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Abstract- This paper presents a numerically stable and  In the balanced realization-based model reduction meth-
efficient algorithm for model reduction of large RLC net- 0ds, each state is equally controllable and observable and the
works using frequency-weighted balanced truncation tech- reduced order model of the original transfer function is
nique. The salient features of this algorithm include derived by minimizing the Hankel-norm of the error between
guaranteed stability of the reduced transfer function as well the transfer functions of the original and the approximated
as availability of provable frequency-weighted error bounds. System. Paper [7] uses the truncated balanced realization and
Such frequency weighting is essential to provide better con- Uses the Schur decomposition method to develop an efficient
trol over time-domain error of the reduced system. The first Numerical method for solving the required equations. Papers
k largest singular values of the system are obtained using [8], [9] propose efficient algorithms to solve the two
the Lanczos algorithm, and the Lyapunov equations are Lyapunov equations to obtain the grammians. The algorithms
solved by an iterative Lyapunov equation solver. Experimen- are based on the Alternated Direction Implicit method (ADI)
tal results demonstrate the higher accuracy of our tech- [10]. By using a modification to the ADI method, the authors
nique compared to Krylov-subspace-based model reductionare able to reduce the computational complexity.

teChniqueS and other truncated balanced realizations that A Shortcoming of the proposed model reduction tech-

do not use spectral shaping. Based on MATLAB simula- niques is that they do not reshape the frequency spectrum to
tions, the run-time of our method is only 5% more than that emphasize error minimization in some frequency range of
of PRIMA. interest. Furthermore, they also do not address the numerical
difficulties when the system is nearly uncontrollable or unob-
servable. In analyzing the interconnect, it is often very useful
. INTRODUCTION to make the energy of the error to be very small in a certain
The problem of model reduction for VLSI interconnects hasfrequency band. Enns [11] first proposed frequency-weighted
gained considerable attention in the EDA community inmodel reduction based on the balanced truncation method.
recent years. The reasons are that the interconnect parasiigthough the method works well for many numerical exam-
effects have a major effect on the overall circuit delay and thaples, it suffers from a number of shortcomings that become
detailed simulation of large interconnect structures is veryimportant when this method is applied to interconnect analy-
computation-intensive. The model reduction techniquessis. Most importantly, the proposed method does not guaran-
enable us to model the interconnect effects with a far lessee the stability in general and gives agriori error bounds.
computational time than that required for simulation of thePaper [12] gives a complete solution to the frequency-
full model. Among various classes of model reduction tech-weighted Hankel norm approximation with unstable weight-
niques, the explicit moment matching algorithms (e.g. AWEing functions. The method proposed in [13] may cause the
[1], RICE [2]) and Krylov subspace based methods (Pact [3],L*-norm error to become very large when the weighting

PVL [4], PRIMA [5]) have received more attention because functions have minimum phase response. Furthermore, no
of their lower computational complexity. These methods, priori error bound exists for this technique.

however, do not provide a provable error bound for the

reduced system. To overcome the numerical difficulties of a nearly uncon-

i ) ) trollable or unobservable system, a number of techniques
An alternative to these model reduction techniques that hafave been proposed to compute the reduced-order models of
received renewed interest and consideration is the balancefle system transfer function without actual computation of a
realization technique [6], [7], [8], [9]. The reduced system palanced realization. Among those techniques the Schur
using the balanced realization is guaranteed to be stable anflethod [14] has gained a lot of attention. The Schur method
no further processing is required to make the system passivgs based on the Schur decomposition of the product of the
Moreover, there is a provable error bound on the transfegontrollability and observability grammians. The method
function of the reduced-order model compared to that of thanyolves only orthogonal transformation matrices and is
original system. However, compared to Krylov-subspacetherefore numerically robust [14]. In the model reduction
based and pade-based model reduction techniques, thefghnique based on balanced truncation since we are only
methods tend to have higher computational complexity [8].interested in the first few largest eigenvalues of the system
Furthermore, the balancing transformation may be poorlymatrix, we use a Krylov-subspace-based method to compute

conditioned when the system is nearly uncontrollable ora few of the largest eigenvalues and eigenvectors of the matri-
unobservable. ces.

