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Abstract—While the outer-bound of sum degrees of freedom
(DoF) of 3-user interference channel is known, the entire DoF
region is still unknown in terms of both outer-bound and
achievable region. In this paper, we first give the outer-bound
of DoF region. Then, we present a linear beamforming scheme
based on interference alignment chain whose achievable DoF
region is the same as the outer bound, with the consideration of
integer DoF only.

I. INTRODUCTION

The degrees of freedom (DoF) characterization has been
recently studied for a variety of wireless networks, among
which, the interference channel has drawn intensive research
interest. The DoF of 2-user interference channels was fully
characterized in [1]. Beyond the 2-user case, however, the
only scenario in which the optimal DoF is known for K-
user interference channels is when MT = MR [2], [3],
where MT and MR denote the number of antennas on each
transmitter and receiver, respectively. When MT ̸= MR,
the DoF issue is not completely settled even for three-user
interference channels.

The DoF of K-user MT ×MR MIMO interference chan-
nel was studied in [4]–[6]. Specifically, [4] showed that if
η = max(MT ,MR)

min(MT ,MR) is an integer, each user can achieve DoF
of min(MT ,MR)

η
η+1 when K > η. The result of [4], estab-

lished originally over time-varying channels, was extended to
constant channels without the need for channel extensions in
[5], [6]. The optimal sum DoF was solved in [7] for three-
user case only, where the idea of subspace alignment chain
was introduced and the outer-bound of sum DoF was derived.
According to [7], the outer-bound DoF of each link equals
DoF ∗, where

DoF ∗ = min{ κ

2κ− 1
M ,

κ

2κ+ 1
N} (1)

where N = max{MT , MR}, M = min{MT , MR} and
κ = ⌈ M

N−M ⌉. Hence, the outer-bound of the sum DoF of the
network is equal to 3DoF ∗.
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As can be seen, there are still some problems left unsettled
for 3-user interference channels. If the DoF of each user
represents one coordinate axis, a 3-dimensional coordinates
can be formed for a 3-user channel case. Let di denote the DoF
of user i. The outer-bound of sum DoF, d1+d2+d3 ≤ 3DoF ∗,
can be seen as a plane in the coordinates, which is not enough
to characterize the entire DoF region. For example, when
MT = 5, MR = 3, we have d1 + d2 + d3 ≤ 6 according
to (1), but it is also obvious that di ≤ 3.

To obtain the exact DoF region, we first give the outer-
bound DoF region based on the derivation of the outer-bound
of sum DoF in [7]. Then, we present a linear beamforming
scheme whose achievable DoF region is the same as the outer
bound.

The paper is organized as follows. In Section II, the system
model is introduced, and the outer bound of DoF region is
given. In Section III, a beamforming scheme is presented based
on the concept of interference alignment chain. Section IV
investigates and summarizes the constraints of the parameters
that are involved in the scheme. In Section V, the achievable
DoF region is derived based on the constraints and shown to be
the same as the outer bound. Section VI concludes the paper.

II. SYSTEM MODEL

We consider a fully connected 3-user MIMO interference
channel with MT and MR antennas at each transmitter and
each receiver, respectively. Transmitter i transmits messages
intended to receiver i (i = 1, 2, 3), and hence causes
interference to other two receivers. Let Hji ∈ CMR×MT

denote the channel from transmitter i to receiver j, the received
signals on receiver j can be expressed as

yj =
3∑

i=1

HjiBimi + zj (2)

where yj ∈ CMR×1 denotes the received signal; Bi ∈
CMT×di denotes the beamforming matrix of transmitter i;
mi ∈ Cdi×1 denotes the original message vector from trans-
mitter i; zj ∈ CMR×1 denotes the white Gaussian noise at
receiver j. Let di denote the DoF of user i, the sum DoF of
the network is D =

∑3
i=1 di.
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Let N = max{MR , MT }, M = min{MR , MT }. The
outer-bound of DoF region of three-user interference channels
is

