
Energy Dissipation Modeling of Lossy Transmission

Lines Driven by CMOS Inverters

Payam Heydari
Department of Electrical and Computer Engineering

 University of California
Irvine, CA 92697
Abstract - In this paper, new formulations for the energy dissipation of
lossy transmission lines driven by CMOS inverters are provided. These
formulations are obtained using an approximated expression for the driv-
ing-point impedance of lossy coupled transmission lines which itself is
derived by solving Telegrapher’s equations. A comprehensive analysis of
energy is performed for both step and flattened ramp inverter inputs. To
accomplish this task, a new stable circuit that is capable of modeling the
transmission line for a broad range of frequencies is synthesized. Experi-
mental results show that the energy calculated using this equivalent cir-
cuit is almost equal to the one calculated by solving the more
complicated transmission line equations directly.

1.  INTRODUCTION

The semiconductor industry is continually moving toward the develop-
ment and the implementation of smaller technology sizes, and as a result
enabling a host of new and powerful applications. Recent studies on the
effects caused by the nanometer technologies focus primarily on timing
and signal integrity [1]. However, only a handful of works have actually
considered the deep sub-micron (DSM) effects on the energy dissipation
of ULSI circuits [2][3]. Global interconnects dissipate a large amount of
energy that is supplied by the power-supply voltage to the circuit. The
wiring system of a one-billion transistor die will deliver signal and power
to each transistor on the chip, provide low-skew and low-jitter clock to
latches, flip-flops and dynamic circuits, and also distribute data and con-
trol signals throughout the chip [4]. Providing the required global con-
nectivity throughout the whole chip demands long on-chip wires. These
global wires should deliver high frequency signals (presently at around
1.5-2.5GHz) to various circuits. This implies that the global wires exhibit

transmission line effects. So far, the well-known model has
been used as an interconnect energy model, where C includes the capaci-
tance of the interconnect and the capacitances of the driven circuits, and
V is the voltage swing. This model, however, fails to predict the intercon-
nect energy dissipation in the current range of clock frequencies, where
the signal transients do not usually settle to a steady state value due to the
small clock periods. In paper [2], an analytical interconnect energy model
with consideration of event coupling has been proposed. Although this
work considers the crosstalk effect on the interconnect energy dissipa-
tion, it uses the distributed ladder RLC circuits to model the lossy trans-
mission line effects. In paper [5], authors showed that using distributed
RLC circuits do not capture all behaviors of lossy transmission lines that
can be captured otherwise using the transmission line equations.

In this paper, accurate expressions for the energy dissipation of inter-
connects driven by CMOS inverters are obtained under two inverter
inputs; a step input, and a flattened ramp input. The dissipated energy is
derived using an approximated expression for the driving-point imped-
ance of lossy transmission lines.

Section 2 presents a new RLC circuit configuration called RLC-π cir-
cuit, whose driving-point impedance can accurately estimate the driving-
point impedance of lossy transmission line. In section 3, the RLC-π cir-
cuit is utilized to derive the total energy dissipation of a transmission line
driven by a CMOS inverter. For the sake of completeness, the energy cal-
culation is performed for both the step input and the flattened ramp input.
Simulations and experimental results provided throughout this section
confirms the accuracy of our model. Finally, section 4 presents the con-
clusions of our paper.

2. AN ACCURATE LOWER-FREQUENCY MODEL FOR THE
LOSSY TRANSMISSION LINE

In present-day digital and mixed-signal integrated circuits, the global
on-chip interconnects must provide the required connectivity and perfor-
mance for clock rates of 1.5-2.5GHz, which is in a microwave frequency
range. This certainly demands a knowledge of electromagnetic-field the-

ory to analyze the on-chip wiring effects. A related question that arises is
whether the transmission line effects of on-chip interconnects can have
any affect on the energy dissipation. This section addresses this question
in details.

The critical global interconnections, such as clock lines, control lines,
and data buses (which can be 32-128 bits wide) between processor and
on-chip cache reach more than 100K connections. The propagation delay
of signals traveling through these global wires is comparable to the time
of flight. In other words, the line length is comparable to the propagated
signal wavelength, λ, which is on the order of 0.7-2.2cm. This implies
that transmission-line properties have to be taken into account. It was
shown in [5] that any two uniform parallel conductors, the signal and the
return paths, that are used to transmit electromagnetic energy can be con-
sidered transmission lines. The return path can be a ground plane, a
ground conductor, or a mesh of ground lines on many layers. Solutions to
Maxwell’s equations for the electric and magnetic fields around conduc-
tors are current and voltage waves. The solution is completely determined
in terms of the characteristic impedance, Zo, and the propagation con-
stant, γ. Consider a single transmission line as shown in Fig. 1.

