A MIMO CHANNEL PERTURBATION ANALYSIS FOR ROBUST BIT LOADING

Michael D. Larsen
Brigham Young University
Provo, Utah 84606

A. Lee Swindlehurst
University of California, Irvine
Irvine, California 92697

ABSTRACT
In narrowband multiple-input multiple-output (MIMO) communication systems, when the channel state information (CSI) is known perfectly at the transmitter and the receiver, techniques such as waterfilling may use the singular value decomposition to separate the MIMO channel into independent single-input single-output subchannels. The signal-to-noise ratios of these subchannels are easily found, and, therefore, so are the subchannel bit allocations. In practice, perfect CSI is difficult to obtain. Imperfect CSI results in subchannel coupling and co-channel interference. In this paper, simple first-order expressions are presented for the signal and interference/noise powers for each subchannel for the imperfect CSI case. These expressions may be used to obtain more realistic subchannel bit allocations, allowing for fewer channel outages. Numerical simulations demonstrate the applicability and usefulness of the derived expressions.

Index Terms—MIMO systems, Singular value decomposition, Resource management, Approximation methods

1. INTRODUCTION
Given perfect channel state information (CSI) at the transmitter and receiver of a multiple-input multiple-output (MIMO) communications link, techniques such as waterfilling may be employed to increase throughput given a fixed transmission power by using the singular value decomposition (SVD) to separate the MIMO channel into independent single-input single-output channels, enabling interference-free data multiplexing [1, 2]. If the statistics of the measurement noise is known at each receive antenna, it is straightforward to use the power and noise levels at each subchannel to select symbol constellations to meet particular probability of error requirements [3].

Unfortunately, it is not possible in practice to obtain perfect CSI since realizable channel estimates are formed from noisy measurements. Mobility in the communication system poses an additional challenge, since the MIMO channel changes rapidly when the transmit or receive arrays are in motion. When noisy or outdated CSI is used, the MIMO subchannels become coupled resulting in subchannel power loss and interference. As a result, subchannel bit-loading levels selected using the signal and noise powers of the perfect CSI assumption may no longer meet required probability-of-error levels. In order to meet these error performance constraints, the bit loading of the subchannels may need to be reduced from the perfect-CSI levels. However, without knowledge of the power levels of the signal loss and interference induced by the subchannel coupling, it is not clear how to systematically carry out such reductions.

In this paper, we develop first-order closed-form expressions for the subchannel signal and interference powers when using imperfect CSI in SVD-based signalling schemes. These expressions allow us to (1) analyze the impact of imperfect CSI on the MIMO SVD subchannels and (2) systematically select more robust bit-loading schemes when the CSI is known to be noisy or outdated. The derivations are based on the first-order SVD perturbation analysis in [4]. Unlike previous SVD perturbation studies [5, 6], the expressions presented in [4] account for the effects of the subchannel interferences between singular vectors within the signal subspace, allowing us to carry out our analysis.

The remainder of this paper will proceed as follows. In Section 2, we present the MIMO channel and signalling model. First-order expressions for the channel and interference powers are then derived in Section 3. Section 4 relates the model and derivations in the previous sections with a physical model describing array motion. In Section 5, simulations demonstrate the accuracy of the derived expressions and their usefulness when applied to the bit-loading problem.

2. FIRST-ORDER SIGNAL MODEL
Consider the following narrow-band MIMO SVD-based signalling scheme:

\[y = U_s^H \left[(H + \Delta H)V_s P \mathbf{x} + n \right]. \tag{1} \]

The matrix \(H \) is the \(N_r \times N_t \) MIMO channel as known at the transmitter and receiver and \(H + \Delta H \) is the actual MIMO channel encountered during transmission of the data vector \(\mathbf{x} \).
The matrix H has the following singular value decomposition (SVD):

$$
H = U_s \Sigma_s V_s^H + U_n \Sigma_n V_n^H.
$$

(2)