In this paper the high-order interconnect circuit is approxi-
. . mated by a lower-order reduced system using a hew numeri-
This research was funded in part by SRC under contract no. 98—DJ—606ca”y at¥ractive frequency-weigh¥ed balanged truncation




technique. The method is an extension of the techniques prevhereo;, i = 1, 2, . . ., nare the Hankel singular values of the
sented in [7] and [11]. It provides a definite priori error  system transfer functioH(s) and represent the energy exerted
bound and is guaranteed to be stable even when both input arsy thei-th state variable in the controllability and observability
output weightings are utilized. map of the balanced system. It can be proved that there exists a
Section Il provides an overview of the balanced realizationsimilarity transformation matriX such that the controllability
method. The new contribution in this section is the adoption ofand observability grammians of the new systé# B, C) are
the Schur algorithm based on the Lanczos method to 9€qual and diagonal:
around the numerical difficulties associated with the balancing PN )
transformation. Section IIl reviews the frequency-weighted P =Q = Z =diag(0y, 03, ..., 0,) (8)
mgdgl redfuci:;[_ion techrlliqlljed.Secﬂon vV CfomaiTS the f?aAOchonwhereol >0,2...20,>0 . The balanced transformation of
tribution of this paper including the new formulation ofthe fre- o, | 1 gystem allows one to choose the state variable set that
quency-weighted model reduction and the methods descr'beg:‘/es a significant amount of information in the external repre-

in section Il to obtain the reduced order system using balancegyation of the system. In fact, on the basis of the computed
truncation without numerical instability. In section V this new

model reduction technique is compared with the Vector AD| €€y .for each Stat? .v.arlabkg, we sgttle ona criterion for
introduced in [7] and [8] and PRIMA [5]. Section VI con- evaluating the possibility of eliminating in the reduced

cludes our paper. model. If X is partitioned into two submatrices:
Il. BACKGROUND s =210 ©)
Consider an arbitrary network consisting of inductances, 0%,
capacitances, and resistances. Modified Nodal Analysis xk X (K
(MNA) can be used to obtain the system of equations: where Z, O R 2,0 R"OX(R gnd A, B, C) are also
Lx = -Gx+Byu (1)  partitioned conformally witfx as:

y = Cx 2)
where the state vectorrepresents the vector of N node volt- A =
ages across the circuit capacitances and voltage sources and
the vector of M currents flowing through the inductors and cur-

A11A12} ,B:El}, C:[Clcz}
2

rent sources. In addition: The reduced order model based @44 By, C,) is stable
and theL” -error is bounded by [6]:
L{Qapo]e: GE,x=M,E=[aj] on o
0L —ET i IH(s)-H 9)|.<28' S o0 (10)
O=%1 O

(01 Ifbranchjis incident at nodeand oriented away from it. . . )

O To obtain a state-space realization of the balanced system,
wheree; = JO  ifbranchj is not incident at node we first solve the Lyapunov equations to obtain the grammians.
Since the A, B, C) matrices in Egs (3) and (4) give a minimal
realization of the RLC interconnect, the controllability and
observability grammians are positive definite. Consequently,
we can apply the Cholesky factorization on mafix

D—l If branchj is incident at nodeand oriented towards it.

