
Density Function (PDF) the terms of which are calculated as

πk =

{

π∞

k

π∞

0
+ρG(K) , if k ∈ {0, · · · , K − 1}

1− G(K)
π∞

0
+ρG(K) , if k = K

(3)

whereG(K) =
∑K−1

k=0 π∞
k . Further, the steady-state probabil-

ity π∞
k of statek for an infinite capacity M/D/1 queuing system

with loadρ is identified in Page 44 of [8] as

π∞
k = (1 − ρ) [

∑k
i=1 eρi(−1)k−i (iρ)k−i

(k−i)!

+
∑k−1

i=1 eρi(−1)k−i (iρ)k−i−1

(k−i−1)! ] , k ≥ 2
(4)

with π∞
0 = 1 − ρ andπ∞

1 = (1 − ρ)(eρ − 1). We note that
depending on the choice ofρ, the numerical evaluation of the
expression of (4) faces stability issues for the values ofk larger
than12. In such cases, the asymptotic approximation of Equa-
tion (15.1.4) of [17] can be used to identify the steady-state
probabilities as

π∞
k ≈ C0

[

er0(k−1) − er0k
]

(5)

wherer0 is the unique negative zero of the equationr = ρ(1−
e−r) andC0 = 1−ρ

ρe−r0−1
.

We note that a similar approach can be applied to the case of
an M/G/1/K, or G/G/1/K queue.

III. O PTIMAL FINE TUNING OF THE RED PARAMETERS

For the discussion of this section, we focus on fine tuning
of the RED parameters namelyqmin, qmax, pmax, andwq for
a given traffic pattern. We work with fixed size packets and
assume a deterministic service time of one packet per unit time.

A. The Case of Instantaneous Queue Size

In this section, we establish a foundation for our optimiza-
tion problem by focusing on the case of instantaneous queue
size, i.e.,wq = 1. From the discussion of the previous section
and givenρ, one can determine the steady-state probabilitiesπk

of being in statek wherek ∈ {1, · · · , K}. Given such proba-
bilities, the probability of loss for an arriving packet at aRED
queue is expressed as

PLOSS =

qmax
∑

k=qmin+1

πk

k − qmin

qmax − qmin

pmax +

K
∑

k=qmax+1

πk (6)

Note that Equation (6) represents a statistical average in which
the probability of loss in each state is calculated based on the
queue occupancy in comparison with the RED thresholds. In
the presence of a FIFO service discipline utilized by M/D/1/K
queuing discipline, the statistical queuing delay of a packet ar-
riving at a RED queue is calculated as

PDELAY =
∑qmin

k=0 πk(k + 1)

+
∑qmax

k=qmin+1 πk(k + 1)(1− k−qmin

qmax−qmin
pmax)

(7)
Once more, we note that Equation (7) represents a statistical
average in which the delay in each state is calculated based on
the queue occupancy and the probability of drop in comparison
with the RED thresholds. Utilizing Equation (6) and (7), we can
now formulate a primal constrained optimization problem that
attempts at minimizing the probability of packet loss subject
to an upper boundDmax on its statistical queuing delay. As a
dual problem, we can also attempt at minimizing the statistical
queuing delay of a packet subject to an upper bound on its loss
probability.

In what follows we focus on the primal problem. The primal
optimization problem is formulated as

min
qmin,qmax,pmax

PLOSS (8)



Subject To: PDELAY ≤ Dmax (9)

0 ≤ qmin < qmax ≤ K (10)

0 ≤ pmax ≤ 1 (11)

Sinceqmin, qmax, andpmax appear as decision variables of the
optimization problem, solving the problem yields their optimal
values.

Generally speaking, the problem above is categorized un-
der NonLinear Integer Programming (NLIP) problems. Since
the decision variables appear in the boundary of summations
as well as within the expressions, solving the problem is not
straightforward. In specific, applying standard numericalop-
timization approaches such as Sequential Quadratic Program-
ming (SQP) method in conjunction with line search algorithms
introduce both convergence and complexity issues. In addition,
utilizing Dynamic Programming (DP) to jointly solve for the
three decision variables yields high space- and time-complexity
results. In order to efficiently solve the problem, we describe a
two-step iterative solution to the problem formulated above and
prove that our solution is guaranteed to converge to a local min-
imum.

In the first step, we analytically solve for the optimal value
p∗max assumingqmin andqmax are fixed and given.

