Calculation of Ramp Response of Lossy Transmission Lines
Using Two-port Network Functions

Payam Heydari and Massoud Pedram
Dept. of EE-Systems
University of Southern California
Los Angeles, CA 90089
E-mail: {payam,massoud}@zugros.usc.edu

Abstract-In this paper, we present a new analytical approach for . . . . . .

computing the ramp response of an RLC interconnect line with §0n line and obtain the time-domain expression of the ramp
pure capacitive load. The approach is based on the two-port reprd€Sponse for a finite-length RLC lines. The effects of wire induc-

sentation of the transmission line and accounts for the output resid@Nc€ and the resistance of CMOS driver of the interconnect are
tance of the driver and the line inductance. The results of Oﬁﬁon&dered in our method. Section 2 summarizes the background
analysis are compared with the results of HSPICE simulations denfnowledge about the Telegrapher's equations. Section 3 presents

onstrating the high accuracy of our solution under various valuesyr analytical method for computing the ramp response of a lossy
of driver, interconnect, and load impedances. transmission line. We present our experimental results and conclud-
1. INTRODUCTION ing remarks in sections 4 and 5, respectively.

With the exponential reduction in the feature size, the delays 2. BACKGROUND

due to_interconnections have become the dominating factor ijve give some definitions and terminology first. A linear circuit
determining the circuit performance. Due to aggressive scaling Qfelongs to the class of linear time invariant systems. Hence it can be
interconnects, even an average length metal line may have signifiompletely characterized by its impulse response. The transient
cant resistance compared to the driver resistance. Thus the distrifehavior of any linear system is contained in its system function
uted nature of the interconnect must be modeled. Furthermore, thghich is the Laplace transform of the impulse response.
IC operating frequency nears multi-gigahertz requiring the inter- . L ) . ) ] -
connect inductance to be properly modeled. A uniform transmission line with capacitive load is depicted in Fig.
(). The transmission line has the property that a signal propagates

Approximation techniques for estimating the time domaingyer the interconnection medium as a wave. Fig. (1.b) depicts the
response of interconnect structures have been proposed. AWE [dikctrical model of the transmission line.

provides one approximation of general RLC interconnect model

and has been successfully applied to analyze on-chip signal propa- 1 % 2
gation. AWE begins with the differential state equations of a — |1
lumped linear time-invariant circuit and then obtains the Laplace ¥, - |
transform solution of the homogeneous equation. This solution is d C
expanded in a McLaurin series, and the time-domain moments are ~ L

computed from this series and are matched to an approximating

function consisting of a linear combination of exponential func- |

tions. REX [2] is another approach for rapidly estimating the tran- CT g
sient response of lossy transmission line which expands the O o)

reciprocal of transfer function of the system. For critical under-  Fig. (1). Uniform transmission line. (a)Distributed transmission
damped interconnects, this method provides better results comine of lengthd with a load. (b)The electrical model.

pared to AWE. Both of these approaches suffer from inaccuracz ] ) )

especially in high speed integrated circuits. Liao and Dai [3] proLetr, |, ¢, g be the resistance, inductance, capacitance, and conduc-
posed using an S-parameter based macromodel as a two-port n@nce values per unit length of a uniform transmission line. The
work for modeling the interconnect structures. Another way ofTelegrapher’s equations for such a transmission line is [5]:
obtaining the time domain response of an interconnect line is to 9
solve the Telegrapher’s equations. Kahng and Muddu [4] used this azv(x ), 9°v(x 1)
approach for a distributed RC interconnection under the ramp exci- =lc 2
tation. They assumed that a finite number of reflections (namely 0 ot
four) is sufficient for generating a result very close to SPICE simu-
lation. The authors however do not consider the inductive effect f
interconnect line in their model and assume that the exciting vol
age source has zero valued output resistance.

