
th-
the

is
n
d

and
ent
ers

ms
I)
s

h-
to

of
ical
b-
ful
in
ed
od.
-
e

ly-
an-

y-
t-
he
g
o

-
es
s of
a

hur
od
he
d
is
n
nly
m

ute
tri-

i-
eri-
n

Balanced Truncation with Spectral Shaping for
RLC Interconnects

Payam Heydari, Massoud Pedram
Department of EE-Systems, University of Southern California

Los Angeles, CA 90089
Abstract- This paper presents a numerically stable and
efficient algorithm for model reduction of large RLC net-
works using frequency-weighted balanced truncation tech-
nique. The salient features of this algorithm include
guaranteed stability of the reduced transfer function as well
as availability of provable frequency-weighted error bounds.
Such frequency weighting is essential to provide better con-
trol over time-domain error of the reduced system. The first
k largest singular values of the system are obtained using
the Lanczos algorithm, and the Lyapunov equations are
solved by an iterative Lyapunov equation solver. Experimen-
tal results demonstrate the higher accuracy of our tech-
nique compared to Krylov-subspace-based model reduction
techniques and other truncated balanced realizations that
do not use spectral shaping. Based on MATLAB simula-
tions, the run-time of our method is only 5% more than that
of PRIMA.

I.  INTRODUCTION
The problem of model reduction for VLSI interconnects has
gained considerable attention in the EDA community in
recent years. The reasons are that the interconnect parasitic
effects have a major effect on the overall circuit delay and that
detailed simulation of large interconnect structures is very
computation-intensive. The model reduction techniques
enable us to model the interconnect effects with a far less
computational time than that required for simulation of the
full model. Among various classes of model reduction tech-
niques, the explicit moment matching algorithms (e.g. AWE
[1], RICE [2]) and Krylov subspace based methods (Pact [3],
PVL [4], PRIMA [5]) have received more attention because
of their lower computational complexity. These methods,
however, do not provide a provable error bound for the
reduced system.

An alternative to these model reduction techniques that has
received renewed interest and consideration is the balanced
realization technique [6], [7], [8], [9]. The reduced system
using the balanced realization is guaranteed to be stable and
no further processing is required to make the system passive.
Moreover, there is a provable error bound on the transfer
function of the reduced-order model compared to that of the
original system. However, compared to Krylov-subspace-
based and pade-based model reduction techniques, these
methods tend to have higher computational complexity [8].
Furthermore, the balancing transformation may be poorly
conditioned when the system is nearly uncontrollable or
unobservable.

In the balanced realization-based model reduction me
ods, each state is equally controllable and observable and
reduced order model of the original transfer function
derived by minimizing the Hankel-norm of the error betwee
the transfer functions of the original and the approximate
system. Paper [7] uses the truncated balanced realization
uses the Schur decomposition method to develop an effici
numerical method for solving the required equations. Pap
[8], [9] propose efficient algorithms to solve the two
Lyapunov equations to obtain the grammians. The algorith
are based on the Alternated Direction Implicit method (AD
[10]. By using a modification to the ADI method, the author
are able to reduce the computational complexity.

A shortcoming of the proposed model reduction tec
niques is that they do not reshape the frequency spectrum
emphasize error minimization in some frequency range
interest. Furthermore, they also do not address the numer
difficulties when the system is nearly uncontrollable or uno
servable. In analyzing the interconnect, it is often very use
to make the energy of the error to be very small in a certa
frequency band. Enns [11] first proposed frequency-weight
model reduction based on the balanced truncation meth
Although the method works well for many numerical exam
ples, it suffers from a number of shortcomings that becom
important when this method is applied to interconnect ana
sis. Most importantly, the proposed method does not guar
tee the stability in general and gives noa priori error bounds.
Paper [12] gives a complete solution to the frequenc
weighted Hankel norm approximation with unstable weigh
ing functions. The method proposed in [13] may cause t

-norm error to become very large when the weightin
functions have minimum phase response. Furthermore, na
priori  error bound exists for this technique.