Step 1: In the first step, we work with fixed thresholds
qmin and qmax. Thus, the only decision variable in solving
the optimization problem ispmax. While the cost function
is minimized for the smallest value ofpmax, the constraint
function (9) enforces a lower bound on the value ofpmax. The
optimal value ofpmax is then calculated at the boundary point
of the constraint function (9) as

Dmax =
∑qmin

k=0 πk(k + 1)

+
∑qmax

k=qmin+1 πk(k + 1)(1 − k−qmin

qmax−qmin
p∗max)

(12)
The solution to the equation above appears as

p∗max =

[
∑

qmax

k=0
πk(k+1)−Dmax

∑

qmax

k=qmin+1
πk(k+1)(k−qmin)

]

(qmax − qmin)

(13)
Note that the operation associated with deriving the value of
p∗max from Equation (13) has a time complexity in the order
of O(K). Further, the value ofp∗max satisfies the constraint
function (11).

In the second step, we provide a reduced order search
strategy in order to identify the values ofq∗min andq∗max based
on a fixed value ofpmax given in the first step.

Step 2: In the second step, we work with a fixed value
pmax obtained by the solution of step 1. Thus, the decision
variables in solving the optimization problem areqmin and
qmax. Considering the fact thatqmin and qmax are integer
values when working with the instantaneous queue size and
paying attention to the constraint function (10), we propose
performing an intelligent search algorithm in the 2D space of
(qmin, qmax). Fig. 2 sketches the feasible region containing
K(K+1)

2 points in the 2D space of(qmin, qmax). Hence, the
search algorithm has to evaluate the values of the cost function

Fig. 2. The feasible region of(qmin, qmax) in their 2D space.

(8) and the constraint function (9) with a fixedpmax at K(K+1)
2

points to identify the optimal values(q∗min, q∗max). Therefore,
the time complexity of the search algorithm is in the order of
O(K3).

Considering the staging approach of our solution, one can
reach the optimal solution by iteratively applying the result
of the second step to the first step and vice versa. Thus, we
propose the following algorithm to solve the constraint NLIP
problem identified by the cost function (8) and constraint
functions (9), (10), and (11).

Iterative Optimization Algorithm

• Step 1: Start from an initial assignment of thresholds
(qmin, qmax) by uniformly splitting the buffer space be-
tween them, i.e.,qmin = ⌊K/3⌋ andqmax = ⌊2K/3⌋. In
addition, set the initial iteration numberit = 0, the max-
imum number of iterationsitmax = 106, and stoppage
criterion variablesL1 = 0, L2 = 1, δ = 10−6.

• Step 2: Calculate the optimal value ofpmax from Equation
(13).

• Step 3: Identify the optimal values ofq∗min andq∗max as
follows:
Reset the intermediate variableL3 to the value1.
for (qmax = 1 to K) {
for (qmin = 0 to qmax − 1) {

– If the constraint function (9) is satisfied, calculate the
value of the cost function (8) and store it in the inter-
mediate variableL4.

– If L3 > L4, thenq∗min ← qmin, q∗max ← qmax, and
L3 ← L4.

} /* for (qmin = 0 to qmax − 1) */
} /* for (qmax = 1 to K) */

• Step 4: SetL1 ← L2 andL2 ← L3. If |L1−L2|
L1

< δ or
it > itmax STOP.

• Step 5: Go back to Step 2.



We note that the time complexity of implementing the above
algorithm isO(IK3) whereI indicates the number of itera-
tions.

Theorem 1: The two-step iterative optimization algorithm
given in this section with decision variablespmax, qmin, qmax

converges to a local minimum.

The theorem is a special case of Theorem 2 for which a
formal proof is provided in Appendix I.

B. The Case of Average Queue Size

In this subsection, we generalize the formulation of the pre-
vious section to the case of average queue size.