⎧
⎪⎪⎨

⎪⎪⎩

2di + 2dj + dk ≤ 2N
di + dj ≤ N

di + dj + dk ≤ 2M
di ≤M

(3)

when M
N ∈ [ 12 , 2

3 ],
⎧
⎨

⎩

2tdi + 2tdj + (2t− 1)dk ≤ 3tM
(2t+ 1)di + 2tdj + 2tdk ≤ 3tN

di + dj ≤ N
(4)

when M
N ∈ [ 3t−1

3t , 3t
3t+1 ], (where t = 1, 2, · · ·∞) and

⎧
⎨

⎩

(2t+ 1)di + 2tdj + 2tdk ≤ (3t+ 1)M
(2t+ 1)di + (2t+ 1)dj + (2t+ 1)dk ≤ (3t+ 1)N

di + dj ≤ N
(5)

when M
N ∈ [ 3t

3t+1 , 3t+1
3t+2 ]

⎧
⎪⎪⎨

⎪⎪⎩

(2t+ 2)di + (2t+ 2)dj + (2t+ 1)dk ≤ (3t+ 2)N
(2t+ 1)di + 2tdj + 2tdk ≤ (3t+ 1)M

(2t+ 1)di + (2t+ 1)dj + (2t+ 1)dk ≤ (3t+ 2)M
di + dj ≤ N

(6)

when M
N ∈ [ 3t+1

3t+2 , 3t+2
3t+3 ]. (where i, j, k = 1, 2, 3 and

i ̸= j ̸= k.)
The outer bound DoF region is derived based on the existing

derivations of the sum DoF in [7].

III. A BEAMFORMING SCHEME

In this section, we present a beamforming scheme that can
achieve all the combination of integer DoF in the outer-bound.
We first explain the concept of alignment chain. Then, the
design of beamforming matrices will be elaborated. At last,
as part of the beamforming design, we discuss how to ensure
the signals are linearly decoded at each receiver. We assume
MT ≥MR. Then, N = MT , M = MR.

A. Subspace Alignment Chain

We let Vt
i(s) ∈ CN×Qt denote the sth Qt-dimensional

subspace transmitted by transmitter i which participates in the
chain that originates from transmitter t. Now, we consider one
alignment chain originating from transmitter 1, where V1

1(1)
is nulled at receiver 2 but causes an interference dimension
at receiver 3. The second signal, V1

2(1) from transmitter 2,
should be aligned with V1

1(1) on receiver 3 so that no more
interference dimension is generated on receiver 3. Then, if
V1

2(1) can be zero-forced at receiver 1, the chain is finished;
Otherwise, transmitter 3 should send a vector, V1

3(1), which is
aligned with V1

2(1) on receiver 1. The chain will keep going
until zero-forcing can be achieved. Mathematically, it can be

expressed as follows,

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

H21 0 · · · · · · 0
H31 H32 0 · · · 0
0 H12 H13 0 · · ·
...

. . . . . .
0 · · · · · · Hri Hrt

0 0 · · · 0 Hit

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
H∈CM(S+1)×S·N

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V1
1(1)

V1
2(1)

V1
3(1)

V1
1(2)
...

V1
i(s)

V1
t(s)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
V∈CS·N×Q1

= 0 (7)

where S denotes the total number of subspaces that involved
in the chain, i.e., the length of the chain.

As can be seen, the chain can be finished once the matrix H
turns into a “fat” matrix, i.e., S ·N > (S+1)M ⇒ S > M

N−M .
Hence, the length of the shortest chain can be expressed as

S =

{
κ+ 1 when M

N = p
p+1

κ when M
N ̸=

p
p+1

(8)

where κ = ⌈ M
N−M ⌉ and p is an arbitrary natural number. Note

that for any length that is larger than S, H will always be
a “fat” matrix, which means for each antenna configuration,
there exists multiple chains with length equals S, S + 1, · · · .

We refer to the chains with the length of S as the original
alignment chains. As can be seen, there are three original
chains and each originates from one transmitter, i.e., t =
1, 2, 3, and each chain has S Qt-dimensional subspaces. We
denote the three original chains as follows

0
R2←→ V1

1(1)
R3←→ V1

2(1)
R1←→ V1

3(1)
R2←→ V1

1(2) · · ·0

0
R3←→ V2

2(1)
R1←→ V2

3(1)
R2←→ V2

1(1)
R3←→ V2

2(2) · · ·0

0
R1←→ V3

3(1)
R2←→ V3

1(1)
R3←→ V3

2(1)
R1←→ V3

3(2) · · ·0 (9)

where V1
1(1)

R3←→ V1
2(1) means that the interference generated

by V1
1(1) and V1

2(1) at receiver 3 are aligned together, i.e.,
H31V1

1(1) = H32V1
2(1), as shown in (7).

