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Abstract—Estimating average latency of queuing systems is one
of the most challenging tasks in the analysis and design of traffic
control algorithms. In this paper a new approach for predicting
packet arrival rate in multiple source queuing systems is intro-
duced. The approach relies on the modeling power of neural net-
works in predicting self-similar traffic patterns to determine the
packet arrival rate of low loss, moderately loaded queuing systems
accommodating such traffic patterns. Characterizing the average
latency by the average queuing delay, Little’s law can be appro-
priately utilized to describe the average packet latency of such sys-
tems.

Index Terms— Bursty Traffic, Self-Similarity, Intelligent Traf-
fic Modeling, Neural Network, Packet Arrival, Average Queuing
Latency.

|. INTRODUCTION

Analysis of traffic data from networks and services such as
Ethernet LANSs [11], Variable Bit Rate (VBR) video [2], ISDN
traffic [9], and Common Channel Signaling Network (CCNS)
[3] have all convincingly demonstrated the presence of fea-
tures such as long range dependence, slowly decaying vari-
ances, and heavy-tailed distributions. These features are best
described within the context of second-order self-similarity and
fractal theory. Self-similar phenomena show structural similar-
ities across a wide range of time scales in which traffic spikes
ride on the longer term ripples, that in turn ride on longer term
swells, so on and so forth.

Chaos is a phenomenon observed in nonlinear dynamical
systems. It may be used to explain why a low order system
is capable of exhibiting very complicated behavior. Since the
trajectories of chaotic systems are mostly fractals, they may be
used as suitable generators of fractals and traffic patterns with
fractal nature. From the modeling point of view, the challenge
is to capture the complexity of a bursty traffic pattern with the
small number of parameters of a chaotic map. Chaotic maps
have been used in the literature for modeling and forecasting of
teletraffic. Erramilli et al. [4] used a number of simple non-
linear maps in order to capture some of the real traffic patterns
characteristics. Giovanardi et al. [7] used self-similar chaos-
based traffic patterns in an analytical study of queuing systems.
Alkhatib et al. [1] used chaos theory in modeling and forecast-
ing VBR video patterns.

Neural networks are a class of nonlinear systems capable of
learning and performing tasks accomplished by other systems.
Some of the applications of neural networks are speech and sig-
nal processing, pattern recognition, and system modeling. Sys-
tems with neural network building blocks are robust in the sense
that occurrence of small errors does not interfere with proper

operation of the system. This characteristic of neural networks
makes them quite suitable for traffic modeling.

Predicting packet arrival and estimating packet latency is
a major design issue in computer communication networks.
There are a number of factors that introduce delay in network
services. Different delay types may be classified under process-
ing, propagation, multiplexing, and queuing categories. The
main objective of packet scheduling methods is then to come
up with solutions for predicting and reducing delay while effi-
ciently utilizing network resources.

In [16], we made use of the modeling power of neural net-
works introduced in [15] to provide a fair dynamic buffer man-
agement scheme improving the loss performance of a class of
queuing systems with self-similar characteristics. In this study,
we utilize the modeling power of neural networks in predicting
self-similar traffic patterns to determine the arrival rate and the
packet latency of queuing systems accommodating such pat-
terns. In doing so, we assume the service rates are given and
there is no significant loss impact. Our packet arrival estimation
technique might be employed as a part of a packet scheduling
algorithm.

An outline of the paper follows. Section Il briefly reviews the
characteristics of aggregated self-similar traffic patterns. Sec-
tion 111 provides an overview of the neural network modeling
of such traffic patterns. Section IV describes a multiple source
system used for the application task and discusses the packet
arrival estimation application. Section V evaluates the perfor-
mance of an average latency estimation technique based on our
proposed method. In our evaluation, we compare the results
of our estimation technique with measured average latency re-
sults in the presence of typical buffer management and server
scheduling schemes. The paper concludes in Section V1.