The MNA equations can be rewritten in the standard state
space representation by introducing the following matrices:

— 1
A= LG , B = LB, Q=RR (11)
) Notice thatRPR will be a positive-definite matrix, which can
Hence: _ be diagonalized as:
x = Ax+ Bu @) RPR = Us2UT with ~ UTU = |
y = Cx (4) . o
o ’ Now a balancing transformatioR, is given by:
The system of Egs (3) and (4) characterizing the RLC inter- e T
connect is a special case of an asymptotically stable system for T=2"°UR (12)

which the eigenvalues & are in the open left half plane. For The new coordinate-transformed grammians are equal and
such a class of linear time-invariant (LT1) systems, the control-diagonal [6]. The calculations required to construct the balanc-
lability and observability grammians are defined as follows: ing transformation are complicated and sensitive to numerical
® At T ATt AT AL errors. In particular the balancing transformation  may be
P=[eBBe dt ; Q=[eCCe dt (5  poorly conditioned when matriRQ has a high condition num-
0 0

ber! Paper [14] proposes an algorithm where the balancing is
TheP andQ matrices satisfy the Lyapunov equations[6]: avoided altogether and as a result numerical difficulties are
T T . T T~ _ never encountered. The algorithm uses the Schur decomposi-
AP+PA +BB =0 AQ+QA+CC =10 (6 tion to generate orthogonal bases for eigenspaces. Briefly,
The controllability and observability grammians provide instead of finding the balancing transformation, the algorithm
useful insights about the system characteristics. A particularlyises a Schur decomposition of the prode@whereP andQ
interesting property is that the Hankel singular values of the
system transfer functionH(s), are the square-roots of the
eigenvalues oPQ: 1

Recall that the condition numbeaind( M) = o, (M)/ 0, (M) pro-
— 1/2
oi(H (s) = {)\i(PQ)} Q) vides a measure of the distancévbfo the set of singular matrices.



are the controllability and observability grammians of the orig- The problem of efficiently solving the Lyapunov equations
inal linear system. The resulting similarity transformationswill be addressed in section V when we present our new fre-
which convert thePQ matrices to the upper triangular forms gquency-weighted balanced truncation method.

are then partitioned into two submatrices. The submatrices

whose columns form the respective right and left eigenvectors |1l REVIEW OF THE FREQUENCY-WEIGHTED

of the producPQ associated with the largest singular values of BALANCED REALIZATION

the system matriA are chosen. The singular value decompo-So far we have seen that the internally-balanced realization is
sition of these selected submatrices are computed and directhh attractive model reduction technique. An extension to the
used to compute the reduced order model of the original sysbalancing technique to include weightings is now explained.

tem. For the complete explanation of the algorithm, please Consider the state-space representation of the RLC inter-

refer to [14]. The algorithm is proven to yield a stable reduced - : i )
order model without regard to nearness to unobservability OPonnect given in Egs (3) and (4). The frequency-weighted bal

uncontrollability. By using similarity transformations, it is anced realization problem is to calculakt(s)  of degkee
possible to reduce a given matrix to simpler forms (e.g. diago{k <n) so as to make

nal, upper/lower triangular, etc). This algorithm, however, W (s) (H(s) = HX)W(S) | (13)
involves an eigenvalue problem whose dimension is as large a8 small as

the order of the original transfer function. Furthermore we still possible. To abtain such a reduced system, we first

. . .. calculate the grammians of the augmented system and then
need to solve Lyapunov equations to obtain the controllability epeat the sar%e steps that are use% for a uni%g/-weighted sys-

and observability grammians, a task which is computationall){em_ We can write the stable state-space representations of the

expensive. 4t b ol I I input and output weightings as:

We can avoid the problem of solving a large eigenvalue _ -1
problem by using the Krylov subspace-based methods. In fact W(s) = Ci(sI-A) "B +D, (14)
studying the algorithm proposed by [14] shows that it is only W,(s) = C,(sl- A,)_lBo +D, (15)

necessary to find the firgtlargest eigenvalues of the product

and their corresponding left and right eigenvectors. Based on If only the input is weighted, the minimal realization of the
this observation, a modified version of the Safanov’s algorithmnew systemH(s)W(s), is easily realized by the controller-
was used in paper [7]. In paper [7], the Arnoldi algorithm is form realization method [13]:

utilized to compute the largest eigenvalues and the correspond-

ing left and right eigenvectors. Recall tHa®@ is a large sym- ~ A BG B - BD — _ 16
metric matrix, which will also be a positive definite matrix if A = 0 A P B G o= [C 0} (16)
the system is both controllable and observable.