We open our discussion by indicating that our objective is
to first express the current average queue sizeqt in terms of
the current instantaneous queue sizeq̃t. The latter is equivalent
to providing the solution to the first-order difference equation
expressed by (1) with input̃qt and outputqt. Relying on the
method of successive calculations and starting from the initial
conditionq0, the following pattern is observed.

qt = (1− wq)
tq0 +

t
∑

k=1

wq(1− wq)
t−k q̃k (14)

Since the equation has a unique solution, it is sufficient to verify
that Equation (14) satisfies the original equation. Relyingon
induction, we start from Equation (1) to note that

qt = (1− wq)qt−1 + wq q̃t (15)

= (1− wq)((1 − wq)
t−1q0

+

t−1
∑

k=1

wq(1− wq)
t−k−1q̃k) + wq q̃t

= (1− wq)
tq0 +

t−1
∑

k=1

wq(1− wq)
t−k q̃k + wq q̃t

= (1− wq)
tq0 +

t
∑

k=1

wq(1− wq)
t−k q̃k

arriving at the right hand side of Equation (14).
Analyzing the solution (14), we notice that it consists of a

transient and a steady-state term. Considering the fact that 0 ≤
1 − wq ≤ 1, the transient term(1 − wq)

tq0 goes to zero in
steady-state. The steady-state solution is thus expressedas

qt =

t
∑

k=1

wq(1− wq)
t−k q̃k (16)

Our numerical evaluations have supported the observation that
the set of discrete random variables{q̃k}

t
k=1 are Independently

and Identically Distributed (IID) in the steady-state1. Recall
that the distribution of discrete random variables{q̃k}

t
k=1 can

1Note that the IID assumption does not lead to the loss of generality as we
utilize it to reduce the complexity of numerically calculating the resulting PDF
of qt. The PDF ofqt can be numerically calculated even in the absence of the
IID property albeit with a higher complexity.

be determined from the traffic and queuing profile. Relying on
the IID assumption, the steady-state PDF of the random vari-
ableqt appearing in the form of a weighted sum oft random
variables{q̃k}

t
i=k can be numerically calculated as a scaled dis-

crete convolution of a number of PDFs, [16]. Further, the PDF
of qt only depends on a small number of random variablesqt,
qt−1, qt−2, and so on considering the fact that scaling factor
1− wq is smaller than one.

Once the PDF ofqt is calculated, we can revert back to the
constrained optimization problem with the cost function (8) and
constraint set (9), (10), and (11). In the latter case, a new con-
straint related to the variablewq is added to the constraint set
as

0 ≤ wq ≤ 1 (17)

Note that the impact of working with the average queue size on
the optimization problem is that the steady-state probabilities
appearing in the cost and constraint functions are now depend-
ing on the RED parameterwq representing a new decision vari-
able of the optimization problem. While one can still utilize the
two-step recursive optimization approach to solve the resulting
problem, the closed-form expression identified forp∗max in the
first step does not hold any longer. Rather, a numerical opti-
mization approach such as Sequential Quadratic Programming
(SQP) [3] should be used in conjunction with a line search al-
gorithm such as the one proposed by [18] to calculate the values
p∗max andw∗

q in the first step.
SQP relies on the Lagrangian theory to convert an optimiza-

tion problem in its standard form to one without constraints.
We define the Lagrangian function of the original problem of
the first step as

L = PLOSS + λ1(PDELAY −Dmax)
+ λ2(pmax − 1) + λ3(wq − 1)

(18)

where the parametersλ1, λ2, andλ3 are the Lagrange multi-
pliers. Having defined the Lagrangian function of the first step,
the necessary conditions for optimality are represented bythe
Karush-Kuhn-Tucker (KKT) conditions described below.

∇L(p∗max, w∗
q) = 0

λ∗
1((P

∗
DELAY −Dmax)) = 0

λ∗
2(p

∗
max − 1) = 0

λ∗
3(w

∗
q − 1) = 0

(19)

where∇L = [ ∂L
∂pmax

, ∂L
∂wq

, ∂L
∂λ1

, ∂L
∂λ2

] and the coefficientsλ1
∗,

λ2
∗, λ3

∗ are Lagrange multipliers at the local optimum. Posi-
tive multipliers indicate active constraints. We now generalize
Theorem 1to express:

Theorem 2: The two-step iterative optimization al-
gorithm given in this section with decision variables
pmax, wq, qmin, qmax converges to a local minimum.