Il. SECOND-ORDER SELF-SIMILARITY

This section includes a brief description of self-similarity.
Suppose X = (X; : t = 0,1,2,...) is a covariance stationary
stochastic process with mean p, variance o2, and autocorrela-
tion function R(n), n > 0. Particularly, assume the autocor-
relation function of X has the form

R(n) ~kin™P, as n — 00 1)
where 0 < 8 < 1 and constants k1, ko, ... are finite positive
integers. For each m = 1,2,3,... let X(™ = (x{™ : n =
1,2,3,...) be the covariance stationary time series with corre-
sponding autocorrelation function R(™) obtained from averag-
ing the original series X over the non-overlapping time periods



of size m, i.e., foreachm = 1,2, 3, ..., X (™) s given by
1

The process X is called exactly second-order self-similar with
the self-similarity parameter H = 1 — /2 if the corre-
sponding X ™ has the same correlation function as X, i.e.,
R™)(n) = R(n) forallm = 1,2,3,...andn = 1,2,3,....
X is called asymptotically second-order self-similar with self-
similarity parameter H = 1 — /2 if R(™)(n) asymptotically
approaches to R(n) given by (1), for large m and n. Hence, if
the correlation functions of the aggregated processes X ("™ are
the same as the correlation functions of X or approach asymp-
totically to the correlation functions of X, then X is called ex-
actly or asymptotically second-order self-similar.

Fractal Gaussian Noise (FGN) is a good example of
an exactly self-similar process with self-similarity parameter
H, 1/2 < H < 1. Fractional Arima processes with the
parameters (p, d, q) such that 0 < d < 1/2 are examples of
asymptotically second-order self-similar processes with self-
similarity parameter d + 1/2.

Mathematically, self-similarity manifests itself in a number
of ways.

« The variance of sample mean decreases more slowly than
the reciprocal of the sample size. This is called slowly
decaying variance property which means var(X (™) ~
kam(=P) asm — cowith 0 < 3 < 1.

« The autocorrelations decay hyperbolically rather than ex-
ponentially fast implying a non-summable autocorrelation
function ) R(n) = oo. This is called long range depen-
dence property.

» The spectral density f(.) obeys a power-law near the ori-
gin. This is the concept of 1/f noise with the meaning
FOA)=ksA"asA s oowith0 <y <landy=1-5.

It appears that the most important feature of self-similar pro-
cesses is that their aggregated process X (™) possess a non-
degenerate correlation function as m — oo. This is completely
different from typical packet traffic models previously consid-
ered in the literature, all of which have the property that their
aggregated processes X (™) tend to second order pure noise,
i.e., R(™ — 0asm — oo.

The concept of self-similar processes provides an elegant
explanation for the original Hurst effect phenomenon. In or-
der to describe the Hurst effect, we should first describe the
rescaled adjusted range. For a given set of observations (X, :
n = 1,2,..., N) with sample mean X (') and sample variance
S2(N), the rescaled adjusted range denoted by the R/S statis-
tic is given by

RIN) 1
S(N) ~ S(N)

wherei =0, ..., N, Wo = 0, and

[max(W;) — min(W;)] 3)

Wyo=(X1+..+X,)-nX(N), n>1 4)

While many time series appear to be well represented by
the relation E[R(N)/S(N)] ~ k4N, as N — oo, with
Hurst parameter H typically about 0.73, observations X,

from a short-range dependent models are known to satisfy
E[R(N)/S(N)] ~ ksN%5 as N — oo. This is usually re-
ferred to as the Hurst effect.

I1l. NEURAL NETWORK MODELING OF SELF-SIMILAR
TRAFFIC

In [15], we describe how a fixed structure feed forward per-
ceptron neural network with back propagation learning algo-
rithm can be used to model aggregated self-similar traffic pat-
terns as an alternative to stochastic and chaotic systems ap-
proaches proposed in [10] and [4]. We note that although the
emphasis of our work is on self-similar traffic modeling, our
proposed neural network modeling approach can nevertheless
be used for any traffic pattern independent of self-similarity.
In what follows we briefly review the neural network model-
ing technique of [15] in which an elegant approach capable of
coping with the fractal properties of the aggregated traffic is in-
troduced. The approach provides an attractive solution for traf-
fic modeling and has the advantage of simplicity compared to
the previously proposed approaches namely stochastic and de-
terministic chaotic map modeling. The promise of neural net-
work modeling approach is to replace the analytical difficulties
encountered in the other modeling approaches with a straight
forward computational algorithm. As oppose to the other mod-
eling approaches, neural network modeling does not introduce
a parameter (or a set of parameters) describing the fractal na-
ture of traffic neither does it investigate identification of appro-
priate maps. It, hence, need not cope with the complexity of
estimating multifractal Hurst parameters [10], [6] and/or fractal
dimensions [4]. The approach simply takes advantage of using
a fixed structure nonlinear system with a well defined analyti-
cal model that is able to predict a traffic pattern after learning
the pattern dynamics through the use of information available
in a number of traffic samples. Interestingly and as proposed
by Gomes et al. [8], neural networks can also be utilized as
appropriate estimators of the Hurst parameter.