To overcome the numerical difficulties of a nearly uncon
trollable or unobservable system, a number of techniqu
have been proposed to compute the reduced-order model
the system transfer function without actual computation of
balanced realization. Among those techniques the Sc
method [14] has gained a lot of attention. The Schur meth
is based on the Schur decomposition of the product of t
controllability and observability grammians. The metho
involves only orthogonal transformation matrices and
therefore numerically robust [14]. In the model reductio
technique based on balanced truncation since we are o
interested in the first few largest eigenvalues of the syste
matrix, we use a Krylov-subspace-based method to comp
a few of the largest eigenvalues and eigenvectors of the ma
ces.

In this paper the high-order interconnect circuit is approx
mated by a lower-order reduced system using a new num
cally attractive frequency-weighted balanced truncatioThis research was funded in part by SRC under contract no. 98-DJ-606.
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technique. The method is an extension of the techniques pre-
sented in [7] and [11]. It provides a definitea priori error
bound and is guaranteed to be stable even when both input and
output weightings are utilized.

Section II provides an overview of the balanced realization
method. The new contribution in this section is the adoption of
the Schur algorithm based on the Lanczos method to get
around the numerical difficulties associated with the balancing
transformation. Section III reviews the frequency-weighted
model reduction technique. Section IV contains the major con-
tribution of this paper including the new formulation of the fre-
quency-weighted model reduction and the methods described
in section II to obtain the reduced order system using balanced
truncation without numerical instability. In section V this new
model reduction technique is compared with the Vector ADI
introduced in [7] and [8] and PRIMA [5]. Section VI con-
cludes our paper.

II.  BACKGROUND
Consider an arbitrary network consisting of inductances,
capacitances, and resistances. Modified Nodal Analysis
(MNA) can be used to obtain the system of equations:

  (1)
  (2)

where the state vectorx represents the vector of N node volt-
ages across the circuit capacitances and voltage sources and
the vector of M currents flowing through the inductors and cur-
rent sources. In addition:

, , ,

where

The MNA equations can be rewritten in the standard state-
space representation by introducing the following matrices:

,

Hence:
(3)

   (4)

The system of Eqs (3) and (4) characterizing the RLC inter-
connect is a special case of an asymptotically stable system for
which the eigenvalues ofA are in the open left half plane. For
such a class of linear time-invariant (LTI) systems, the control-
lability and observability grammians are defined as follows:

; (5)

TheP andQ matrices satisfy the Lyapunov equations[6]:

; (6)

The controllability and observability grammians provide
useful insights about the system characteristics. A particularly
interesting property is that the Hankel singular values of the
system transfer function,H(s), are the square-roots of the
eigenvalues ofPQ:

 (7)

whereσi, i = 1, 2, . . ., nare the Hankel singular values of the
system transfer functionH(s) and represent the energy exerte
by thei-th state variable in the controllability and observability
map of the balanced system. It can be proved that there exis
similarity transformation matrixT such that the controllability

and observability grammians of the new system a
equal and diagonal:

 (8)

where . The balanced transformation o
an LTI system allows one to choose the state variable set t
gives a significant amount of information in the external repr
sentation of the system. In fact, on the basis of the compu
energy for each state variablexk , we settle on a criterion for
evaluating the possibility of eliminatingxk in the reduced
model. If Σ is partitioned into two submatrices:

  (9)

where , and (A, B, C) are also
partitioned conformally withΣ as:

, ,

The reduced order model based on (A11, B1, C1) is stable
and the -error is bounded by [6]:

(10)

To obtain a state-space realization of the balanced syste
we first solve the Lyapunov equations to obtain the grammia
Since the (A, B, C) matrices in Eqs (3) and (4) give a minima
realization of the RLC interconnect, the controllability an
observability grammians are positive definite. Consequent
we can apply the Cholesky factorization on matrixQ:

(11)

Notice thatRPRT will be a positive-definite matrix, which can
be diagonalized as:

  with

Now a balancing transformation,T, is given by:

(12)
The new coordinate-transformed grammians are equal a
diagonal [6]. The calculations required to construct the balan
ing transformation are complicated and sensitive to numeric
errors. In particular the balancing transformation may b
poorly conditioned when matrixPQhas a high condition num-
ber.1 Paper [14] proposes an algorithm where the balancing
avoided altogether and as a result numerical difficulties a
never encountered. The algorithm uses the Schur decomp
tion to generate orthogonal bases for eigenspaces. Brie
instead of finding the balancing transformation, the algorith
uses a Schur decomposition of the productPQ whereP andQ

L ẋ Gx– BN u+=
y Cx=

L Ccap 0

0 L
= G

G E

ET– 0
= x v

i
= E eij[ ]=

eij

1

0

1–





=

If branchj is incident at nodei and oriented away from it.