Fig. 1. The schematic of a lossy transmission line along with the circuit representa-
tion of a differential length ∆x

The driving-point impedance of this transmission line is obtained using
the voltage and current wave equations at the input port:

(1)
where h is the line length. In the above equation, the load impedance, ZL,
is normally a capacitive load in ULSI circuits, since the interconnect nor-
mally drives a CMOS circuit whose input impedance is purely capacitive.

According to Eq. (1), the input impedance of a transmission line is a
nonlinear function of frequency. Direct substitution of this nonlinear
expression into the energy equation (which is the integral of the voltage-
current product) does not yield a closed-form expression for the energy
dissipation of the lossy transmission line. Still it is possible to simplify
Eq. (1), using some observations, and obtain an accurate expression for
the energy dissipation. If the abrupt transitions of the input waveform are
sufficiently far away in time so as to allow the circuit to come very close
to its steady-state response, then the total energy delivered by the input
source is obtained using the driving point impedance evaluated at low
frequencies. This observation is utilized here to simplify Eq. (1). As a
first step, we evaluate tanh(.) at low frequencies:

, for small values of |s| (2)

This leads to the following relationship:
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(3)

where Cint,tot is the interconnect capacitance including the Miller capaci-
tance of the neighboring lines that are capacitively coupled to this line,
and the interconnect-to-substrate capacitance.

It would be instructive if one could propose a stable circuit realization
whose impedance is expressed by Eq. (3) which is actually a rational
transfer function. For a lossy transmission line whose driving-point
impedance near the DC frequency is expressed by Eq. (3), a new stable
RLC-π equivalent circuit realization can be synthesized as demonstrated
in Fig. 2. Lint,tot is the total inductance of the lossy line including the self
and mutual inductances. The inductive couplings between transmission
lines are accounted for by an algebraic summation of each line’s self
inductance and all mutual inductances between that line and other lines
considering also the current direction flowing through the lines. For
example in a set of N coupled transmission lines, the total per unit length
inductance of the j-th line that is magnetically coupled to other lines is:

Rint is the line resistance. C1, C2, and C3 are related to actual capaci-
tances of the line and the load through the following relationships:

, ,
(4)

The input impedance of the transmission line in Fig. 2 at lower-fre-
quency ranges is:

(5)
The input impedance of the RLC-π circuit depicted in Fig. 2 is:

(6)

where represents the series combination of C2 and C3. Equating
the s coefficients of the driving-point impedance of the trans-

mission line with those of the input impedance of the proposed
RLC circuit verifies the circuit equivalence.

Fig. 2. A lossy transmission line and its equivalent RLC-π circuit representation

Fig. 3 shows the magnitude response of the driving-point admittance
of a lossy transmission line which is electromagnetically coupled to a
similar line. First, the circuit is simulated using star-HSPICE. Eq. (1) is
then utilized and the magnitude response of the admittance function
(which is the inverse of the impedance function) is calculated. As indi-
cated in Fig. 3, the results obtained by HSPICE and by Eq. (1) are exactly

the same and are indistinguishable from each other. In the next step, Eq.
(6) is utilized to calculate the magnitude response of the driving-point
admittance for the equivalent RLC-πcircuit. According to Fig. 3, this cir-
cuit accurately represents the driving-point admittance of a lossy coupled
transmission line in lower frequencies up to 670MHz (2Grad/sec). Con-
sequently, the energy calculations using the RLC-π circuit yield expres-
sions that are exactly equal to those of the actual coupled lossy line.

Fig. 3. The magnitude response of the driving point admittance of an electromag-
netically coupled lossy transmission line obtained using HSPICE simulation,

using the direct simulation of Eq. (1), and by replacing the line with its equivalent
RLC-π circuit

The RLC-π equivalent circuit synthesized for a lossy coupled trans-
mission line is used to compute the driving point impedance and inter-
connect energy calculation. The effect of the input source impedance on
the total energy dissipation is readily taken into account by connecting
the input terminal of the equivalent RLC-π to input source. Using the
equivalent RLC-πcircuit, section 3 provides a comprehensive analysis of
energy dissipation in the lossy transmission lines driven by CMOS invert-
ers.