The fixed structure, fully connected, feed forward perceptron
neural network utilized for the task of modeling consists of an
input layer with eight neurons, three hidden layers with twenty
neurons in each layer, and an output layer with one neuron. Fig.
1 illustrates the structure of the neural network. The sigmoid
transfer function defined below

fle)y=(0+e)™" ()

is utilized to generate the output of each neuron from its com-
pound input. The output of each neuron is connected to the
input of all of the neurons in the layer above after being mul-
tiplied by a weighting function. The specific neural network
used for the task of modeling relies on the so-called back prop-
agation learning algorithm described in [5], [15], and the refer-
ences therein. In a nutshell, the back propagation learning algo-
rithm changes the weighting functions of the underlying neural
network in the opposite direction of the gradient vector and its
momentums in order to minimize the absolute error function
defined proportional to the square of the difference between the
neural network output and the real output.



In atypical iteration of the learning phase, the neural network
is provided with samples z[k — 8] through z[k — 1] of the real
traffic pattern and the difference between sample z[k] of the real
traffic pattern and the neural network output is used to adjust the
weighting functions of the network accordingly. In the next it-
eration, sample z[k — 8] of the real traffic pattern is discarded,
samples [k — 7] through z[k] of the real traffic pattern are used
as the new input sample set, and sample z[k + 1] is used as
the new real traffic sample. The neural network continues pro-
cessing more information in consecutive iterations of the learn-
ing phase until the absolute error is less than a specified error
bound, §. The learning phase of the perceptron neural network
is directly followed by the recalling phase when the network
output is able to follow the real traffic within the acceptable
error bound, §. In each iteration of the recalling phase, the neu-
ral network independently generates the samples by discarding
the oldest input sample, shifting the input samples by one, and
using its output as the most recent input sample. The same se-
quence of following a learning phase by a recalling phase is
repeated when and if the neural network output difference ex-
ceeds the acceptable error bound, §. The number of samples
required for the training of the neural network depends on the
complexity of the traffic pattern dynamics. The time complex-
ity and the space complexity of the back propagation algorithm
are respectively O(IN) and O(N) where N is the number of
weighting functions in the network and I is the number of it-
erations. Although the complexity is typically better than the
complexity of implementing statistical approaches such as frac-
tional ARIMA processes or the complexity of calculating frac-
tal dimensions such as correlation dimension, wide variations
of I prevent us from making a strong claim about complex-
ity advantage of the algorithm compared to other algorithms.
Nonetheless combining the straight forward way of implemen-
tation with the analysis of complexity, we claim that the neural
network modeling approach provides an elegant approach for
the task of traffic modeling.
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Fig. 1. Fixed structure neural network used for the task of modeling.

In the following section, we apply the proposed neural net-
work modeling technique to predict the packet generation pat-

terns of a number of ON-OFF traffic sources and utilize the re-
sults in predicting arrival rates and estimating average latencies
in queuing systems accommodating such patterns.

IV. PACKET ARRIVAL AND QUEUING LATENCY IN
SELF-SIMILAR QUEUING SYSTEMS

Our application test bed relies on a multiple source queuing
system. A multiple source queuing system consists of a number
of sources sharing a total available buffer space. Traffic pattern
of each source includes the packets generated by a number of
ON-OFF chaotic maps. An ON-OFF source model is generat-
ing traffic at a peak rate when it is active and becomes active as
soon as the state variable of the describing chaotic map goes be-
yond a threshold value, d. The source becomes passive as soon
as the state variable goes below the threshold value. We utilize
double intermittency map in our packet generation process as it
generates a self-similar traffic pattern according to what is de-
scribed in [4]. The describing equation of double intermittency
map is

Tn+1 = {

where z,, represents the discrete variable and the rest of the
symbols represent various parameters with the property ¢; =
1‘5—3”_4. Fig. 2 illustrates a sample drawing of double intermit-
tency map. As observed in the figure, the iterative map requires

multiple samples to move from one segment to another.
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Fig. 2. A sample drawing of the double intermittency map. The legend IM
indicates the path traversed by the map through consecutive iterations.