B. A Beamforming Scheme

In [7], the outer-bound of sum DoF is obtained based
on the original chains only. However, it is not enough to
achieve the entire DoF region. In our proposed scheme, the
beamforming matrix contains three types of subspaces that
are designed according to original chains, long chains (with
length S̄ = S+1), and the null space of interfering channels,
respectively.

The beamforming matrix of transmitter i can be ex-
pressed as Bi =

[
Vi V̄i Ui

]
, where Vi is com-

posed of all the subspaces from transmitter i that partici-
pate in the original chains (as shown in (9)), i.e., Vi =[
V1

i(1) · · · V2
i(1) · · · V3

i(2) · · ·
]
, V̄i is composed

of all the subspaces from transmitter i that participate in the
longer chains (which is similar to (9) except with one more
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subspace at the end of each chain), and Ui =
[
U1

i U2
i

]
∈

CM×qi , which is designed as follows

H21U
1
1 = 0, H31U

2
1 = 0

H12U
1
2 = 0, H32U

2
2 = 0

H13U
1
3 = 0, H23U

2
3 = 0 (10)

To ensure the desired signals on each receiver can be
linearly decoded, two conditions must be satisfied, i.e.,

1) The beamforming matrix, Bi, has full column rank.
2) On each receiver, the desired signal space does not

overlap the interference space.
• Condition 1
First, we need to guarantee that each single subspace, (Vt

i(s)

and V̄t
i(s̄)), has full column rank. From (7) we can see that

each chain is in the null space of H, which means the column
rank of V cannot be larger than the nullity of H, i.e.,

Qt ≤ S ·N − (S + 1)M (11)

Qs =
3∑

t=1

Qt ≤ 3(S ·N − (S + 1)M) (12)

Similarly, for long chains we have

Q̄t ≤ (S + 1) ·N − (S + 2)M (13)

Q̄s =
3∑

t=1

Q̄t ≤ 3((S + 1) ·N − (S + 2)M) (14)

where Q̄t is the number of dimensions of V̄t
i(s̄).

Next, we discuss the full rank of Bi. Take B1 for
example, among all the subspaces in B1, three of them,[
V1

1(1) V̄1
1(1) U1

1

]
, are all in the null space of H21.

Hence, we should guarantee that

Q1 + Q̄1 + q31 ≤ N −M (15)

where qji denotes the number of interference dimensions
generated on receiver j by Ui. Specifically, we have U1

1 ∈
CN×q31 , U2

1 ∈ CN×q21 , U1
2 ∈ CN×q32 , U2

2 ∈ CN×q12 ,
U1

3 ∈ CN×q23 , U2
3 ∈ CN×q13 .

Similarly, for B2 and B3 we can get

Q2 + Q̄2 + q12 ≤ N −M (16)
Q3 + Q̄3 + q23 ≤ N −M (17)

Then, it can be proved that under the constraints (11)-(17),
Bi will have full rank for sure. (The proof is omitted.)
• Condition 2
Since the direct channel matrices, H11, H22 and H33, are

not used in the design of beamforming subspaces, Condition
2 can be satisfied as long as the sum number of dimensions
of the desired signals and interference does not exceed the
number of dimensions on each receiver.

Take receiver 1 for example, the number of desired signals
and interference dimensions is equal to d1 and P1 + q12 +
q13, respectively, where P1 denotes the number of interference

dimensions that are generated by the six alignment chains.
Hence, we have

d1 + P1 + q12 + q13 ≤M (18)

Similarly, for receivers 2 and 3, we have

d2 + P2 + q21 + q23 ≤M (19)
d3 + P3 + q31 + q32 ≤M (20)

Therefore, Condition 2 can be satisfied by (18)-(20).