The matrices U_s and V_s contain as columns the singular vectors corresponding to the nonzero singular values of H. If we assume there are F nonzero singular values, then U_s is $N_s \times F$, V_s is $N_s \times F$, and Σ_s is an $F \times F$ diagonal matrix with the nonzero singular values on the diagonal. In a like manner, U_n and V_n contain the singular vectors corresponding to the zero-valued singular values and Σ_n is a zero matrix. The matrix P is a real-valued $F \times F$ diagonal power-loading matrix whose entries determine the signal power given to the unit-norm elements of x. The vector n is zero-mean measurement noise. The perturbed (actual) channel $H + \Delta H$ has the subspace decomposition

$$
H + \Delta H = (H + \Delta H)_s + (H + \Delta H)_n
$$

(3)

where

$$(H + \Delta H)_s = (U_s + \Delta U_s)(\Sigma_s + \Delta \Sigma_s)(V_s + \Delta V_s)^H$$

(4)

and $(H + \Delta H)_n$ is defined in a like manner. We assume that the perturbations to singular vectors are orthogonal to the singular vectors themselves, e.g., $\Delta u_f \perp u_f$, where u_f is the f-th column of U_s and Δu_f is defined in a like manner. Inserting (3) into (1) and dropping higher-order terms, we find

$$
y \approx \left[\Sigma_s + \Delta \Sigma_s + Q_1 \Sigma_s + \Sigma_s Q_2^H \right] P x + U_n^H n
$$

(5)

where $Q_1 = U_s^H \Delta U_s$ and $Q_2 = \Delta V_s^H V_s$. If we assume that the perturbation ΔH is small enough (see [4]), then we may use the formulation in [4] to write Q_1, Q_2, and $\Delta \Sigma_s$ in terms of the SVD of H and the perturbation ΔH. That is,

$$
Q_1 = D \circ (U_s^H \Delta H V_s + \Sigma_s V_s^H \Delta H V_s) U_s
$$

(6)

$$
Q_2 = D \circ (V_s^H \Delta H U_s + \Sigma_s U_s^H \Delta H V_s)
$$

(7)

$$
\Delta \Sigma_s = \text{diag}(\Delta \sigma_1, \Delta \sigma_2, \ldots, \Delta \sigma_F)
$$

(8)

where \circ is the element-wise, or Hadamard, product, matrix,

$$
|D|_{fg} = \begin{cases}
(\sigma_g^{-2} - \sigma_f^{-2})^{-1}, & f \neq g \\
0, & f = g
\end{cases}
$$

(9)

and

$$
\Delta \sigma_f = \frac{1}{2} (u_f^H \Delta H v_f + v_f^H \Delta H^H u_f).
$$

(10)

Note that in (5), the diagonal term $\Sigma_s + \Delta \Sigma_s$ corresponds to the signal portion of the overall channel while the term $Q_1 \Sigma_s + \Sigma_s Q_2^H$, which has a diagonal of all zeros, corresponds to the interference portion of the equivalent channel.

3. DERIVATION OF THE SINR

Given the first-order expression for our SVD-based MIMO signalling scheme in (5), we now proceed to derive per-subchannel signal and interference power expressions. Assume distributions on x and ΔH such that x and ΔH are independent, x is zero mean with covariance C_x, and ΔH is zero-mean circular-symmetric complex Gaussian with covariance $C_{\Delta H}$. Let y_{si} be the i-th element of the signal portion of y and e_i be the i-th column of the identity matrix. Then the average signal power at the i-th receive antenna is given by

$$
P_{s,i} = E[y_{si} y_{si}^*]
$$

(11)

$$
= E[|e_i^H(\Sigma_s + \Delta \Sigma_s)P x|^2]
$$

(12)

$$
= E[(\Sigma_s + \Delta \Sigma_s)P C_s \Sigma_s (\Sigma_s + \Delta \Sigma_s)^H]_{ii}
$$