The problem is thus to efficiently obtain the largest and/or ~ Similarly the minimal realization of the augmented system
the smallest eigenvalues of a symmetric matrix. This problemA,(s)H(s)is obtained by the observer-form realization method
is solved by using the Lanczos method. The Lanczos algorithnji 3]:

reduces the original large symmetric matri{, = PQ, to a 0

smaller tridiagonal matrixT, where T, [ 099 . The algo- A, = A } , By = ﬁ ,Co = [DOC C(J (17)

rithm involves successfully filling in the columng and Vg BC A 0

such that V,"Vg =D, =diag(8;, & ,......... , &), Wwhere The grammians corresponding to these equations are given by

VL= [V Viz -+ Vigl @nd Vg = [VR1 Vg2 - - - VR4 @nd the vectors the upper left cornenx n  submatricesPf  a@d
{Vri}i-,and{v }]_, span the Krylov subspad€s,(vy,PQ) _[pop, _ [o
andK (w; , PQ), respectively: P = , Q=1 . (18)

-
colsp( V)= K (v y, M) =spar{ y;, My, ..., My} Piz P Q2 Q
_ whereP andQ satisfy the following Lyapunov equations:
colsp( V)= K o(Viy, M) =spar{ vy, My, ..., MOy} @ satisfy the following Lyap g
- . AP+PAT+BB' =0 (19)
o, B, 0...0 A A AT
: Ao Q+QA+G G =0 (20)
Y2 0 B3 -
V[(PQ)VR =Tqg=|0vy," - O Expanding thenxn upper left corner block of the
Co 5 Lyapunov equations yields [11]:
o o y' aq AP+ PA +BCP,,+PLCTBT +BD,DJB" = 0 (21)
LY - q “dq

; ATQ+ QA+ Q;B,C + C'BIPL, +C'DID,C = 0 (22)
V( Vg = Dy = diag(dy, ..., &) ) ) _
o ] Solutions to Eqgs (21) and (22) give the weighted controlla-
The columns of the two projection matrices bility and observability grammians of the system. The balanc-
V,, Vg O 0"*9 form bases for the respective right and left in_g transformatio_nT tha_t accomplishes_the objective is an
. . . . ... eigenvector matrix obtained from the eigenvalue decomposi-
elgenspaces 2°f thezprodu@tQ associated with their "big” yjon " After coordinate transformation of the original system,
eigenvaluesoy, ..., 0. The matricesv, and Vg are used as we obtain:

bases for the relevant eigenspaces of the m&@hn the deri-
vation of the reduced order model.



conclusion is that the paifA, B) is controllable ad, C)

is observable. As a result, the realizatiph, B, C) is mini-
mal. The calculations required to construct the balancing
transformation are complicated and sensitive to numerical
The reduced order model is then calculated by truncatingrrors. To avoid any numerical difficulties, we use the defini-
the states that are weakly controllable/observable with theions and techniques described in section Il and obtain the
weighted input/output [11]. In mathematical terms, it againreduced order model of the RLC interconnect without bal-
involves partitioning the frequency-weighted balanced real-ancing the system.
ization [11]. It has been be proved that the error bound of the
above model order reduction method is [14]:

[Wo(s)(H(S) - HX(8)W,(9)] .

TPT' = (TH'QT? = diag(oy, ..., 0,, O, +1, ..., O)
(23)

wherec,; 20,2 ... 20, .