IV. CONSTRAINTS

Based on the beamforming scheme, the DoF of each user is
determined by the value of Qt, Q̄t and qt, (where q1 = q21 +
q31, q2 = q12+ q32, q3 = q13+ q23). Hence, before exploring
the bounds of DoF, we need to find out all the constraints of
these parameters. Note that some constraints have been given
in (11)-(20).

We first transform (15)-(17), and (18)-(20) into expressions
which are related to the DoF of each user. Since q31 = q1−q21,
(15) can be expressed as

N −M −Q1 − Q̄1 ≥ q1 − q21 (21)

and (19) can be expressed as

M − d2 − P2 ≥ q21 + q23 (22)

By adding up (21) and (22), we can get

N −Q1 − Q̄1 − d2 − P2 ≥ q1 + q23 (23)

Since q1 + q23 ≤ qs, (23) can be guaranteed by

N −Q1 − Q̄1 − d2 − P2 ≥ qs (24)

We can see that satisfying (24) is not equivalent to satisfying
both (21) and (22). However, note that q1, q21 and q23 are
integers that can be as small as zero. Hence, as long as N −
M −Q1− Q̄1 ≥ 0 and M − d2−P2 ≥ 0, we can always find
suitable values of q1, q21 and q23 that satisfy (21) and (22)
under the constraint of (24).

Since N −M −Q1− Q̄1 ≥ 0 which is guaranteed by (15),
we let (24) and the following inequality to be the constraints
instead of (15) and (19).

M − d2 − P2 ≥ 0 (25)

Similarly, based on (16), (17), (18) and (20), we have

M − d1 − P1 ≥ 0 (26)
M − d3 − P3 ≥ 0 (27)

N −Q3 − Q̄3 − d1 − P1 ≥ qs (28)
N −Q2 − Q̄2 − d3 − P3 ≥ qs (29)

The constraints (15)-(20) are converted into (24)-(29).
Next, note that (11)-(14) give the upper bounds of Qt, Qs,

Q̄t and Q̄s. We also need to find the lower bounds of these
parameters.

First, the total DoF of the network can be calculated as

D = d1 + d2 + d3 = S ·Qs + (S + 1)Q̄s + qs (30)
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where qs = q1 + q2 + q3.
Then, since each original chain and long chain occupy 2S−

1 and 2S + 1 dimensions, respectively, and there are totally
3M dimension on the receivers’ side, we have

(2S − 1)Qs + (2S + 1)Q̄s + 2qs ≤ 3M (31)

By taking (30) into (31), we can get

Qs + Q̄s ≥ 2D − 3M (32)

(32) indicates the lower bound of Qs + Q̄s.
Then, we find the lower bound of Qs. Note that the number

of signals participate in the original chains equals S · Qs.
Assuming the rest D − S · Qs signals all participate in the
longer chain, each of them takes at least 2S+1

S+1 dimensions.
Hence, we have

2S + 1

S + 1
(D − S ·Qs) + (2S − 1)Qs ≤ 3M (33)

which leads to

Qs ≥ [(2S + 1)D − 3(S + 1)M ]+ (34)

where [A]+ = max{A, 0}.
Moreover, since Qs =

∑3
i=1 Qi and Qi ≤ S ·N−(S+1)M

(according to (11)), we can get

Qi ≥ [(2S + 1)D − (S + 1)M − 2SN ]+ (35)

Next, since Q̄s ≥ 2D−3M −Qs and Qs ≤ 3(S ·N − (S+
1)M), we have

Q̄s ≥ [2D − 3SN + 3SM ]+ (36)

Since Q̄i ≤ (S + 1)N − (S + 2)M , we can get

Q̄i ≥ [2D − (5S + 2)N + (5S + 4)M ]+ = 0 (37)

As a result, the constraints can be summarized as (11)-(14),
(24)-(29), and (32)-(37).

V. ACHIEVABLE DEGREES OF FREEDOM REGION

In this section, we characterize the achievable DoF region
based on the obtained constraints. The network region we are
interested in is 1

2 < M
N < 1, which can be expressed as

[S−1
S , S

S+1 ), (where S = 2, 3, · · ·∞). It can be divided into
four cases, i.e., S = 2, S = 3t, S = 3t + 1 and S = 3t + 2,
where t = 1, 2, · · ·∞. The achievable DoF region will be
studied for different cases.