3. ENERGY DISSIPATION OF LOSSY TRANSMISSION LINES

Consider the circuit shown in Fig. 2. that is composed of an inverter driv-
ing a lossy transmission line. The load is another CMOS gate that is con-
nected to the other port of this lossy transmission line. The
electromagnetic coupling effects are treated the same way as we dis-
cussed in section 2. Fig. 4. shows the equivalent RLC-πcircuit driven by
a CMOS inverter that needs to be analyzed. The πstructure of the RLC-π
circuit makes the impedance calculations very simple. For instance, the
diffusion and miller-effect capacitances of the driving CMOS circuits (Cd
in Fig. 4) are placed directly in parallel with the capacitance, C1 of the
RLC-π circuitry and consequently no additional calculation is required.

Fig. 4. The equivalent RLC-πcircuit model of a lossy coupled transmission
line driven by a CMOS inverter

Due to the changes in the operation regions of NMOS and PMOS
transistors of the inverter during low-to-high and high-to-low transitions
of the inverter’s output, we must distinguish between low-to-high and
high-to-low transitions. During the low-to-high transition at the output,
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the PMOS transistor is conducting and provides a low-impedance con-
duction path from the supply to the load. During the high-to-low transi-
tion at the output the NMOS transistor is in "ON" condition, and no
additional energy is transferred out of the power-supply.

We calculate the energy transferred out of the power-supply during a
low-to-high transition. This energy is the total dissipated energy per
clock period of a CMOS gate that drives another CMOS circuit through a
coupled lossy transmission line. The energy delivered by the power-sup-
ply through the gate in a low-to-high transition of the output is specified
by Eq. (7).

(7)

where iDD(t) is the current flowing from the power-supply to the output

and through the PMOS transistor during the low-to-high transition of the
output. The interconnect energy analysis is done thoroughly for two
common input waveforms: a step input, and a flattened ramp input.

3.1.    Energy calculation for a step input
Consider the circuit shown in Fig. 4, where the input to the inverter is a
step function vin(t) =VDDu(t)) (u(t) is the unit step function). Although in

reality all voltages and currents have finite slew times, addressing the
step response provides a good intuition about the transient and steady-
state response of the circuit under the realistic inputs.We calculate the
energy transferred out of the power-supply during a low-to-high transi-
tion. The current is obtained using the driving point admittance of the cir-
cuit indicated by Fig. 4:

where is the driving-point admittance seen from the power-supply

to the source connection of the PMOS transistor in Fig. 4. is the

parallel combination of , the equivalent
capacitance of the driving inverter, Cd. This equivalent capacitance is a

parallel combination of the diffusion capacitance Cdiff of MOS devices,
and the miller-effect of the gate-drain capacitances; 2(CGDp+CGDn). We

distinguish between the overdamped and the underdamped responses.
The energy delivered by the supply voltage will be derived for each of
these responses in the next two subsections.

3.1.1. Underdamped response
In the underdamped case, the voltage and current transient waveforms

oscillate toward their steady-state values. If
then the current and voltage waveforms will oscillate until they reach
their steady state value. To obtain the total energy transferred out of the
power supply Eq. (7) is used. The input current to the circuit is first
obtained by solving the characteristic differential equation of the RLC-π
circuit:

(8)

where is the equivalent capacitance of the RLC-π

circuit, , , and .
C1, C2, and C3 are given by Eq. (4). The total energy delivered by the
power-supply is:

(9)

Remember that . It is observed that if a CMOS
inverter driving a lossy coupled line undergoes an underdamped oscilla-

tory response, and if (or if

), then the energy expression
becomes:

  (10)

Equations (9) and (10) give the actual and steady-state energy dissipa-
tion per clock period, respectively, when the circuit experiences an
underdamped oscillatory transient response.

3.1.2. Overdamped response
In the overdamped case, the resistance, Rint is sufficiently large (i.e.,

) such that it eliminates the resonances from

current and voltage waveforms. Once again, to obtain the total energy
transferred out of the power supply using Eq. (7), the input current to the
circuit is first obtained by solving the characteristic differential equation
of the RLC-π circuit:

(11)

where . The total energy delivered by the power-sup-
ply for the overdamped transient response is:

(12)

It turns out that if a CMOS inverter driving a lossy coupled line has an

overdamped response, and if , then the energy dis-
sipation per each clock period becomes:

 (13)

Equations (12) and (13) give the actual and the steady-state energy
dissipation per clock period, respectively, when the circuit experiences an
overdamped transient response.