We propose using different initial conditions and a fixed
threshold value to obtain different traffic patterns for different
sources. As an alternative, one may use different threshold val-
ues with fixed or variable initial conditions to achieve varying
traffic patterns for different sources. We select initial conditions
in the range of 2y € [0.1, 0.3] along with a fixed threshold value
of d = 0.7 and parameters e; = 0.01, e = 0.05, m =5, ¢; =
1.73, ¢o = 267.49.

We now apply our neural network modeling scheme to pre-
dict the total number of generated packets and utilize the results



in predicting the arrival rate and estimating the queuing delay
for the packets generated by a number of traffic sources. Re-
call that for a given service rate and a known buffer occupancy,
the queuing delay of a packet can be measured as the average
number of time units it spends in the queue before leaving the
buffer. Consider a multiple source queuing system such as the
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Fig. 3. The structure of a multiple source queuing system.

one shown in Fig. 3 with three sources sharing the space avail-
able in a central buffer. Assume that the aggregated traffic pat-
tern of each individual source consists of the traffic patterns
of 120 sources generating ON-OFF packet traffic according to
double intermittency map model. The buffer size is assumed
to be fixed, large enough to prevent any loss. In addition,
suppose that the system is utilizing complete sharing buffer
management, Statistical Time Division Multiplexing (STDM)
scheduling, and First Come First Serve (FCFS) service disci-
pline schemes as described in [16]. Under the above circum-
stances, the queuing system is best described by G/G/1/o00
model. The average latency of the queuing system is, hence,
described by Little’s law as N = AT where N, A, and T re-
spectively represent the number of packets in the queue, the
queue arrival rate, and the average service time. We make note
of the fact analyzing such a system utilizing Lindley’s Integral
Equation or another comparable analytical technique is a rather
complicated task. Instead, we propose utilizing the neural net-
work modeling scheme of [15] to predict the packet arrival rate
of the central buffer.

V. SIMULATION RESULTS

Fig. 4 displays our simulation results for the system de-
scribed above. It shows the Measured Average Latency (MAL)
and the Estimated Average Latency (EAL) versus service time
diagram for the triple source queuing system over the intervals
in which the arrival rate predictions are of acceptable accuracy.
The average latency has been calculated over the time periods
in which the neural network has been able to follow the arrival
pattern of the central buffer. For the relative error defined as
%, Fig. 4 shows that the estimation results are within
the 3% relative error range pending the following conditions are
held. First, the averaging period is long enough in order for the
neural network to be able to follow the traffic pattern for a num-
ber of times within the specified error bounds and second, the
buffer service rate does not exceed an existing threshold value.
Although not shown in the simulation results, we have observed
that the average packet latency drops sharply by choosing ser-
vice rates beyond the threshold value. In the latter case, the

neural network latency estimation findings are not acceptable
as the result of having high service rates and low average la-
tencies. The service rate threshold generally depends on the
dynamics of the system and for the triple source system of our
experiment is the normalized value 13.
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Fig. 4. Estimated average latency (EAL), and measured average latency
(MAL) versus normalized service rate for the triple source queuing system.

We finish this section by mentioning that a typical sequence
of learning and recalling phases consists of few hundred thou-
sand samples and hundreds of samples respectively. In addi-
tion, all of the convergence results are strongly affected by the
choice of initial conditions of the weighting functions of the
neural network. As a practical finding, setting the initial values
of the weighting functions of the neural network at 0.01 typi-
cally yields good results. Additionally, one may set the weight-
ing functions randomly in the order of 0.01 if facing biasing and
saturation. Our justification for both of the above phenomena
is the fact that the proposed neural network is trying to learn
complicated dynamics of chaotic maps exhibiting extreme sen-
sitivity to variations of initial conditions.

V1. CONCLUSION

In this paper, we introduced a novel approach for predicting
packet arrival and estimating queuing latency in multiple source
queuing systems as an application of neural network modeling
of self-similar packet traffic. We relied on the prediction power
of neural networks to estimate arrival rates and packet laten-
cies in multiple source queuing systems accommodating self-
similar traffic patterns. We evaluated the performance of our
estimation technique by comparing estimated average latency
with measured average latency and concluded that the scheme
is able to provide an acceptable estimate with a less than 3%
relative error below a specified service rate threshold for mod-
erately loaded systems with no significant loss.
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