Note that for 3-user interference networks, the DoF region
is the combination of the bounds of D, di + dj , and di. We
first investigate the bounds of D which have general forms
for all four cases. Then, the bounds of di + dj and di will be
developed according to different cases.

Note that (32) and (34) is the lower bound of Qs + Q̄s and
Qs, respectively. Since Q̄s ≥ 0, the lower bound of Qs + Q̄s

cannot be less than that of Qs, i.e.,

2D − 3M ≥ [(2S + 1)D − 3(S + 1)M ]+

⇒ 2D − 3M ≥ 0 and (2S − 1)D ≤ 3SM

Since 2D − 3M ≥ 0 is trivial, it can be written as

D = d1 + d2 + d3 ≤
3SM

2S − 1
(38)

Next, since S ·N−(S+1)M ≥ Qi and Qi ≥ [(2S+1)D−
(S + 1)M − 2SN ]+ (from (35)), we can get

S ·N − (S + 1)M ≥ [(2S + 1)D − (S + 1)M − 2SN ]+

⇒ D ≤ 3SN

2S + 1
(39)

(38) and (39) are the two bounds of D that are applied to
all cases. As we can see, these two bounds are in fact the
M -bound and N -bound of sum DoF, respectively.

Next, we investigate the bounds of di+dj and di in different
cases.

• 1
2 < N

M < 2
3 (S = 2)

According to (30), we can get

d1 + d2 = D − (Qs + Q̄s) +Q1 − q3 (40)

Since Qs + Q̄s ≥ 2D − 3M (from (32)), Q1 ≤ 2N − 3M
(from (11)) and q3 ≥ 0, we can get

d1 + d2 ≤ 2N −D (41)

which is equivalent to

2d1 + 2d2 + d3 ≤ 2N (42)

Since the links are interchangeable, we have

2di + 2dj + dk ≤ 2N (43)

Next, since d2 = Q1+Q2+Q̄s+q2 and P2 = Q3+Q̄2+Q̄3,
(24) can be written as

D − (Qs + Q̄s) +Q1 ≤ N (44)

By taking (44) into (40), we have

di + dj ≤ D − (Qs + Q̄s) +Q1 ≤ N (45)

In addition, (25) can be expressed as

d2 ≤M − (Qs + Q̄s − (Q1 +Q2 + Q̄1)) (46)

which can lead to

di ≤ min{7N − 6M − 2D, M, 4N + 4M − 5D} (47)

Finally, by combining all the bounds, the DoF region is
proved to be the same as (3).

• 3t−1
3t ≤

N
M < 3t

3t+1 (S = 3t)
In this case, we have di = t · Qs + t · Q̄s + Q̄i + qi.

Accordingly,

d1 + d2 = D − t(Qs + Q̄s)− Q̄3 − q3 (48)

Since Q̄3 ≥ 0 (according to (37)), q3 ≥ 0 and Qs + Q̄s ≥
2D − 3M , we have

d1 + d2 ≤ D − t(Qs + Q̄s) ≤ 3tM − (2t− 1)D (49)

which leads to

2tdi + 2tdj + (2t− 1)dk ≤ 3tM (50)
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Then, since d2 = t(Qs + Q̄s) + Q̄2 + q2 and
P2 = t · (Qs + Q̄s)−Q1, (24) can be written as

2tQs + (2t+ 1)Q̄s + qs − Q̄3 + q2 ≤ N (51)

which can lead to

D − t(Qs + Q̄S)− Q̄3 ≤ N − q2 ≤ N (52)

By taking (52) into (48), we can get

d1 + d2 ≤ N ⇒ di + dj ≤ N (53)

Next, (25) can be expressed as

d2 ≤M − t(Qs + Q̄s) +Q1 (54)

Since Qs + Q̄s ≥ 2D − 3M and Q1 ≤ 3tN − (3t+ 1)M ,
we have d2 ≤ 3tN − 2tD, which leads to

(2t+ 1)di + 2tdj + 2tdk ≤ 3tN (55)