+ (g +re) 2 D s rgu(x, v (1)

Eq. (1) is the fundamental relationship governing wave propaga-
llon along a uniform transmission line. The shunt conductance is
ften negligible, hence we sgt0. The boundary and initial condi-
tions for Eq. (1) are:
In this paper, we begin with a two-port model of the transmis-

Boundary Condition: v(0,t) = e(t)
ov(x 0™ ) _

ot 0

At each pointx on the transmission line, the voltage is the sum
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3. INTERCONNECT TRANSFER FUNCTION

Since we are interested in calculating the waveform at the output of Vour(t) = Z
the interconnect line, we do not go through complicated details of n=
wave reflections through the endpoints of transmission line. Instead _ . . . L
we resort to the two port representation of transmission line¢/hereT=JLC is the time of flight of the wave. Sindeis very
whereby chain parameters are used for relating the port variable¥nall compared to temporal change#qf), we can assume that
More precisely we have [5], [6]: is negligible, factorizé, (t), and put it outside the summation. We

therefore come up with the following equation:

R
—(2n-1)=.J/C/L
1" e 2 hy[t—(2n-1)T] 9)
1

v L M, Ad Md_gM v 0e ~n-nB.fe7ih
4=1 Yo ||V 3) Voul ON ()0 S (-1)"" e 2D (10)
| 2 Ad | 1 ELﬁ =1 O

© —e)\d)YO(s) M,

The limit of the power series in Eg. (10) gives us an estimate of
sC the steady-state value @f(t) which is interpreted ag,4(0) in the
where A= A(s) = JsC(sL+ B, Y(s) = | » andd denotes  sdomain (the final-value theorem [8]). Doing this we obtain:

the length of the transmission ling.R, andC denote the total line

. . . . . . R /C/L
inductance, line resistance, and line capacitancel #@., R=dr, e? )
andC=dc. Voui(t) Ohy (t) ———=

ou 1+e—RA/C/|_

The voltage at the output port 2 (cf. Fig. (1)) is related to the
current at that port by the load capacitor equation. Hence the trans- The actual steady-state valuehgft) is one. The error is due to
fer function of the interconnection loaded by a capadipris  the second term in the right hand-side of Eq. (11). Considering the

obtained as: practical values of interconnect parasitics, we see that
H(S Vs, 2 4 exp(-RJ/C/ L) « 1. Consequently the compensating gain is set to
S = — = e . - .
A (e)\d + e—xd)(“ Z,(s)(C,s) tanh(Ad)) exp((R/2)./C/L) . The modified transfer function after taking this

multiplicative factor into consideration is written as:

wherez,(s) = 1/Y,(s) . The inverse of the first parenthesis in the o —(n—l)RF
0 0 _ n+1 L _—(2n-1)./LCs
denominator term of Eq. (4) is a limit summation of a power series. H(s) = Hy(9) DZ (-1)" e € (12.2)
The transfer function can thus be written in the following form: n=1
% (1) L= Voul) = ¥ ()" e MR (1 (2n-1)T] (12.b)
_ = 5 n=1
H(s) = (1”+ éo(s)(CLs) tanh(rd)) ®) Hj(s) depends upon the Laplace transform of voltage at port (cf.

Fig. (1)). Now we do further manipulation to make the analysis
As can be seen from Eq. (5)(s) and Zy(s) depend on the more efficient. We propose the following piece-wise linear function
square root of the frequency varialsleConsequently, the inverse as an approximation tanh(.):
Laplace transform consists of the error function which does not
result in a simple formula for the time domain representation of the
output waveform. So we extend the McLaurin seried(sj and
Zy(s) abouts=« , and then based on practical values of parameters,
truncate the series into the first two terms of the series. A good We will obtain the transfer function and the ramp response of

1 Ad=2

(13)
5(Ad)  0<Ad<2

tanh(Al) = @p

approximation foi(s) andZy(s) is then obtained as follows: the lossy interconnect for each of these cases in the following sub-
sections.
= 1o € - Lo+ RD i i
A(s) = ms+2Rﬁ andz(s) = «EgﬁstD (6) H(s) in Eq. (12) denotes the relation between the voltages at the

output port (i.e. port 2) and the input port (i.e. port 1) of the inter-
. : o : connect line. If we wish to have the relation between the output
. Notice that neglecting the re§|§tlve term Zg(s) expression voltage of the interconnect and the source vol&gewe have to P
yields the well known characteristic impedance for a lossless trangpnsider the voltage division between the driver impedance and the

mission line and that the propagation delay of wave through th@put impedance;(s) seen by looking into the interconnect line.
interconnect media is completely captured in the approximation §9\/e know from [6] thatZi(s) is:
| :