A formal proof is given in Appendix I.
Next, we investigate potential implications of utilizing aver-

age queue lengths rather than instantaneous queue lengths on
the second step of our proposed algorithm. In the latter sce-
nario, we note that the search of the second step has to be



performed over a continuousK × K space to identifyq∗min

and q∗max. In order to perform the search over the feasible
region of theK × K space, a quantized grid covering the
triangle with edges at coordinates(0, 0), (K, 0), and(K, K)
is formed. Therefore, the complexity of the search is much
higher depending on the granularity of the quantization grid.
The time complexity of implementing the above algorithm is
I max(O(K⌊K

G
⌋2, N log N) whereI, G, andN indicate the

number of iterations, the grid size, and the degree of quadratic
estimation identified by SQP method, respectively.

With a large grid size and whenwq is fixed, e.g.,wq = 0.002,
the complexity of the problem is reduced to that instantaneous
queue size.

At the end of this section, the following remarks are in or-
der. First, the dual problem of our optimization problem for
both cases of instantaneous and average queue size is obtained
by swapping the cost function (8) with the constraint function
(9). The dual problem can then be solved relying on a similar
two-step iterative approach described in this section. Second,
it is important to emphasize on the fact the derivation of our
optimization results is independent of the traffic profile model
as discussed in the Section II-B. In fact, optimization results
are valid for as long as the steady-state probabilities of being in
each state can be identified either analytically or numerically.

IV. SIMULATION RESULTS

In this section, we validate the performance of our opti-
mal RED algorithm via NS2 [1] simulations. The topology of
our experiments includes a single server queue the behaviorof
which is governed by RED. We experiment with fixed length
data packets of size1024 bytes and in the case of utilizing TCP
flows ACKnowledgment (ACK) packets of size40 bytes. In our
experiments, all of the values ofqmin, qmax, andK arenormal-
izedand expressed as multiples of a size of a data packet. The
RED queue is fed with UDP Poisson arrival patterns, FTP ar-
rival patterns utilizing TCP Reno, and HTTP arrival patterns
utilizing TCP Reno. The queue is assumed to offer anormal-
izedservice rate of one packet per second. The latter allows us
to examine the performance of our optimal algorithm under the
M/D/1/K queuing model as well as TCP traffic patterns mapped
to G/G/1/K queuing models.

Viewing the queue capacityK and the maximum delay
thresholdDmax as our design parameters, our experiments span
over two sets. In the first set of experiments, we investigatethe
loss performance of our proposed solution for a fixedDmax and
varying queue sizes. In the second set of experiments, we inves-
tigate the loss performance of our proposed solution for a fixed
K and varying delay thresholds. We compare the performance
of our solution with that of standard RED. We note that the pa-
rameters of standard RED are selected from the default settings
of NS2 representing the best heuristic and numerical findings
in the literature. Thus, the parameters of standard RED are set
at qmin = 5, qmax = 15, andpmax = 0.1. For the case of
average queue size, standard RED useswq = 0.002.

In the discussion and figures below, our optimal RED and
standard RED algorithm are referred to as ORED and SRED,
respectively. Fig. 3 illustrates the comparison results ofORED
with those of SRED for the case of instantaneous and average

queue sizes utilizing three different choices of load factor ρ as-
sociated with a Poisson arrival pattern. As observed from the
figure, the loss performance of ORED is by far better than that
of SRED for both cases of instantaneous and average queue size
and all three choices ofρ.
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Fig. 3. A performance comparison of ORED and SRED in the case of
average queue size, for a fixed normalized service rate of onepacket per
second,Dmax = 100msec, and a Poisson arrival pattern with load fac-
tors ρ ∈ {88%, 96%, 99%}. The case of (a) instantaneous queue size with
wq = 1, and (b) average queue size are is considered.

Next, we investigate the performance of our scheme in con-
junction with TCP traffic where the sources adjust their trans-
mission rate according to the received ACK packets. We note
that in the experiments with TCP traffic sources, we numeri-
cally generate the PDF ofqt as opposed to utilizing the dis-
cussion of Section II-B. Starting with pre-determined values of
SRED parameters and adjusting RED parameters as an experi-
ment progresses, our approach works by counting the frequency
of queue occupancy as a million packet moving average. Fig. 4
illustrates the results of feeding the queue with FTP and HTTP
traffic patterns for the case of average queue size. The three
curves in each figure are associated with an aggregate traffic
pattern generated by1, 10, and100 sources. As observed from
the figures, ORED is still by far outperforming SRED.