Finally, the achievable DoF region for 3t−1
3t ≤

N
M < 3t

3t+1
can be determined the same as (4).
• 3t

3t+1 ≤
N
M < 3t+1

3t+2 (S = 3t+ 1)
First, we have

d1 + d2 = 2t ·Qs + (2t+ 1)Q̄s +Q1 +Q2 + Q̄1 + qs − q3

≤ D − t(Qs + Q̄s)− ((Qs + Q̄s)− (Q1 +Q2 + Q̄1)) (56)

Based on (32), (11), (13) and (34), we can get

di + dj ≤

⎧
⎨

⎩

(9t+ 4)N − (6t+ 4)M − (2t+ 1)D
3tM − (2t− 1)D

(6t+ 2)(N +M)− (8t+ 2)D
(57)

Then, since d2 = t · Qs + Q2 + (t + 1)Q̄s − Q̄3 + q2 and
P2 = t · (Qs + Q̄s) + Q̄3, (24) can be written as

2tQs + (2t+ 1)Q̄s + qs +Q1 +Q2 + Q̄1 + q2 ≤ N (58)

which leads to

D − (t+ 1)(Qs + Q̄S) +Q1 +Q2 + Q̄1 ≤ N − q2 ≤ N (59)

By taking (59) into (56), we can get

di + dj ≤ N (60)

Next, (25) can be expressed as

d2 ≤M − t(Qs + Q̄s)− Q̄3 (61)

Since Qs + Q̄s ≥ 2D − 3M and Q̄3 ≥ 0, we can get

d2 ≤ (3t+ 1)M − 2tD (62)

which leads to

(2t+ 1)di + 2tdj + 2tdk ≤ (3t+ 1)M (63)

As a result, the achievable DoF region for 3t−1
3t ≤ N

M <
3t

3t+1 can be determined to be the same as (5).
• 3t+1

3t+2 ≤
N
M < 3t+2

3t+3 (S = 3t+ 2)
In this case, we have

d1 + d2 = (2t+ 1) ·Qs + (2t+ 2)Q̄s +Q1 + qs − q3

= D − t(Qs + Q̄s)− (Qs + Q̄s −Q1)− q3 (64)

Since Qs + Q̄s ≥ 2D− 3M , Q1 ≤ (3t+2)N − (3t+3)M
and q3 ≥ 0, (64) can be written as

d1 + d2 ≤ min{3tM − (2t− 1)D , (3t+ 2)N − (2t+ 1)D}
which leads to

2tdi + 2tdj + (2t− 1)dk ≤ 3tM (65)
(2t+ 2)di + (2t+ 2)dj + (2t+ 1)dk ≤ (3t+ 2)N(66)

Then, since d2 = (t + 1)Qs − Q3 + (t + 1)Q̄s + q2 and
P2 = t ·Qs +Q3 + (t+ 1)Q̄s − Q̄1, (24) can be written as

(2t+ 1)Qs + (2t+ 2)Q̄s + qs +Q1 + q2 ≤ N (67)

which implies that

D − (t+ 1)(Qs + Q̄S) +Q1 ≤ N − q2 ≤ N (68)

By taking (68) into (64), we can get

di + dj ≤ N (69)

Next, (25) can be expressed as

d2 ≤M − t(Qs + Q̄s)− (Qs + Q̄s − (Q1 +Q2 + Q̄1))

which can lead to

di ≤

⎧
⎨

⎩

(9t+ 7)N − (6t+ 6)M − (2t+ 2)D
(3t+ 1)M − 2tD

(6t+ 4)(N +M)− (8t+ 5)D
(70)

Hence, the achievable DoF region for 3t−1
3t ≤

N
M < 3t

3t+1
can be determined to be the same as (6).

VI. CONCLUSION

The outer-bound of DoF region of 3-user MIMO interfer-
ence channels is given in this paper. Then, a linear beam-
forming scheme based on alignment chain is proposed, whose
achievable DoF region is the same as the outer bound. This
result implies that all the combination of (d1, d2, d3) inside
the region is achievable (di is integer), yet all the ones that
outside the region cannot be achieved for sure. Hence, the
region can be seen as the necessary and sufficient condition
for the feasibility of linear interference alignment in 3-user
interference networks.
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