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Abstract—To be considered for an IEEE Jack Keil Wolf
ISIT Student Paper Award. In a K-user Gaussian interference
channel, it has been shown that if for each user the desired signal
strength is no less than the sum of the strengths of the strongest
interference from this user and the strongest interference to this
user (all values in dB scale), then treating interference as noise
(TIN) is optimal from the perspective of generalized degrees-of-
freedom (GDoF) and achieves the entire channel capacity region
to within a constant gap. In this work, we show that for such TIN-
optimal interference channels, even if the message set is expanded
to include an independent message from each transmitter to each
receiver, operating the new channel as the original interference
channel and treating interference as noise is still optimal for the
sum capacity up to a constant gap.

I. INTRODUCTION

Treating interference as noise (TIN) when it is sufficiently
weak is an attractive interference management principle for
wireless networks in practice due to its simplicity and ro-
bustness. Remarkably, TIN is also information-theoretically
optimal when the interference is sufficiently weak. This is
established in [1], [2], [3], [4], [5], [6] from an exact capacity
perspective, and in [7], [8], [9], [10], [11], [12] from an
approximate capacity perspective. Each approach has its merits
— the former identifies relatively narrow regimes where TIN
achieves exact capacity, whereas the latter identifies signifi-
cantly broader regimes where TIN is approximately optimal.
Most relevant to this work are the results by Geng et al. in
[12] where it is shown that in a general K-user interference
channel, if for each user the desired signal strength is no less
than the sum of the strengths of the strongest interference
from this user and the strongest interference fo this user (all
values in dB scale), then TIN is optimal for the entire channel
capacity region up to a constant gap of no more than log, (3K)
bits.

In this paper we explore the sum-rate optimality of TIN
when the message set is expanded to include an independent
message from each transmitter to each receiver, i.e., the X
channel setting [13], [14], [15]. Related prior works on the X
setting in [16], [17] have primarily focused on the case with
2 transmitters and 2 receivers. In [16], Huang, Cadambe and
Jafar characterize the sum-GDoF for the symmetric X channel
and identify sufficient conditions for TIN to achieve exact
capacity in the asymmetric case. In [17], Niesen and Maddah-
Ali characterize the capacity for the general asymmetric case
within a constant gap subject to an outage set.

The main contribution of this work is to show that, for the

K-user TIN-optimal interference channels identified by Geng
et al. in [12], even if the message set is expanded to also
include an independent message from each transmitter to each
receiver, operating as the original interference channel and
treating interference as noise at each receiver is still optimal
for the sum capacity up to a constant gap.

II. PRELIMINARIES
A. Channel Model

Consider the wireless channel with K transmitters and K
receivers, which can be described by the following input-
output equations,

K
Vi(t) = hiXi(t) + Zi(t), Vke{1,2,...K}, (1)
i=1

where hy,; is the complex channel gain value from transmitter
i to receiver k. X;(t), Yi(t) and Zy(t) are the transmitted
symbol of transmitter ¢, the received signal of receiver k, and
the additive circularly symmetric complex Gaussian noise with
zero mean and unit variance seen by receiver k, respectively,
at each time index ¢. All the symbols are complex. Each trans-
mitter 7 is subject to the power constraint E[|X;(t)[?] < P;.

Following similar approaches in [7], [12], we translate the
standard channel model (1) into an equivalent normalized form
that is more conducive for GDoF studies. We define

o & Jog(max{L, |7z |*Pi})
b log P
where P > 1 is a nominal power value.

Now according to (2), we represent the original channel
model (1) in the following form,

 Vike{l,2,.. K}, @

K
Yi(t) = Z hii Xi(t) + Zk(t)

K
=Y VPorie ™ Xi(t) + Zi(t), Yk € {1,2,... K},
i=1

3)
where X;(t) = X;(t)/+/P; is the normalized transmit symbol
of transmitter ¢, subject to the unit power constraint, i.e.,
E[|X;(t)]?] < 1. V/Posi and 6y, are the magnitude and the
phase, respectively, of the channel between transmitter ¢ and
receiver k. The exponent «y; is called the channel strength
level of the link between transmitter ¢ and receiver k. As in
[7], [12], for the GDoF metric, we preserve the ratios ay; as



all SNRs approach infinity. In the rest of the paper, we only
consider the equivalent channel model in (3).