In the second set of experiments, the queue size is fixed. Uti-
lizing a Poisson arrival with a load factor ofρ = 0.99, Fig. 5(a)
illustrates the loss performance of ORED as a function of de-
lay threshold for four different values ofK. Fig. 5(b) shows
similar results for a traffic pattern generated by10 FTP sources.
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Fig. 4. A performance comparison of ORED and SRED for aggregate traf-
fic patterns generated by (a){1, 10, 100} FTP, and (b){1, 10, 100} HTTP
sources. A fixed normalized service rate of one packet per second,Dmax =
100msec, and the case of average queue size is considered.

The curves show that increasing the value ofDmax will result
in reducing the loss by servicing more packets staying in the
queue for a longer period of time.

The results of SRED are not shown for clarity but exhibit
similar patterns. We have observed that each curve of SRED
is always above the curve of ORED for the same choice ofK.
While not shown here due to space shortage, our experiments in
the case of average queue size and in a broad range of parameter
selections have led to observing results consistent with those
reported here.

Considering the relatively low complexity of our algorithms
associated with an average value ofI = 10 for Poisson ex-
periments andI = 25 for TCP experiments2, we argue that
applying our technique to identify optimal settings of RED pa-
rameters is highly desired. As the subject of our ongoing work,
we are currently in process of investigating the possibility of
reducing the complexity of the search algorithm in the second
phase of our optimization algorithm.

V. CONCLUSIONS

In this paper, we presented optimal algorithms for the fine
tuning of the parameters of the RED queuing discipline. Our

2We note that the increased number of iterations in the case ofutilizing TCP
sources is related to applying the moving averaging technique for identifying
the PDF ofqt.
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Fig. 5. A performance comparison of ORED as a function ofDmax for four
different choices of queue sizeK ∈ {50, 100, 200, 500} with (a) a Poisson
arrival pattern identified byρ = 0.99, and (b) an aggregate traffic pattern of10
FTP sources. The case of instantaneous queue size withwq = 1 is considered.

approach spanned over two scenarios working with instanta-
neous and average queue sizes. For a given traffic pattern and
utilizing a statistical analysis approach based on a finite-state
Markov chain, we formulated and efficiently solved an opti-
mization problem aimed at addressing the loss and delay trade-
off of a RED queue. Relying on an iterative two-step approach,
our solution to the problem identified the optimal settings of
the RED parameters. We proved the convergence of our al-
gorithms and investigated their low complexity characteristics.
We applied our algorithms to a variety of scenarios, including
generic queuing and TCP scenarios, in order to capture their
loss and delay performance versus buffer capacity and service
rate. Based on our results, we argued that our model is capable
of optimally addressing the loss-delay tradeoff of RED queues
accommodating time-varying traffic profiles.

APPENDIX I
PROOF OFTHEOREM 2

Let us make note of the fact that the cost function of Equa-
tion (8) consists of a finite number of terms, one per queue oc-
cupancy state. These terms are all positive, with a lower bound
of zero. As such, the positive cost function of Equation (8) has
a lower bound. Next, we observe that the cost function of Equa-
tion (8) can only decrease in each step considering the operating



mechanism of the individual phases of our two-step algorithm.
Therefore, the sequence of cost function values at each stepof
the algorithm is a non-increasing sequence with a lower bound.
We also note that any non-increasing sequence with a lower
bound would converge to a finite number also known as a fixed
point. In the case of our optimization problem, converging to
a fixed point is equivalent to satisfying the necessary condition
for optimality defined below.

The necessary condition for optimality is defined over the
threshold values(q∗min, q∗max) and(p∗max, w∗

q ) in two steps con-
sidering the impact of iterative optimization approach.

First, for a fixed choice of thresholds(qfixed
min , qfixed

max ) and the
optimal values(p∗max, w∗

q ), we have

PLOSS(qfixed
min , qfixed

max , p∗max, w∗
q ) ≤

PLOSS(qfixed
min , qfixed

max , pmax, wq)
(20)

and for everypmax 6= p∗max andwq 6= w∗
q . Second, for fixed

valuespfixed
max , wfixed

q and threshold valuesq∗min, q∗max, we have

PLOSS(q∗min, q∗max, pfixed
max , wfixed

q ) ≤
PLOSS(qmin, qmax, pfixed

max , wfixed
q )

(21)

and for everyqmin 6= q∗min andqmax 6= q∗max.
Since, the two-step necessary condition for optimality holds

in each individual step of our two-step algorithm, we conclude
that it converges to a local minimum. QED
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