A(s). Combining Eqgs (5) and (6), the transfer function of a loss
transmission line is obtained as: 2157
Z:(s) = zy4(s) ————=- 14
® —(2n—1)5[9 9= ) ZptZ, (1)
z (_1)n+1e 2 Le—(2n—1)ms o
where z14, zy5, 71, 71, are the two-port open-circuit impedance

parameters and, is the load impedance. By knowing the chain
parameters, any of the other sets of two-port parameters, such as the

The above approximation fai(s) causes a large change in the zparameters, can be computed [6]. Hence the input impedance of
DC value of the transfer function. We alleviate this error by addinghe interconnect can be expressed in terms of the parameters of
a gain compensation factor to the transfer function. To find an effe¢aterconnect as follows:
tive gain, letH,(s) be defined as:

H(s) = =4 (1+2Z,(s)(C_s)tanh(Ad)) )

o - Z, (1+2,Y, tanh(Ad))
i 1+2Z, Yytanh(Ad)

1 (15)

H,(s) = (1+2Zy(s)(C s)tanh(Ad)) ?

We could use a similar piece-wise linear approximation for
h(.) which was used in Eq. (13). Using this approximation would
however result in a fourth-order source to the output transfer func-

The output expression is then composed of the delayed versiops
of hy(t), the inverse Laplace transformtéf(s)is calculated as:
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tion. To avoid this complexity, we use a different approximation. able to obtain the input voltage to transmission line:

Essentially we ignore the™®  term in comparison with dife v R
term. In the following we show that this approximation does not v (s) = -22_~L/C 2L
cause a large error. ' tise JL/C+Ry (s+1/1)8

We can rewrite Eg. (15) in the following form:

S+

(22)

_ Z, 1 16 where:1/1g = JL/C(R/(2L))
4i(8) = T3Z Y tanh(hd) H,(9) (16) JL/C*Rs

We apply partial fraction expansion ¥(s) and then, after

Where_Hld(s) V\:cas given in Eg. (8).' Slr;]ce we are céonc;err;‘edfabout th‘Sbtaining the response to each of the fractional terms, simply utilize
magnitude of error we can write the magnitude of the frequencyhe syperposition property to calculate the final value of the output

response of Eq. (16) as: response as follows. Eq. (23) represents the partial fraction expan-
sion of V,(s):
. : 1 r
Z; <|z ET— 17
‘ I(Jw)‘ ‘ L(Jw)‘ Hl(]w)‘ ( ) v (s) _ VDD/trise_ RS [ﬂ- 1 D (23)
r

2 (R/(2L)JL/cth s+t
|Z,(jw)| is very small in today’s high-speed circuits. Furthermore, )
as frequency increase® (jw)| ~ becomes even smaller. Any error As can be seen from the above equation, three terms are present
in approximatingH;(s) is multiplied by this small value. In prac- in the partial fraction expansion of the voltage at port 1. We name
i I \d) is about 10 fi ter t Ad F each of the terms ag.(s), V,o(s), andV,3(s), respectively. The
tice, usuallyexp(Ad) Is abou imes greater thap(-Ad) . O aplace transform of the output voltage at port 2 is composed of the
instance, using the interconnect parameters for uMXBMOS  oqnonse to each of the three terms. We name each of the output
technology and assuming enfinof Metall wire, a typical value for )

Ad at 500MHz clock frequency is around 1.3 [7]. For global inter-terms asv1°(s), Vi(s), andV;3%(s), respectively. It is well known
connect lines, this value is even larger. that the Laplace transform of the system response is a product of

N . the system transfer function and the Laplace transform of the
Based on the above approximation, we come up with the followmput[g]_ Consequently, we have:

ing expression foF;(s): Vo8 = Hy(OV,y(8) = Vl.DD DZlL 24)
Z,(s) = o2 = Z4(s) (18) rise s%(s+1/1)
Yo(s)

