
Tensor Product Based Subspace Interference
Alignment for Network Coding Applications

Viveck R. Cadambe, Syed A. Jafar†

Abstract— In this paper, we develop an interference alignment
framework for multi-source (non-multicast) network coding ap-
plications. The framework developed here is based on using a
tensor product structure for the network coding matrices at nodes
in a network. The framework is presented in this paper in the
specific context of exact repair for distributed storage, which is a
multi-source network coding application. Using this framework,
we generalize previously known MDS codes with optimal exact
repair in distributed storage.

I. INTRODUCTION

Interference Alignment has emerged as a fundamental
technique to manage interference in multi-source network
capacity problems in information theory. Among the various
tools associated with interference alignment, the technique of
asymptotic interference alignment [1] has had a particularly
profound impact. The technique has been applied to various
wireless settings including the interference channel [1]–[3],
the X channel [4], and the compound broadcast channel
[5]. In each of these networks, the technique of asymptotic
interference alignment achieves the optimal number of degrees
of freedom (a capacity approximation). A key requisite of the
technique is the existence of diagonal channel gain matrices
over which alignment is performed. Diagonal channel matrices
are obtained in wireless communication scenarios by grouping
multiple input and output symbols together, treating each of
these groups as a vector (super-symbol), and coding over these
vectors. As the size of the super-symbols increase, the size of
the diagonal matrices increase and the extent of alignment
increases. In the limit of arbitrarily large symbol extensions,
the extent of alignment is “maximum” and hence achieves
degrees of freedom in the given wireless network. (See [6] for
a tutorial).

Recently, the technique of interference alignment has been
interpreted as a technique for network coding (albeit not ran-
dom). This interpretation led to the observation that interfer-
ence alignment plays a significant role in the multi-source non-
multicast wireline network capacity problems. Multi-source

†Dr. Viveck R. Cadambe is a joint postdoctoral fellow with the Research
Lab of Electronics at Massachusetts Institute of Technology, and the Electrical
& Computer Engineering Department at Boston University. Prof. Syed A. Jafar
is with the Electrical Engineering and Computer Science Department at the
University of California, Irvine, CA 92617, USA. The authors can respectively
be contacted at viveck@mit.edu and syed@uci.edu

non-multicast wireline network capacity is a classical open
problem in network information theory with applications to
distributed storage, peer-to-peer networks, and content distri-
bution over the internet (see for instance, [7], [24]). For this
class of problems, the technique of asymptotic interference
alignment has been applied in two contexts. First, it has been
applied to multiple unicasts in a class of (wireline) networks in
[8], [9]. Second, it has been applied to the exact repair problem
in distributed storage [10], which is in turn, a specific non-
multicast (wireline) network communication scenario. The ap-
proach of these references can be broadly described as follows.
In a network, if all the nodes apply vector linear network
coding, then outputs at the destinations of the network can be
expressed as linear transformations of the input, much like a
wireless channel. If the nodes use random diagonal matrices
for network coding, then the transformation from the sources
to the destinations are indeed random diagonal matrices. This
approach thus paves the way for aligning interference using
asymptotic interference alignment.

While linear network coding enables us to inherit techniques
from wireless networks into wireline networks (and vice-versa,
see [11], [12]), there is one fundamental difference between
wired and wireline networks. In wireless networks, the linear
transformation which represents the channel matrices are given
by nature and hence cannot be controlled (to a large extent).
In contrast, in wired networks, linear transformations are a
function of the coding matrices which are design parameters.
This means that the structure of the end to end channel matri-
ces can be controlled (to the extent allowed by the topology
of the network graph). The canonical wireline network coding
application where this difference is especially highlighted is
exact repair in distributed storage systems [10], [13]–[20].
Specifically, in these references, this extra control offered by
the network coding application is exploited to create finite non-
asymptotic alignment schemes without sacrificing the extent to
which interference is aligned. This is in contrast with wireless
communications where, in general, asymptotic alignment is
necessary; limiting the size of the symbol extension (i.e.,
super-symbol) in wireless communications strictly limits the
extent to which interference can be aligned [1], [21]–[23].
The ability to control the linear transformations in wireline
network communication scenarios spawns a need to under-



stand end-to-end linear transformations which are suitable for
interference alignment. In this paper, we make progress in this
context by developing a systematic approach to linear network
code design in wireline networks to enable (non-asymptotic)
interference alignment using a finite number of dimensions.
We will particularly focus on the canonical problem of exact
repair in distributed storage for exposition of our techniques
and demonstration of its impact. We next explain the problem
of exact repair.