If branchj is incident at nodei and oriented towards it.

If branchj is not incident at nodei.

A L 1– G–= B L 1– BN=

ẋ Ax Bu+=
y Cx=

P eAtBBTeA
T

t td
0

∞

∫= Q eAtCTCeAt td
0

∞

∫=

AP PAT BBT+ + 0= AT Q QA CTC+ + 0=

σi H s( )( ) λi PQ( ){ }1 2⁄=
1.    Recall that the condition number  pro-

vides a measure of the distance ofM to the set of singular matrices.

Â B̂ Ĉ, ,( )

P̂ Q̂ Σ diag σ1 σ2 … σn, , ,( )= = =

σ1 σ2 … σn 0>≥ ≥ ≥

Σ Σ1 0

0 Σ2

=

Σ1 Rk k×∈ Σ2 R n k–( ) n k–( )×∈

A
A11 A12

A21 A22

= B
B1

B2

= C C1 C2=

L∞

H s( ) Hr
k s( )– ∞ 2 σi

i k 1+=

n

∑
 
 
 

≤

Q RTR=

RPRT UΣ2UT= UTU I=

T Σ 1 2⁄– UTR=

T

cond M( ) σmax M( ) σmin⁄ M( )=
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are the controllability and observability grammians of the orig-
inal linear system. The resulting similarity transformations
which convert thePQ matrices to the upper triangular forms
are then partitioned into two submatrices. The submatrices
whose columns form the respective right and left eigenvectors
of the productPQassociated with the largest singular values of
the system matrixA are chosen. The singular value decompo-
sition of these selected submatrices are computed and directly
used to compute the reduced order model of the original sys-
tem. For the complete explanation of the algorithm, please
refer to [14]. The algorithm is proven to yield a stable reduced
order model without regard to nearness to unobservability or
uncontrollability. By using similarity transformations, it is
possible to reduce a given matrix to simpler forms (e.g. diago-
nal, upper/lower triangular, etc). This algorithm, however,
involves an eigenvalue problem whose dimension is as large as
the order of the original transfer function. Furthermore we still
need to solve Lyapunov equations to obtain the controllability
and observability grammians, a task which is computationally
expensive.

We can avoid the problem of solving a large eigenvalue
problem by using the Krylov subspace-based methods. In fact
studying the algorithm proposed by [14] shows that it is only
necessary to find the firstk largest eigenvalues of the product
and their corresponding left and right eigenvectors. Based on
this observation, a modified version of the Safanov’s algorithm
was used in paper [7]. In paper [7], the Arnoldi algorithm is
utilized to compute the largest eigenvalues and the correspond-
ing left and right eigenvectors. Recall thatPQ is a large sym-
metric matrix, which will also be a positive definite matrix if
the system is both controllable and observable.

The problem is thus to efficiently obtain the largest and/or
the smallest eigenvalues of a symmetric matrix. This problem
is solved by using the Lanczos method. The Lanczos algorithm
reduces the original large symmetric matrix,M = PQ, to a
smaller tridiagonal matrixTq where . The algo-
rithm involves successfully filling in the columnsVL and VR

such that VL
TVR =Dq =diag(δ1, δ2 ,........., δq), where

VL = [vL1 vL2 ... vLq] andVR = [vR1 vR2 . . . vRq] and the vectors
and span the Krylov subspacesK q(v1,PQ)

andK q(w1 , PQ), respectively:

The columns of the two projection matrices

, form bases for the respective right and left
eigenspaces of the productPQ associated with their "big"

eigenvalues . The matricesVL and VR are used as
bases for the relevant eigenspaces of the matrixPQ in the deri-
vation of the reduced order model.

The problem of efficiently solving the Lyapunov equation
will be addressed in section V when we present our new fr
quency-weighted balanced truncation method.