Applying partial fraction expansion, then taking inverse Laplace
Consequently, the output voltage of the interconnect line igransformation, we come up with the temporal waveform of the out-
related to source voltage(t), by a simple voltage division made by put:

Z(s)andR, ) = \t’LD m(t)_g\t’_LD Hu-e' (25)
Zi(s) ZO(S) rise rise
V4(s) = E(3) = E(s) (19)

Z,(s) + Ry - Ry*Zy(s) Similarly, we repeat the above steps to obtain the timing wave-

_ _ forms ofv,,%(t), v3%(t) as follows:
In the following subsections each of the two cases for approxi-

matingtanh(.) are considered separately. The output waveform is Voo Rs -t/

. Vo) = 52— S  Lr1_e 26
obtained for each of two cases. ra(t) T (W(ZL))MS( ) (26)
CASE I. tanh(Ad) = 1: Vv . .

. | | | = e WL (e (27)
In this caséH(s) is represented by a first-order rational function of tise R %H Lo
sas follows: RC.H

_ 1 The output voltage is composed of the algebraic summation of
Hq(s) = (20) PPN
[Ec %*B"if‘:m the three components, i.e.:
c’tOr 2L "cALO Vo) = Vop(t) + Vo, (t) +vos(t) (28)
Comparing Eq. (20) with the actual valueHf(s), again we see For the time intervaltfiee, « ) the input has a step formy(t).

that the actual DC value f;(s) differs from the DC value of the  The output voltage is made up of the step input and the initial con-
approximated expression &fy(s). This difference will affect the dition imposed by the ramp input. As a result of the continuity con-
steady state value of the output voltage. To overcome this, we calition, the interconnect response to the second part of the input at
add a constant multiplicative gain so that the DC value of Eq. (20jme t;se must be equal to the response of the interconnect to the
becomes unity value. Therefore we obtain: first I|n|)arthat that same time. l‘ll'hehsameI relationsEip exists for volftages
at all other points especially the voltage at the input port of the
Hq(s) = (L/1)/(s+ /1)) (21) interconnectl,othat is: P Y 9 PUL P

where:1/1, = Ciﬁ+£ Ve(t = trise) = Vo(t = rise) (29)

- As defined beforey,(t) is the input voltage of port 1 when the
As stated before, we break up the input waveform into twaexcitation is in the form of a ramp whereg§) is the input voltage

parts: (i) ramp inpug(t) (i) step inputeg(t). Hereafter we use the of port 1 when the excitation is a step functigit) is simply deter-

convention that any voltage variable with indeis related to the  mined by taking the inverse Laplace transform of Eq. (21):
ramp input, and any voltage variable with indeis related to the

step section of the input. Output response is computed for each of Voo Voo Ry —t/1
h . v (t) = r(t)— b——————Hl-e ° 30
these parts & tiise ® Chyjce (R/(ZL))M% ) (30)

Let's consider the first part of the input. From Eq. (19) we are
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V4(s) is determined by substituting(s) in Eq. (19) with the RO ANE
Laplace transform of the step function. Furthermore we shoultvhere & = arctans o O
include an extra term which specifies the response under the initial d
condition. After taking the inverse Laplace transform, we obtain the

following expression: The output voltage is again stated as an algebraic summation of

Vi 2(1), vi22(t), vi32(t). Similar to case I, the output foife ) is

v(t) = Voe_t/TS+VDDEIL—Le_m5D (31) composed of two termsj°(t), vsx°(t), due to the two separable
0 R+JL/C O parts of the input:
In Eq.(31) the unknown variabl, is determined by satisfying o Wy _at 0
Eq. (29). We can subsequently write: Va(t) = VDD%L—JZe cos(wyt— ) (40)
\Y R . iy
V() = 225 g g Ty ey (32)