In the K -user interference channel, each transmitter intends
to send one independent message to its corresponding receiver.
Because we wish to prove the negative result that additional
messages do not add to the sum-GDoF in a TIN-optimal
network, the strongest result corresponds to the case where
we include messages from every transmitter to every receiver.
Therefore, we will consider the X channel setting. In the
K x K X channel, transmitter ¢ has message Wj; intended
for receiver k, and the messages {Wj;} are independent,
Vi, k € {1,2,..., K}. The size of the message set {Wy;} is
denoted by |W};|. For codewords spanning n channel uses, the
rates Ry; = % are achievable if the probability of error
of all messages can be made arbitrarily small simultaneously
by choosing an appropriately large n. The channel capacity
region C is the closure of the set of all achievable rate tuples.
Collecting the channel strength levels and phases in the sets
a = {ag}, 0 2 {01}, Vi, k € {1,2,...,K}, the capacity
region is denoted as C(P, a, 6), which is a function of «, 6,
and P. The sum channel capacity is defined as

= max Z Z Ry 4)

=1 k=1

Then the GDoF region of the X channel as represented in (3)
is given by

Ry
D(a,0) £ {(dll’dl%“"dKK) P ki = 1311—I>noo long
Vi, k€ {1,2,..,K}, )

(Ri1, Ri2, ..., Rxk) € C(P,a,&)},

and its sum-GDoF value is

K K
dox = max > > dii (6)

i=1 k=1
B. On the Optimality of TIN for Interference Channel

Let us first review the optimality of TIN for the K-user
interference channel from the perspective of GDoF.

Theorem 1: (Theorem 1 in [12]) In a K-user interference
channel, where the channel strength level from transmitter ¢ to
receiver j is equal to aj;, Vi,j € {1,..., K}, if the following
condition is satisfied

i > max{aj;} + max{aip}, Vi, j ke {1,2,.., K},

YR ED k:k#£i
then power control and treating interference as noise achieves
the whole GDoF region. Moreover, the GDoF region is the set

of all K-tuples (di,ds,...,dk) satisfying

individual bounds: 0 < d; < ay;, Vi€ {1,2,...,K},
cycle bounds: Zdij < Z(O‘iﬂj — ;i)
j=1 j=1
V(i1,eeyim) € Ok, Vm € {2,3,...,K},

where Il is the set of all possible cyclic sequences of
all subsets of {1,..., K}, and the modulo-m arithmetic is
implicitly used on the user indices, e.g., i,, = 1g.

Remark: The above theorem claims that in the K -user in-
terference channel, if for each user the desired signal strength
is no less than the sum of the strengths of the strongest
interference from this user and the strongest interference to
this user (all values in dB scale), then TIN is GDoF-optimal.
Furthermore, it is shown in [12] that under the same condition,
TIN achieves the entire channel capacity region to within a gap
no larger than log,(3K) bits. Note that the gap is bounded by
a constant for a fixed number of users, i.e., it does not depend
on the channel strength parameters «;; and P.

III. RESULTS

The main result of this paper is the following theorem.

Theorem 2: In a K-user interference channel, where the
channel strength level from transmitter ¢ to receiver j is equal
to o, Vi,j € {1,2,..., K}, when the following condition is
satisfied,

a;; > max{oj; } + max{a;,}, Vi, j,ke{l1,2,...K}, (7)
Jij#i k:k#i
then even if the message set is increased to the X channel
setting, operating the new channel as the original interference
channel and treating interference as noise at each receiver still
achieves the sum-GDoF. Furthermore, the same scheme is also
optimal for the sum channel capacity up to a constant gap of
no more than K log,[K (K + 1)] bits.
The proof of Theorem 2 is presented in Section IV.

Fig. 1. A 3-user interference channel, where the value on each link denotes
its channel strength level.

Example 1: First, consider the 3-user interference channel
illustrated in Fig. 1, where transmitter ¢ intends to send an
independent message to its desired receiver i, Vi € {1,2,3}.
Note there are 3 messages in this setting. It’s easy to check
that the TIN-optimal condition (7) is satisfied for each user.
Then according to Theorem 1, it is not hard to verify that
the sum-GDoF value of this interference channel is dx ;¢ =
di 4+ ds 4+ d3 = 2.5, which is achieved by power control and
TIN.

Next, let us expand the set of messages to the X channel
setting, where each transmitter intends to send an independent
message to each receiver as shown in Fig. 2. Therefore, there
are totally 9 messages in this X channel. Theorem 2 claims
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Fig. 2. A 3 x 3 X channel, which has the same channel strength levels as
the 3-user interference channel in Fig. 1.

that for this 3 x 3 X channel, the sum-GDoF value is still
dsx = Y2 S dp; = 2.5, which can be achieved by
setting Wy; = ¢ for i # k and Vi, k € {1, 2,3}, sending only
{W11, Waa, W33} through the channel and treating interfer-
ence as noise at each receiver. O

IV. PROOF OF THEOREM 2

Due to the limited space, we only provide the proof for
the sum-GDoF of the TIN-optimal K x K X channel. The
proof of the constant gap result for the sum channel capacity
is relegated to the full paper [18].

The proof consists of two steps. In the first step, we show
that for all individual and cycle bounds of a TIN-optimal K-
user interference channel (see Theorem 1), if each d; (Vi €
{1,2,..., K}) is replaced by d; = Zj{zl d;;, these bounds still
hold for its counterpart X channel.

In the following, we first give an example of the 3 x 3 X
channel, then generalize the proof to the K x K X channel.