III.  REVIEW OF THE FREQUENCY-WEIGHTED
BALANCED REALIZATION

So far we have seen that the internally-balanced realization
an attractive model reduction technique. An extension to t
balancing technique to include weightings is now explained

Consider the state-space representation of the RLC int
connect given in Eqs (3) and (4). The frequency-weighted b
anced realization problem is to calculate of degreek
(k < n) so as to make

(13)
as small as possible. To obtain such a reduced system, we
calculate the grammians of the augmented system and t
repeat the same steps that are used for a unity-weighted s
tem. We can write the stable state-space representations of
input and output weightings as:

(14)

(15)

If only the input is weighted, the minimal realization of the
new system,H(s)Wi(s), is easily realized by the controller-
form realization method [13]:

, ,   (16)

Similarly the minimal realization of the augmented syste
Wo(s)H(s)is obtained by the observer-form realization metho
[13]:

, , (17)

The grammians corresponding to these equations are given

the upper left corner  submatrices of  and :

 , (18)

where  and  satisfy the following Lyapunov equations:

(19)

(20)

Expanding the upper left corner block of the
Lyapunov equations yields [11]:

(21)

(22)

Solutions to Eqs (21) and (22) give the weighted controll
bility and observability grammians of the system. The balan
ing transformationT that accomplishes the objective is an
eigenvector matrix obtained from the eigenvalue decompo
tion. After coordinate transformation of the original system
we obtain:

Tq ℜq q×∈

vRi{ }i 1=
q vLi{ }i 1=

q

colsp VL( ) K q vL1 M,( ) span vL1 MvL1 … Mq 1– vL1, , ,{ }= =

colsp VL( ) K q vL1 M,( ) span vL1 MvL1 … Mq 1– vL1, , ,{ }= =

VL
T PQ( )VR Tq

α1 β2 0 … 0

γ 2 α2 β3

0 γ 3 0

βq

0 … 0 γ q αq

= = ...
...

...
...

...

...

...

...

VL
TVR Dq diag δ1 … δq, ,( )= =

VL VR, ℜn q×∈

σ1
2 … σq

2, ,

Hr
k s( )

Wo s( ) H s( ) Hr
k s( )–( )Wi s( ) ∞

Wi s( ) Ci sI Ai–( ) 1– Bi Di+=

Wo s( ) Co sI Ao–( ) 1– Bo Do+=

Ai
A BCi

0 Ai

= Bi
BDi

Bi

= Ci C 0=

Ao
A 0

BiC Ao

= Bo
B

0
= Co DoC Co

=

n n× P Q

P
P P12

P12
T P22

= Q
Q Q12

Q12
T Q22

=

P Q

Ai P PAi
T BiBi

T+ + 0=

Ao
TQ QAo Co

T Co+ + 0=

n n×

AP PAT BCiP12 P12
T Ci

TBT BDiDi
TBT+ + + + 0=

ATQ QA Q12BoC CTBo
TP12

T CTDo
TDoC+ + + + 0=
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(23)
where .

The reduced order model is then calculated by truncating
the states that are weakly controllable/observable with the
weighted input/output [11]. In mathematical terms, it again
involves partitioning the frequency-weighted balanced real-
ization [11]. It has been be proved that the error bound of the
above model order reduction method is [14]:

(24)

In the above formulaσk denotes the Hankel singular val-
ues andαk, βk denote infinity norms of the transfer func-
tions, which depend onH(s), Wo(s), Wi(s) and system
matricesAi, Ao, A. It is clear from the above formula that the
error bounds are calculated iteratively, each iteration involv-
ing evaluation of a number of infinity norms. Therefore,
these bounds have limited practical applications.

IV. A NEW NUMERICALLY STABLE
FREQUENCY-WEIGHTED BALANCED

REALIZATION WITH AN ERROR BOUND
In this section we propose a frequency-weighted balanced
truncation method that yields stable models for both single-
sided and double-sided weightings. The error bound formula
is a simple equation without a need to be updated iteratively.