1 AN
vo(t) = Vo TH, F=He *—e ™ cog(wyt —£)) (41)

S

tise (R/(2L))J/L/C
We take the same steps as was taken for obtaining the response

for interval [Otyis¢] to derive the response fdy;e, ). vg(t) is com- Voo Ry e/ T Y . .
posed of two terms. One is exponentially rising in time and asympvhereVg, = +— O—=(1-e"" ) . Againv() = Vg; () + Vo)) -
totically goes toward a constant value, while the other is constant in rise gﬂ%
time. We nameg,(t), vs (t) as the system responses to each of the . o o
above portions of they(t). We have: Finally the system responsevs, ,(t) = v(t) + v (t) .
Vg (t) = Vpp(l-e UTL) (33)  From Eq. (12.b), the final value of the output is a summation of
v . o e delayed versions of the computed output voltage. Since the attenua-
Veo(t) = bD [?_'-S—L(l_efise e  *-e Y (34) tion factor is large, we only consider a few terms of Eq. (12.b) to
s tise R L calculate the final value of the voltage. Experiments have shown
RC,U that four terms are sufficient to produce high accuracy. With this

The final expression of the output voltage is composed of the twBPProximation, the final value of the output voltage will be:

functions of Eq. (33), and Eq. (34): ¢ n+l . IC[VJ
= § - —(n— — - - / 42
Va(t) = Vg (t) +vgp(t) (35) YoulV) n= 1( b ergin- R LOrs* d-@n-nta 62

The system response is the algebraic summatia?(@©f andv,(t).
4. EXPERIMENTAL RESULTS

CASE Il. tanh(Ad) = 0.5(Ad) :

) i . We examined several examples with different values of intercon-
In this case we expect that the equations become more complicatggct length, technology parameters, and load and source imped-
since the order of the transfer function is increased. As we wilhnces. Among these experiments four representative examples are
show this complexity also appears in the output voltage waveforrreported.
so that the waveform asymptotically goes to its final value with L )
ringing. Similar to the previous case, we change the DC value of thEable 1. compares the rise-time of the waveforms derived by our
transfer function such that it becomes identical to the DC value dinalysis with those derived by HSPICE simulation for a number of

the actual transfer function: different transmission lines. Rows 1 through 4 correspond to the
.2 transmission lines depicted in Fig. (2) through Fig. (5). The remain-
Hy(s) = =——— (36) ing rows represent new data points. In tabl&vD represents the
e 2qs+wn2 width of each conductoHT is the height of conductor, af is
thickness of the conductor.

2 _ 1DBDZ 1 = B
wherew, = 200 " LC, andd 4L - Figs (2) and (4) show the ramp response of two lossy interconnects

The denominator has always two complex conjugate polej\;"th A less than two. The analysis of case Il is used for these two

; res. Fig. (2.a) depicts the output waveform obtained by our
hence the response has underdamped behavior and we sho ﬂiglysis whereas Fig. (2.b) shows the output waveform of the same

O I o e e, CEprfiuration by HSAICE Simation, Smiary gs (42)and (4.

So we do not present the details of computations. For intervg] O the output response of another interconnect obtained by our

[0,tisel, the output is composed of three terms: ' nalysis and HSPICE simulation respectively. Figs (3) and (5) show
rrisel ) the ramp responses of lossy interconnects Wigfieater than two.

The analysis of case | is used for these two cases.

Vv vV O Vpp et
V(1) = —22r(t) - 22 D%gu(t)—t—ﬂ2 IZ%d—cos(wdt—e) (37)
W,

tise Olrise rise
5. CONCLUSION
2 2
where wy = /wﬁ—az 0 = arctanMB , In this paper we proposed a new method for obtaining the analytical
020wy g expression for the ramp response of a lossy interconnect. The
. Voo R, O, _at inductive effects of the wire line, and most importantly the output
Vpo(t) = my; D—%L——”e cos(wdt—cb)% (38) resistance of the wire driver were considered in our analysis. We
rise (R/(2L))JL/C- Wy started with the two-port representation of the transmission line.