II. EXACT REPAIR IN DISTRIBUTED STORAGE

Consider k sources to be stored in a distributed storage
system having n equal-capacity storage nodes. All k sources
are assumed to be of equal size L = M/k over a field Fq of
size q. Source i ∈ {1, 2, . . . , k} is represented by the L × 1
vector ai ∈ FL

q . Note here that M denotes the size of the
total information stored in the distributed storage system, in
terms of the number of elements over the field1. There are n
nodes, each with a storage capacity of size L. The data stored
in the n storage nodes can be interpreted as an (n, k) code of
the k source symbols. Each node stores data of size L, i.e.,
each coded symbol of the (n, k) code is a L× 1 vector. The
data stored in node i is represented by L×1 vector di, where
i = 1, 2, . . . , n. We assume that our code is linear so that di

can be represented as

di =

k∑
j=1

Ci,jaj ,

where Ci,j are L × L square matrices. Further, we restrict
our codes to have a systematic structure, so that, for i ∈
{1, 2, . . . , k},

Ci,j =

{
I j = i
0 j 6= i

}
.

If the code storing the data is maximum-distance-separable
(MDS), then, any k storage nodes can reconstruct all the k
sources a1,a2, . . . ,ak. Thus, an MDS code can protect against
a failure of up to (n − k) nodes. In this paper, we restrict
our study to MDS codes, though the reader may note that
most techniques developed here do not critically rely on the
MDS property (though any claims of optimality rely on this
property.) Therefore, we also do not focus on proving the
MDS property of our codes. Such a proof may be found in
the extended version of this paper [26].

The problem of interest here is the efficiency of repair when
storage nodes fail. In this paper, we restrict ourselves to a
single node failure. Further, we restrict ourselves to the case
of failed systematic nodes. Now, when a single (systematic)

1Note that we assume that L,M are parameters of choice. This is a valid
assumption for large amounts of information, since a large source can be split
into several blocks, each of size L. Each block can be coded separately using
our constructions.

node, say node 1 fails, the goal is to reconstruct the failed data,
i.e., a1. A trivial strategy is to access any k nodes among
d2,d3, . . . ,dn and reconstruct a1. This is indeed possible
because of the MDS property. The repair bandwidth with this
repair strategy is equal to kL, since a total of k nodes are
downloaded. The exact repair problem aims to improve the
efficiency of this trivial repair strategy, and aims to construct
codes with the minimum possible repair bandwidth. For the
case considered, the solution of the exact repair problem is
that the minimum repair bandwidth for an (n, k) MDS code
is (n−1)L

n−k . Note that this repair bandwidth is smaller than
kL implying that for any (n, k) the trivial repair strategy
can improved through efficient code construction and repair
strategies. The lower bound was shown using the cut set
bound in [24] and the upper bound was shown through an
asymptotic alignment based code construction in [10]. The
latter reference constructed codes which achieve the minimum
repair bandwidth in the limit of L→∞. Following this result,
explicit finite (non-asymptotic) codes achieving this minimum
bandwidth of (n−1)L

n−k have been found in [16], [18], [19]. In
this paper, we unify the approaches of [16], [18], [19] through
a tensor product based subspace alignment framework. The
tensor product based subspace alignment framework derived
here is inspired by its first use for cellular networks in [25].
For ease of exposition, we restrict ourselves for the special
case of n = k + 2. Due to space constraints, the extension
of our codes to arbitrary (n, k) and details of the proofs are
omitted. Here, we focus on conveying the overview and the
intuition of the approach. The omitted details can be found in
the extended version of this paper [26]. We begin by describing
an outline of an optimal repair strategies for (n = k + 2, k)
MDS codes - the solutions of [16], [18], [19] fall within this
outline.

Consider the case where a single systematic node, node
i ∈ {1, 2, . . . , k}, fails. The goal of repair is to construct
di using the data in the surviving nodes {dj : j 6= i}.
For repair, Vidj is downloaded by the new node from node
j ∈ {1, 2 . . . , n} − {i} where Vi is L

2 × L matrix. Note that
this strategy downloads a fraction of 1

2 from each surviving
node so that the total repair bandwidth is L(n−1)

2 as required.
The linear combinations downloaded are of two types listed
below.

1) The data downloaded from the surviving systematic nodes
j ∈ {1, 2, . . . , k} − {i} contain no information of the
failed node ai, i.e.,

Vidj = Viaj , j ∈ {1, 2, . . . , k} − {i}.
Note that there L

2 such linear combinations of each
interfering component aj , j ∈ {1, 2, . . . , k} − {i}.

2) From each of the 2 parity nodes, L
2 linear combinations

are downloaded. Therefore, a total of L linear combina-
tions are downloaded from all the parity nodes. The L



components of ai have to be reconstructed using these L
linear combinations of the form Vidj , j = k + 1, k + 2.
For successful reconstruction of ai, the interference terms
associated with aj , j ∈ {1, 2, . . . , k} − {i} contained in
these linear combinations need to be cancelled completely
(See Fig.1)

The goal of our solution will be to completely cancel the in-
terference from the second set of L linear combinations, using
the former set of linear combinations, and then to regenerate
a1 using the latter L interference-free linear combinations (See
Fig. 1).