From equations (21) and (22) we define the new variables
as follows:

(25)

(26)

It can be easily seen thatX andY are symmetric matrices.
As a consequence, there are orthogonal matricesU and V
and diagonal matricesS andZ such that:

(27)

(28)
whereS=diag(s1 , s2 ,.... , sn), andZ=diag(z1 , z2 ,.... , zn),
and denoting rank(X) = i and rank(Y) = j we can write:

(29)

(30)

Let and denote the solutions of the following
Lyapunov equations:

(31)
(32)

We find the transformation matrixT that simultaneously

diagonalizes  and  as follows:

(33)

The new realization is minimal because and

are positive definite [13]. SinceA is stable, an immediate

conclusion is that the pair is controllable and

is observable. As a result, the realization is min
mal. The calculations required to construct the balanci
transformation are complicated and sensitive to numeric
errors. To avoid any numerical difficulties, we use the defin
tions and techniques described in section II and obtain t
reduced order model of the RLC interconnect without ba
ancing the system.

We still need to solve the Lyapunov equations to obta
the grammians of the system. To efficiently solve th
Lyapunov equations, we make use of the ADI procedu
which is an iterative method for solving the Lyapunov equ
tion,

.
The system is first reduced to tridiagonal form with a Gaus
ian similarity transformation,Ttrid , as follows:

Reducing a matrix to its tridiagonal form requires
computations wheren is the order of the system matrix, A.
The resulting system is solved with the ADI iteration [10]:

,

 for  j = 1, 2, . . . , J

Iterative solution of the reduced Lyapunov equation
accomplished in  flops[10].

The steps to calculate the reduced order model of t
matrix transfer function is as follows:

GivenH(s), Wi(s), Wo(s) :
1. Using the ADI iteration, compute the controllability and

observability grammiansP and Q by solving the
Lyapunov equations (21) and (22).

2. Use equations (25) and (26) or to computeX andY.
3. DecomposeX and Y using eigenvalue decomposition

into and .

4. Use equations (29) and (30) to compute  and .
5. Using the ADI iteration, solve the mapped Lyapuno

equations (31) and (32) to compute  and .
6. Using the Lanczos algorithm, obtain the reduced ord

left and right eigen matrices, and , associate

with theq largest singular values of the matrix .

7. Let and compute the singular-value

decomposition of matrix .

8. Let

9. Find a transformation matrixT that simultaneously diag-

onalizes  and .

TPTT T 1–( )TQT 1– diag σ1 … σr σr 1+ … σn, , , , ,( )= =

σ1 σ2 … σn≥ ≥ ≥

Wo s( ) H s( ) Hr
k s( )–( )Wi s( ) ∞

2 σk
2 αk βk+( )σk

3 2⁄ αkβkσk+ +
k r 1+=

n

∑≤

X BCi P12 P12
T Ci

TBT BDi Di
TBT+ +=

Y Q12BoC CTBo
TP12

T CTDo
TDo C+ +=

X USUT=

Y VZVT=

B Udiag s1 1 2⁄ … si
1 2⁄ 0 … 0, , , , ,( )=

C diag z1
1 2⁄ … zj

1 2⁄ 0 … 0, , , , ,( )VT=

P̂ Q̂

AP̂ P̂AT BBT+ + 0=
ATQ̂ Q̂A CTC+ + 0=

P̂ Q̂

T P̂TT T 1–( )TQ̂T 1– diag σ1 … σr σr 1+ … σn, , , , ,( )= =

A B C, ,( ) P̂

Q̂

A B,( ) A C,( )
A B C, ,( )

AP PAT X+ + 0=

S Ttrid ATtrid
1–=

Z TtridPTtrid
T=

Xs Ttrid XTtrid
T=

O n3( )

Z0 0=

S pj I+( )Z j
1
2
---– Xs S pj I–( )Zj 1–[ ]T–=

S pj I+( )Z j Xs S pj I–( )Z j
1
2
---–

T
–=

O 12Jn2( )

USUT VZVT

B C

P̂ Q̂

VL
ˆ VR

ˆ

P̂Q̂

Ê VL
ˆT VR̂=

Ê Ê ÛEΣ̂EV̂E
T

=

ŜL V̂L ÛEΣ̂E
1 2⁄–

= ℜn q×∈

ŜR V̂RV̂EΣ̂E
1 2⁄–

= ℜn q×∈

P̂ Q̂
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10. Compute the reduced order space realization using the

matrices  and  as follows:

Theorem 2.The error of the frequency-weighted model
reduction technique is:

(34)

where  and

Proof is not given due to the lack of space.
In the case of single-sided weightings, the same -norm
error bound is obtained. Corollary 1. gives the error bound
for single-sided weightings.
Corollary 1. If the frequency weighting is applied on the
input vector only, the error bound is given by:

(35)

where . Similarly if the frequency
weighting is applied on the output vector only, the error
bound is:

(36)

where .