Among various two-port parameters the chain matrix was selected.
where ¢ = arctanB®t | and Notice that this property is very useful when analyzing the ramp
Liogl response of a cascade of interconnect segments with different
widths.This kind of two-port matrix allows us to obtain the two port
o Voo Rs 1n —t/Ts —at matrix of any number of cascade connections of different wires
Vig(t) = 2 O—r [HIST'—BEBe —e " cog(wyt &) (39)  with different wire sizes very easily by simply multiplying their
rise _ﬁ s two-port chian matrices. We then obtained the ramp response of the
2LNC system by doing some further simplification. The results show that
this method is able to obtain the ramp response of the lossy inter-
connect with small error.
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Table 1: Comparison between rise-times of our analysis and HSPICE

WD |HT TH Rs |CL R c L d tise(OUrS) | tise(HSPICE) |

(Hm) (Hm) (Hm) kQ pF Q pF nH mm nsec nsec

3 2 0.8 2 0.03 70.8 1 3.05 10 0.49 0.65 24.6%
0.2 25 0.25 2 0.01 680 0.0736 1.45 2 0.3 0.39 23%
0.3 2.5 0.25 2 0.01 227 0.043 0.635 1 0.23 0.22 4.35%
0.25 2.5 0.25 2 0.01 540 0.077 1.4 2 0.38 0.4 5%
0.2 3 1 2 0.01 170 0.068 1.29 2 0.45 0.4 11%
0.6 2 0.5 2 0.01 113 0.1053 1.035 2 0.74 0.63 14.9%
0.6 2 0.1 2 0.01 567 0.0965 1.21 2 0.46 0.5 8%
0.25 1.0 0.25 2 0.01 544 0.1 1.07 2 0.5 0.55 9.1%
0.25 1.75 0.25 2 0.05 544 0.086 1.26 2 0.57 0.69 17.4%

Output Voltage of a Lossy Interconnect to a Flattened Ramp (R=70.8, C=1PF, L=3.05nH, Length=1cm, Rs=2K, CL=0.03PF)
35 T T T T T

Output Voltage (volts)

HSPICE simulation.

@

Output Voltage of a Lossy Interconnect to a Flattened Ramp (R=680, C=0.0736PF, L=1.45nH, Length=2mm, Rs=2K, CL=0.01Pf
35 T T T T T T

Output Voltage (volts)

05

4 5
TIME

Wi

(b)
Fig. (2). Ramp response of a lossy interconnect (Lengths R=70.8,C=1pF,L=3.05nH) excited by a ramp input wity=2K asthe
source resistance a@=0.03pF as the load capacitan¢s) The result obtained by our method. (b) The result obtained from

Vokages o}

(b)

Fig. (3). Ramp response of a lossy interconnect (Lengtim2R680,C=0.0736pFL=1.45nH) excited by a ramp input with=2K as

the sourceesistance ar@ =0.01pF as the load capacitance. (a) The result obtained by our method. (b) the result obtained from HSPICE

simulation
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Output Voltage of a Lossy Interconnect to a Flattened Ramp (R=227, C=0.043PF, L=0.635nH, Length=1mm, Rs=2K, CL=0.0
35 T T T T

N
o
T

N
T

(]

Output Voltage (volts)
[
o
T

05 1

TIME ©107°

(@) (b)
Fig. (4). Ramp response of a lossy interconnect (Lengtim1R-227,C=0.043PF=0.635nH) excited by a ramp input wig=2K
as the sourceesistance an@ =0.01pF as the load capacitance (a) The result obtained by our method. (b) the result obtained from

HSPICE simulation.

Output Voltage of a Lossy Interconnect to a Flattened Ramp (R=540, C=0.077PF, L=1.4nH, Length=2mm, Rs=2K, CL=0.01PF}
35 T T T T T T T T — aneia

3

N
o
T

N
T
s
-~
~

Output Voltage (volts)
"
o
T

I I I I
0.6 07 08 0.9 1

0.5
TIME %107

1 I I
o 0.1 0.2 0.3 0.4

(@) (b)

Fig. (5). Ramp response of a lossy interconnect (Lengtim2R540, C=0.077PF, L=1.4nH) excited by a ramp input with Rs=2K as
the source resistan@ndC =0.01pF as the load capacitance. (a) The results obtained by our method. (b) the result obtained from

HSPICE simulation.
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