(13)

where Σ_f indicates the (f,g)-th element of Σ. Note that $E[\Delta \Sigma_i] = 0$ since $E[\Delta H] = 0$ by assumption, leading to (13). Let $S = \Sigma_s \Sigma_s^H \Sigma_s^H$. Using (10) and the circular symmetry of ΔH, we find after a little manipulation that

$$
2|S|_{ii} = [PC_s P_i] E[|u_i^H \Delta H v_i|^2]
$$

(14)

$$
= [PC_s P_i] E[(v_i^T \otimes u_i^H)\text{vec}(\Delta H)]^2
$$

(15)

$$
= [PC_s P_i] E[(v_i^T \otimes u_i^H)C_{\Delta H}(v_i^* \otimes u_i)]
$$

(16)

where \otimes is the matrix Kronecker product operator and vec(A), the vectorization operator, stacks the columns of A. Equations (13) and (16) together give us $P_{s,i}$. If $C_{\Delta H} = \sigma_{\Delta}^2 I$ and $C_x = I$, then this reduces to

$$
P_{s,i} (\sigma^2_i + \frac{\sigma_H^2}{2})|P|_{ii}^2.
$$

(17)

In a similar manner as above, the interference and noise power on the i-th subchannel maybe written as

$$
P_{I,i} = E[|e_i^H(Q_1 \Sigma_s + \Sigma_s Q_2^H)P x|^2]
$$

(18)

$$
+ E[|e_i^H U_n^H n|^2]
$$

(19)

$$
= E\left[Q_1 \Sigma_s \Sigma_s P C_s \Sigma_s Q_2^H
$$

(20)

$$
+ 2\text{Re}(Q_1 \Sigma_s \Sigma_s P C_s \Sigma_s Q_2^H)
$$

(21)

$$
+ \Sigma_s Q_2^H P C_s \Sigma_s |u_i| + u_i C_n u_i
$$

(22)

$$
= E[a_{1,i} + 2\text{Re}(a_{2,i} + a_{3,i}) + u_i^H C_n u_i]
$$

(23)

where C_n is the measurement noise covariance. Note that matrices Q_1 and Q_2 are skew symmetric. Using this property, the circular symmetry of ΔH, and properties of the trace, we find after some manipulation that

$$
E[a_{1,i}] = \text{tr} [N_{1,i}|(\Sigma_s^2 P C_s \Sigma_s^2)] + \sigma_x^2 |N_{0i}|
$$

(24)

$$
E[a_{2,i}] = -\text{tr} [N_{2,i}|(\Sigma_s^2 P C_s P)] - \sigma_x^2 |N_{0i}|
$$

(25)

$$
E[a_{3,i}] = \text{tr} [N_{3,i}|(P C_s P)] + \sigma_x^2 |N_{0i}|
$$

(26)
and $[N_{1,i}]_{fg} = [N_{2,i}]_{fg} = [N_{3,i}]_{fg} = 0$ if $f = i$ or $g = i$. The expression for N_0 is more involved, but the diagonal elements are real-valued. Therefore, N_0 does not appear in the final expression of $P_{IN,i}$, so we do not include it here. With (21)-(26), we now have an expression for $P_{IN,i}$. If $C_{\Delta H} = \sigma_H^2 I$, $C_x = I$, and $C_u = \sigma_u^2 I$, then this reduces to

$$P_{IN,i} = \sigma_H^2 \sum_{f=1}^{F} |P|^2_{ff} + \sigma_n^2, \quad (27)$$

Together, (17) and (27) constitute a first-order average signal-to-interference-and-noise ratio (SINR) approximation.

4. THE GAUSS-MARKOV MODEL

When the source of the CSI imperfection is motion, it may be instructive to relate the average power of the perturbation ΔH to physical parameters describing the array motion. A simple example of doing so involves use of a Gauss-Markov fading channel model [7], where the current channel H_t is related to a reference channel H_{t-r} according to the following first-order auto-regressive (AR) model

$$H_t = \sqrt{\alpha_r} H_{t-r} + \sqrt{1-\alpha_r} E_t \quad (28)$$

where E_t is independent of H_{t-r} with $\text{vec}(H_{t-r}), \text{vec}(E_t) \sim \mathcal{CN}(0, I)$ and $0 \leq \alpha_r \leq 1$. The parameter α_r may be related to the physical propagation environment by matching it to the second-order statistics associated with an appropriate propagation model. For example, when using Jakes’ channel model [8], it is shown in [7] that α_r may be chosen as