The input and output weightings are determined based on
the range of frequencies where we like to have the maximum
accuracy. The weighting functions should emphasize the fre-
quency ranges where more accuracy is required. Similarly
they must de-emphasize the range of frequencies where the
noise arising from the order reduction has small energy or it
is out of the desired frequency bound.

For the RLC interconnect the goal is to generate a
reduced-order model that has a small magnitude frequency
error with respect to that of the original system over a wide
range of frequencies starting from the DC frequency.

Recall that in the balanced truncation approach thek first
singular values are retained while the remaining singular
values are truncated. The truncated singular values represent
the higher frequency fluctuations of the impulse response of
the system. To have the magnitude and the phase spectrums
matched with those of the original system, the weighting
functions are normally chosen to have the high-pass fre-
quency behavior, albeit with a high bandwidth.

V.  EXPERIMENTAL RESULTS

In this section the results of applying the frequency-
weighted balanced truncation model reduction technique are
compared with those obtained by utilizing our implementa-
tions of PRIMA and the truncated balanced realization using
Vector ADI (VADI) [8]. First consider a single lossy trans-
mission line. The values of per-unit capacitances, induc-
tances and resistances are normalized. The transmission line

is modeled by 50 RLC lumped sections as depicted in Fig.
In Fig. 2., the Bode diagram of the magnitude and phase
the reduced transfer function obtained by our technique
compared with those of the VADI algorithm and PRIMA
The order of the system is reduced to 3. Clearly, our pr
posed technique yields more accurate results than the o
techniques. The input weighting function is a low-pass firs
order function:

In the second example we consider model reduction
two capacitively coupled transmission lines. The order
the reduced model is 3. The circuit is depicted in Fig. 3. Th
Bode diagram of the original system along with that of th
reduced system are shown in Fig. 4. The output weighti
function is:

ŜL ŜR

Â B̂

Ĉ D̂

ŜLAŜR ŜL
T
B

CSR D
=

L∞

Wo s( ) H s( ) Hr
k s( )–( )Wi s( ) ∞ k σi

i k 1+=

n

∑
 
 
 

≤

k Wo s( )L ∞ KWi s( ) ∞=

K diag s1
1– 2⁄ … sn

1 2⁄– 0 … 0, , , , ,( )UTB=

L CVdiag z1
1– 2⁄ … zn

1– 2⁄ 0 … 0, , , , ,( )=

L∞

H s( ) Hr
k s( )–( )Wi s( ) ∞ k σi

i k 1+=

n

∑
 
 
 

≤

k 2 KWi s( ) ∞=

Wo s( ) H s( ) Hr
k s( )–( ) ∞ k σi

i k 1+=

n

∑
 
 
 

≤

k 2 Wo s( ) L ∞=

Wi s( ) 1
s 0.4+
----------------=

Wo s( ) 10
s 0.2+
----------------=

C2 C50

L1R1 R2 L2 R50 L50

C1

Rs . . . .

Vin

Vout

Fig. 1.A two-port lumped RLC network consisting of 50 sections
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By comparing the number of flops resulting from MATLAB
simulation, the CPU-time of our algorithm is only 5% more
than that of PRIMA.

VI.  CONCLUSION
In this paper a frequency-weighted balanced truncation tech-
nique for model-order reduction of multiport RLC intercon-
nect was proposed. The method yields stable reduced order
models even when both input and output weighting func-
tions are applied. The reduced order model is computed
directly without the need to calculate a balanced realization
of the original system. The Lyapunov equations are effi-
ciently solved by Krylov-subspace based methods and an

iterative Lyapunov equation solver is presented. The pr
posed algorithm also providesa priori error bound. Experi-
mental results and comparison with truncated balanc
realization and PRIMA shows the effectiveness of ou
approach.
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Fig. 3. Two capacitively coupled RLC interconnects consisting of 20
RLC lumped sections.
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Fig. 4.The Bode diagram of the system in Fig. 2.
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