We still need to solve the Lyapunov equations to obtain
the grammians of the system. To efficiently solve the
Lyapunov equations, we make use of the ADI procedure
which is an iterative method for solving the Lyapunov equa-
tion,

n
<2 Z «/°§+(Gk+[3k)0§/2+ak[3k0k (24)

k=T+1

AP+ PA +X = 0

. The system is first reduced to tridiagonal form with a Gauss-
In the above formulas, denotes the Hankel singular val- jan similarity transformatioriT,q , as follows:

ues anday, By denote infinity norms of the transfer func-

— -1
tions, which depend orH(s), Wy(s) W(s) and system S = TiaATuig
. . T
matriceshA;, Ao, A. Itis clear from the above formula that the Z = T4iqaPTiig
error bounds are calculated iteratively, each iteration involv- X = T.. . XTW
s = Ttrid trid

ing evaluation of a number of infinity norms. Therefore,
these bounds have limited practical applications.

IV. A NEW NUMERICALLY STABLE
FREQUENCY-WEIGHTED BALANCED
REALIZATION WITH AN ERROR BOUND

Reducing a matrix to its tridiagonal form requir€3(n3)

computations whera is the order of the system matyiA.
The resulting system is solved with the ADI iteration [10]:

Z,=0

In this section we propose a frequency-weighted balanceq( s+ F}|)Zj-% = X—[(S- ghZ;4 ]T,

truncation method that yields stable models for both single-
sided and double-sided weightings. The error bound formula
is a simple equation without a need to be updated iteratively.

T .
(S+ )z, = xs—[(s— )z, 1} for j=1,2,...,3

1=

From equations (21) and (22) we define the new variabledterative solution of the reduced Lyapunov equation is

as follows:
X = BGP,+PLC'BT+BDDBT  (25)
Y = Q,B,C+C'B/PL,+C'D/D,C (26)

It can be easily seen th&tandY are symmetric matrices.
As a consequence, there are orthogonal matri¢esdV
and diagonal matricéSandZ such that:

X = Usu 27)

Y = VZV' (28)

whereS=diag(s , s, ..... . $), andZ=diag(z ,  ,.... , %),

and denoting rank() =i and rank{) =j we can write:
B = Udiag(|g|¥2 ..., [s|¥20, ..., 0)

C = diag(|z|V?% ..., |z|¥20,...,0)V"

(29)
(30)

Let P and @ denote the solutions of the following
Lyapunov equations:

AP+PAT+BB' = 0 (31)
ATQ+QA+C'C =0 (32)
We find the transformation matriX that simultaneously
diagonalizes® an€) as follows:
TPTT = (TH'QT™ = diag(oy, ..., 0,0, 4 1, ...

)
(33)
The new realizatior{A, B, C) is minimal becauBe

Q are positive definite [13]. Sinctis stable, an immediate

and 9

accomplished in0(12Jn?)  flops[10].

The steps to calculate the reduced order model of the
matrix transfer function is as follows:
GivenH(s), Wi(s), Wy(s) :

1. Using the ADI iteration, compute the controllability and
observability grammiansP and Q by solving the
Lyapunov equations (21) and (22).

. Use equations (25) and (26) or to compaandY.

3. DecomposeX and Y using eigenvalue decomposition

into USU™ andVvZ V" .

4. Use equations (29) and (30) to compBte  &nd

5. Using the ADI iteration, solve the mapped Lyapunov
equations (31) and (32) to compuie &d

. Using the Lanczos algorithm, obtain the reduced order

N

(«2}

left and right eigen matrices\?L anlsfR , associated
with theq largest singular values of the matf

7. Let E = \7LT\7R and compute the singular-value
decomposition of matri€ E = UgSeVe

8. Let & =V 03’200

éR = VRVEiEl/Z O anq
. Find a transformation matrik that simultaneously diag-
onalizesP and) .