3.2.    Energy calculation for a flattened ramp input
Let us consider the circuit shown in Fig. 4 under a flattened ramp input

. In this case, the operating
regions of the conducting transistors change during the input transition.
This change in the operating regions of the transistors makes the analysis
cumbersome. To simplify the formulations, two important observations
are taken into account. First of all, in deep submicron regime short chan-
nel effects including velocity saturation can have a drastic influence on
ID-VDS characteristics of a MOS transistor. Most notably, the saturation is

achieved at smaller values of VDS. Secondly, for the fast input ramp, the

conducting transistors operate in the linear region for a large portion of
the time [6]. As a result, we assume that a conducting transistor will be in
the linear region for the entire input transition.

Once again the energy transferred out of the power supply during a
low-to-high transition is calculated. The driving current of the RLC-π
circuit under a flattened ramp input is:

(14)

Similar to the step input, we distinguish between the overdamped and
underdamped outputs and for each output response derive the energy.

3.2.1 Underdamped response

Similar to the step input case, if then cur-
rent and voltage will experience a damped oscillatory waveform. To cal-
culate the current expression, the input is expressed as an algebraic
summation of two ramp inputs, where the one of the ramp waveforms is a
delayed version of another one. The circuit response is obtained for one
input ramp. The response to the delayed ramp input is obviously the
delayed version response to the first ramp. Omitting the details of mathe-
matical calculations, the output current response is as follows:

(15)

where:

u(t)

(16)
In the energy expression given by Eq. (7), the current iDD is substi-

tuted by equations (15) and (16). The total energy transferred out of
supply voltage is thus equal to:

(17)

where

(18)

Here it can be easily verified that if the natural resonant frequency
of the RLC-π equivalent circuit is larger than the clock frequency,
then the voltage and current waveforms reach their steady-state val-
ues and Eq. (17) becomes:

 (19)
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3.2.2 Overdamped response
Similar to the step input case, if the interconnect resistance is suffi-

ciently high so that , the current and voltage
waveforms will be in the form of decaying exponential waveforms under
a flattened ramp waveform at the inverter input.

Once again, the current waveform is an algebraic summation of two
ramp inputs, where one of the ramp waveforms is a delayed version of
another one:

(20)

where

u(t)

(21)
The total energy transferred out of supply voltage is thus equal to:

where

If a CMOS inverter driving a lossy coupled line has an overdamped

response, and if , then the energy dissipation per
each clock period becomes:

 (22)

In the energy calculations of interconnects driven by CMOS circuits,
it was normally assumed that transients in the current and voltage wave-
forms have been settled to steady state values and the energy was thus

simply equal to . We showed that this expression can yield
quite an inaccurate result for the dissipated energy of the interconnect in
high frequency ULSI circuits. Figures 5 and 6 show that modeling a
lossy transmission line with a single RLC circuit do not still provide
accurate results for the dissipated energy in both underdamped and over-
damped cases. These figures show the dissipated energy of a single lossy
transmission line for various line lengths when the line is modeled by the
RLC-πcircuit and compare it with that obtained using a single RLC cir-
cuit. For small clock cycles, the RLC circuit model is unable to give a
good energy estimate. This is true for both overdamped and under-
damped circuits. Figures 5 and 6 also reveal that for both underdamped
and overdamped circuits when the clock cycle time is sufficiently long,
the results obtained by energy calculations in RLC and RLC-π circuits

are both closely equal to .

Fig. 5. A comparison between the energy-length variation of the equivalent under-
damped RLC-π circuit and that of single underdamped RLC circuit of a lossy

transmission line. The comparison has been made for two values of cycle time, T
= 1nsec and T = 80nsec

Fig. 6. A comparison between the energy-length variation of the equivalent over-
damped RLC-π circuit and that of single overdamped RLC circuit modeling a
lossy transmission line. The comparison has been made for two values of cycle

time, T = 1nsec and T = 0.9µsec

4. CONCLUSION

This paper presented accurate closed-form expressions for the intercon-
nect energy dissipation in high-speed ULSI circuits. The energy was cal-
culated using an approximate expression for the driving-point
impedance of a lossy transmission line. We synthesize a new stable cir-
cuit that is capable of modeling the transmission line for a broad range of
frequencies. A comprehensive analysis was incorporated to derive the
dissipated energy of a lossy transmission line under the two different
inputs; a step input, and ramp input. Several experimental results show
that the energy calculated using this circuit is almost equal to the one cal-
culated by directly solving the complicated transmission line equations.
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