$$\alpha_r = J_0(2\pi f_d T_s)^2 \quad (29)$$

where $J_0(\cdot)$ is the zeroth-order Bessel function of the first kind, $f_d T_s$, f_d is the maximum Doppler frequency in the fading environment, and T_s is the sampling period. It is straightforward to connect the model in (28) with that used in Section 2. Following this connection through the derivations in Section 3, we find

$$P_{s,i} = \left(\alpha_r \sigma_t^2 + \frac{1-\alpha_r}{2} + \frac{\sigma_{H,n}^2}{2}\right) |P|^2_{ii} \quad (30)$$

$$P_{IN,i} = \left(1-\alpha_r + \sigma_{H,n}^2\right) \sum_{f=1}^{F} |P|^2_{ff} + \sigma_n^2 \quad (31)$$

where $\sigma_{H,n}^2$ is the channel perturbation variance due to the measurement noise.

5. NUMERICAL RESULTS

The expressions in (17) and (27) (or (30) and (31)) are first order in the channel perturbations. We begin our numerical simulations by investigating the accuracy of these expressions through simulation. This will be done by comparing our average first-order subchannel SINR approximations with SINR values generated through Monte Carlo methods. In particular, we assume a 4×4 MIMO channel H selected such that $\text{vec}(H) \sim \mathcal{CN}(0, I_{16})$. The waterfilling solution is used to select the subchannel power levels, and we assume a measurement noise variance of -20 dB relative to unity. Using this setup and the power and interference expressions given above, we find SINR values for the first three MIMO sub-channels for several different channel perturbations, and compare these results to those generated through Monte Carlo methods assuming $\text{vec}(\Delta H) \sim \mathcal{CN}(0, \sigma_H^2 I)$. The results of this simulation, averaged over 1000 channel realizations, are displayed in Fig. 1. It is clear from these results that the proposed first-order expressions provide SINR estimates with good accuracy, even for channel channel perturbations on the same order as the channel itself.

One possible application of these first-order power and interference expressions is the problem of subchannel bit loading, which we explore in the next simulation. Consider the task of subchannel bit loading using the power levels dictated by the waterfilling solution. To ensure reliable communication, we require that the symbol error rate (SER) of each subchannel remain below an SER threshold of 0.01. If a subchannel exceeds that level, we say a channel outage has occurred. Assuming a similar simulation setup as above and using the QAM constellations and SER expressions in [3], constellations sizes are chosen that result in BER-constraint-meeting bit rates. Note that a margin of safety is included when determining the constellation sizes to prevent excessive outages. When bit loading using the power levels given by waterfilling, we expect high bit rates, but a large number of outages may occur when the CSI is poor.

![Fig. 1. A comparison of the 1st-order subchannel SINR approximation with Monte Carlo SINR results.](image-url)
To reduce the number of outages, we propose an informed bit-loading method that assigns bits based upon knowledge of the channel perturbation power and the expressions in (17) and (27). If a subchannel cannot support any bits, the waterfilling power levels are modified so that the subchannel’s allocated power will be redistributed to the other subchannels proportionally. Figure 2 compares outage probabilities (determined through Monte Carlo simulation) of waterfilling for the uninformed and informed bit-loading strategies over a range of motion-related channel perturbation powers. Also included are results for beamforming using the dominant left and right singular vectors with perturbation-aware bit loading. The initial outage levels on the left of the plot are a result of measurement-noise-induced channel perturbations, and the outage percentages change as motion-induced perturbations increase. The outage level of informed bit loading eventually decreases, approaching that of beamforming, as this method reduces to the beamforming solution. It is clear that the informed bit loading method results in significantly lower outage percentages than the uninformed method realizes.

If we assume bits corresponding to outages are lost, we may plot the effective average bits per transmission of the bit-loading schemes. Figure 3 compares the average bits per transmission of waterfilling using both uninformed and informed bit loading, and beamforming, for a range of channel perturbation powers. In the figure, waterfilling with informed bit loading demonstrates better overall throughput than the uninformed method over a wide range of channel perturbation powers. This improved performance is made possible by the proposed subchannel power and interference expressions. The results also indicate what level of channel estimation inaccuracies is tolerable before beamforming should replace our data multiplexing schemes. This is another benefit of our analysis.

6. REFERENCES