10. Compute the reduced order space realization using this modeled by 50 RLC lumped sections as depicted in Fig. 1.
i nel e . In Fig. 2., the Bode diagram of the magnitude and phase of
matricesS,  and: - as follows: the reduced transfer function obtained by our technique is

A | ) 5 A% | ASIBW compared with those of the VADI algorithm and PRIMA.
| = The order of the system is reduced to 3. Clearly, our pro-
C | D C& | DJ posed technique yields more accurate results than the other

techniques. The input weighting function is a low-pass first-

Theorem 2.The L* error of the frequency-weighted model order function:

- : . 1
reduction technique is: W.(s) =
a On 0 i(s) s+0.4
HWO(S)(H(S)—H'r((S))Wi(S)Hw <kO o, 0 (34) In the second example we consider model reduction of
U=f1 O two capacitively coupled transmission lines. The order of
wherek = [W,(s)L|.||[KW(s)|., and the reduced model is 3. The circuit is depicted in Fig. 3. The
® ' ® Bode diagram of the original system along with that of the
K = diag(|s|™?2 ...,|s|™20,...,00U™B reduced system are shown in Fig. 4. The output weighting
. function is:
L = Cvdiag| 3|2 ....|z/20, ..., 0) unetion | 10
Proof is not given due to the lack of space. Wo(s) = s+0.2
In the case of single-sided weightings, the salnfe -norm R Rl R L Reo Lep

error bound is obtained. Corollary 1. gives the error bound

for single-sided weightings. W-m——0 +
Corollary 1. If the frequency weighting is applied on the o l Vout
input vector only, the error bound is given by: 501

n _

O O
[(H(s) - HKW(s)|.<kD § 0,0  (35) L L
U=%1 O Fig. 1. A two-port lumped RLC network consisting of 50 sections.
where k = 2|KW(s)|,, . Similarly if the frequency

weighting is applied on the output vector only, the error Bode Diagrams L PRIMA
bound is: ** 1 VADI
++ : Ours
K an 0 From: U(1)
[Wo(s) (H(s) = HE(9)] . < Iy o0 @) - | N B B
—K+1

wherek = 2|W,(s) L|,, - p

The input and output weightings are determined based on
the range of frequencies where we like to have the maximum
accuracy. The weighting functions should emphasize the fre-
qguency ranges where more accuracy is required. Similarly
they must de-emphasize the range of frequencies where th
noise arising from the order reduction has small energy or it
is out of the desired frequency bound.

For the RLC interconnect the goal is to generate a
reduced-order model that has a small magnitude frequency
error with respect to that of the original system over a wide
range of frequencies starting from the DC frequency.

Recall that in the balanced truncation approachktfiest
singular values are retained while the remaining singular
values are truncated. The truncated singular values represer
the higher frequency fluctuations of the impulse response of
the system. To have the magnitude and the phase spectrun
matched with those of the original system, the weighting | ¢
functions are normally chosen to have the high-pass fre-
guency behavior, albeit with a high bandwidth.

'
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V. EXPERIMENTAL RESULTS w o

In this section the results of applying the frequency- Frequency (radisec)
weighted bal_anced truncat_'on mOdel_r_e.dUCtlon _teChmque are Fig. 2. The Bode diagram of a single interconnect having 50 lumped
compared with those obtained by utilizing our implementa- RLC sections and the corresponding reduced-order systems.
tions of PRIMA and the truncated balanced realization using
Vector ADI (VADI) [8]. First consider a single lossy trans-
mission line. The values of per-unit capacitances, induc-
tances and resistances are normalized. The transmission line
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Fig. 3. Two capacitively coupled RLC interconnects consisting of 20
RLC lumped sections.
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Fig. 4. The Bode diagram of the system in Fig. 2.

By comparing the number of flops resulting from MATLAB
simulation, the CPU-time of our algorithm is only 5% more
than that of PRIMA.

VI. CONCLUSION

iterative Lyapunov equation solver is presented. The pro-
posed algorithm also providespriori error bound. Experi-
mental results and comparison with truncated balanced
realization and PRIMA shows the effectiveness of our
approach.
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