In our solution the coding sub-matrices associated with
the first parity node are all (scaled) identity matrices, i.e.,
Ck+1,i = λiIL for i = 1, 2, . . . , k where λi is a scalar over
the field Fq , so that

dk+1 =
k∑

i=1

λk+1,iai

Further, we denote Ck+2,i = Hi so that

dk+2 =

k∑
i=1

Hiai

While the above simplifications are restrictive, it turns out
that they suffice to construct MDS codes for optimal repair.
The simplifications help by revealing an interesting structure
to the alignment constraints which are then solved by a tensor
product based framework. With the above simplification, the
L linear combinations downloaded from the two parity nodes
can be expressed as

Vidk+1 =

k∑
j=1

λjViaj (1)

Vidk+2 =

k∑
j=1

ViHjaj . (2)

Note that we intend to completely cancel the impact of aj
using Viaj . To do this, we need

rowspan(ViHj) = rowspan(Vi), j ∈ {1, 2, . . . , k} − {i}(3)

This ensures the desired interference alignment which hence
ensures cancellation. After interference cancellation, we are
left with L linear combinations of ai of which L/2 are of the
form λiViai and the remaining L/2 are of the form ViHiai.
To ensure that repair is successful, we need to ensure that ai
is linearly resolvable from these L linear combinations. To do
so, we need to ensure that

rank
[

Vi

HiVi

]
= L, i = 1, 2, . . . , N(4)

⇒ rowspan(Vi) ∩ rowspan(ViHi) = {0} (5)

for i = 1, 2, . . . , k
Thus, the goal is to find matrices Hi such that (3) and (5)

are satisfied. Before proceeding, it is worth noting that as k
increases, the problem becomes more and more constrained. In
other words, if we have a solution to (3) and (5) for, say k = 3,
then this automatically implies a solution for k = 2 but not
vice-versa. For this reason, the problem was solved for k = 2
in [13] and only recently [10], [16], [18], [19] for an arbitrary
value of k. Also note the similarities of the required constraints
to the interference channel in [1]. This similarity was indeed
exploited in [10] which used random diagonal matrices for Hi

mimicking the wireless context. The reference then chose Vi

using the asymptotic alignment technique. Here, we provide a
tensor product based framework to solve this problem using
a finite number of dimensions (i.e., for a finite value of L).
For ease of exposition, we only focus on the case where k =
3, n = 5 here. The solution for arbitrary values of k and n =
k + 2 is very similar to the case where k = 3.

III. TENSOR PRODUCT BASED SUBSPACE ALIGNMENT

The following lemma is a key observation in our devel-
opment. In the lemma, the notation ⊗ is used to denote the
Tensor (Kronecker) product between matrices.

Lemma 1: Let H = G1 ⊗G2 ⊗ . . . ⊗Gr. Also let V =
U1⊗U2⊗. . .⊗Ur, where the matrix product UiGi is defined.
Then,

•

rowspan(VH) = rowspan(V)

if and only if

rowspan(UiGi) = rowspan(Ui),∀i = 1, 2, . . . , r.

•

rowspan(VH) ∩ rowspan(V) = {0}
if ∃i ∈ {1, 2, . . . , r} s.t.

rowspan(UiGi) ∩ rowspan(Ui) = {0}
where 0 is used to denote the row vector of zeroes (of
the appropriate dimension).

An overview of the proof of the lemma is placed in the
appendix. A complete proof can be found in the extended
version of this paper [26]. The first property of the above
lemma is useful to ensure alignment, i.e., ensure relations of
the form (3). The second property listed in the lemma is useful
to ensure relations of the form (5).

To see this, consider the special case where k = 3. We fix
L = 23 = 8. Let us focus on the constraints associated with
V1 alone. We need

rowspan(V1H2) = rowspan(V1H3) = rowspan(V1)

and
rowspan(V1H1) ∩ rowspan(V1) = {0}



V1d2 = V1a2

V1d3 = V1a3

V1d4 = V1C4,1a1 +V1C4,2a2 +V1C4,3a3

d1

d2

d3

d4

d5

V1d5 = V1C5,1a1 +V1C5,2a2 +V1C5,3a3
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Fig. 1. Repair of first node for n = 5, k = 3. Equation (3) ensures that interference cancellation is possible. Equation (5) ensures that a1 can be reconstructed.

Suppose that V1 = U1 ⊗ I ⊗ I where U1 is a 1 × 2 matrix
and I is a 2× 2 identity matrix. Also, suppose that

Hi = Hi,1 ⊗Hi,2 ⊗Hi,3

where Hi,j are all 2 × 2 matrices. We now need
rowspan(V1H2) to be equal to the rowspan of V1. To
ensure this, the lemma stated above implies that we
need rowspan(U1) = rowspan(U1H2,1). Similarly, we
need rowspan(U1) = rowspan(U1H3,1). To ensure that
rowspan(V1) ∩ rowspan(V1H1) = {0}, it is sufficient to
ensure that rowspan(U1)∩rowspan(U1H1,1) = {0}. Note that
all these constraints can be satisfied, for example, by setting

U1 = (0 1) ,

H2,1 = H3,1 = I

H1,1 =

(
0 1
1 0

)
.

In other words, with a tensor product structure imposed on
all encoding and repair matrices, all the constraints necessary
for recovery of the first node a1 can be satisfied by choosing
the first factor of the tensor products carefully. Similarly,
by careful manipulation of the second factor of the tensor
products, the repair of a2 can be ensured. The third factor can
be used to ensure repair of a3. Thus, one set of solutions for
the required problem is

H1 = G⊗ I⊗ I,V1 = U⊗ I⊗ I

H2 = I⊗G⊗ I,V2 = I⊗U⊗ I

H3 = I⊗ I⊗G,V3 = I⊗ I⊗U

where, G is a 2 × 2 matrix and U is a 1 × 2 matrix chosen
such that rowspan(UG) ∩ rowspan(U) = {0}. Indeed, the
solutions of [16], [18], [19] all have the above form! Further,

a careful understanding of this procedure can lead to more
general solutions for both the case of n = k + 2 and for
arbitrary (n, k) as well (See [26].).

IV. DISCUSSION

In this paper, we described a tensor product based alignment
framework to achieve interference alignment using a finite
number of dimensions. The framework provides a systematic
approach to satisfy a set of alignment conditions, if they have
a certain form. In particular, we use a tensor product of k
matrices as the network coding matrices. The k0th factor of
the tensor product suffices to ensure the necessary alignment
constraints for the k0th message in the application considered.
Lemma 1 provides a guideline to aligning interferers using
this tensor product framework. The technique developed in
this paper motivates several questions.

• A question of interest is whether this framework is as
powerful as asymptotic interference alignment, in terms
of the extent of alignment. For instance, the framework
developed here only deals with repair of systematic
nodes. It is not clear whether this approach leads insights
into design of codes with optimal parity repair. It is worth
noting that asymptotic alignment based codes of [10]
perform optimally w.r.t. parity node repair as well. On a
similar note, it is not clear whether this framework can be
applied to create finite-block length achievable schemes
for the communication scenarios studied in [8], [9] in
place of asymptotic alignment.

• The reverse of the above question is also not clear.
In other words, is not clear whether, from a network
capacity perspective, asymptotic alignment is strictly
more powerful than the tensor product based framework.
While we are not aware of a network communication
scenario where the tensor product based alignment ap-
proach achieves a better rate than asymptotic alignment,



we currently cannot preclude the existence of such a
scenario.

• Finally, a question worth exploring is whether the insights
of this work can be used to derive non-trivial achievable
schemes for a different (or larger) class of (non-multicast)
network communication scenarios.

APPENDIX

The proof of the lemma stems from combining the following
three properties of the tensor product. The first following prop-
erties is well known. The second and the third properties can
be derived from the multi-linearity and associative property of
the tensor product

1) Mixed Product Property:

(P1 ⊗P2 . . .⊗Pm)(Q1 ⊗Q2 . . .⊗Qm)

= (P1Q1)⊗ (P2Q2) . . .⊗ (PmQm)

2) Invariance w.r.t. span: Let Pi,Qi, i = 1, 2, . . . ,m be ma-
trices such that the dimension of Pi is equal to the dimen-
sion of Qi. Also, let rowspan(Pi) 6= 0, rowspan(Qi) 6=
0,∀i = 1, 2, . . . ,m where 0 represents the row vector
whose entries are all equal to 0. Then, rowspan(Pi) =
rowspan(Qi), i = 1, 2, . . . ,m, if and only if

rowspan(P1⊗P2 . . .⊗Pm) = rowspan(Q1⊗Q2 . . .⊗Qm),

3) Inheritance of linear independence: Let Pi,Qi, i =
1, 2, . . . ,m be matrices such that the dimension of Pi

is equal to the dimension of Qi. Now, suppose that
rowspan(Pl) ∩ rowspan(Ql) = {0} for some l ∈
{1, 2, . . . ,m}, i.e., each row of Pl is linearly independent
of all the rows of Ql for some l ∈ {1, 2, . . . ,m}. Then,

rowspan(P1⊗P2⊗. . .⊗Pm)∩rowspan(Q1⊗Q2⊗. . .⊗Qm)

= {0}
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