Example 2: Consider a 3-user TIN-optimal interference
channel. According to Theorem 1, we can obtain the entire
GDoF region, which is characterized by certain individual and
cycle bounds. To extend the result to the X channel setting,
each of these bounds will be extended. To illustrate the key
ideas in this example, we consider the following two bounds,

i

ds < a3, ®)
di +da < (11 + a22) — (12 + a91), &)

and intend to prove that in the counterpart 3 X 3 X channel,
if we replace each d; by d; = 23:1 dij, Vi € {1,2,3}, the
above two bounds still hold, i.e.,

ds3 = d3y + dzo + dsz < azs (10)

dy +dy = dyy + dig + dis + do1 + dao + dos

(11)
< (o1 + ao2) — (12 + @21)

All the remaining bounds can be extended to the X channel
similarly.

To prove (10), we just need to consider the MAC consisting
of all the transmitters and the receiver 3, then we have

Rs31 + R3s + R33 < 10g2(1 + P31 P32 Pa33) (12)

Because (7) is satisfied, i.e., aig3 > ai3o and aizgz > a3y, in the
GDoF sense we have

d3 = d31 + dgo + ds3 < azs (13)

To prove (11), consider the subnetwork consisting of
all the transmitters and the receivers 1 and 2, where we
have eliminated the third receiver and its desired messages
W31, Wsa, W3s. This cannot hurt the rates of the remaining
messages, so the outer bound arguments remain valid. Define

Sl(t) = hngl(t) + Zg(t)
Sa(t) = h1a Xa(t) + Z1 (%)

(14)
15)

For receiver 1, we provide ST, Wa; and Wa3 through a genie.
From Fano’s inequality, we have the inequalities at the top
of the next page, where (17) follows because all the messages
are independent, (20) holds since adding conditioning does not
increase entropy and (21) holds because dropping conditioning
(in the first and third terms) does not reduce entropy.

Due to symmetry, for the receiver 2, we similarly obtain

n (Ro1 + Raa + Raz —¢)
< h(SH|Wia) — h(Z7) + h(Y5'S%) — h(ST|[Way)
Thus the sum rate is bounded as follows.

2 3
n(z Z Rij - 26)

i=1 j=1
< h(Y'[ST) + h(Y3']S3) — h(ZT) — h(Z3)

NE

< _[hMi(@)51(8) + h(Ya(1)|52(2)) = h(Z1(F)) — h(Za(1))]

S
Il

1

where the second inequality follows from the chain rule and
the fact that dropping conditioning does not reduce entropy.
Finally, because the circularly symmetric complex Gaussian
distribution maximizes conditional differential entropy for a
given covariance constraint, we obtain

2 3 P
523ty - 2e Slogy (1 o P )

i=1 j=1

P22
logy (14 P22 4 P2  —— —
+og2< + + +1+sz)

(22)
Due to the condition (7), in the GDoF sense we obtain

dy 4 dy < (11 + a22) — (12 + 1) (23)

which is the desired extension, (11), to the X channel setting
of the original bound, (9), for the interference channel. |

Now let us consider the proof for the general K x K X
channel. For the individual bounds in the K -user interference

channel
d; < ag, Vi€ {1,2, ...,K}, 24)

in its counterpart X channel, the corresponding bound comes
from the MAC consisting of all the transmitters and the



n(Ri1 + Ri2 + Riz —¢) <

I(Wi1, Wig, Wag; Y7, ST, War, Wag) (16)

= I(Whi1, Wig, Wiz; Y1", ST [War, Was) 17)

= I(W1i1, Wig, Wig; ST |War, Wag) + I(Why, Wia, Wis; YT [ST, Way, Wa3) (18)

= h(ST |Wa1, Was) — h(ST |War, Waz, W11, Wip, Wi3)

+ h(Y]*|ST, Way, Wag) — h(Y*| ST, War, Was, Wiy, Wia, Wis) (19)
< h(ST|Wa1, Waz) — h(ST'|Wa1, Waz, Wi1, Wiz, Wiz, XT')

+ h(Y{"| ST, War, Was) — h(Y{"|ST, Way, Was, Wiy, Wia, Wiz, X7', X7T) (20)
< h(ST[Wa1) — h(Z3) + h(Y7"|ST) — h(53 |Wi2) 2N

receiver 1,
K K
D Rij <logy(1+ Y P9) (25)
Jj=1 Jj=1
According to (7), in the GDoF sense we have
K
d; = Zdij < ay; (26)
j=1

Fig. 3. A K x m X channel (K > m)
For any cycle bound in the interference channel

m m
Z d;; < Z(Oéijij
j=1 j=1

V(ir, o,

- ai]‘—ﬂj)a

im) € g, Vme{2,3,..., K},

consider the subnetwork consisting of all the transmitters and
the receivers {i1,i2, ..., %, } as shown in Fig. 3. Eliminate all
other receivers and their desired messages, which cannot hurt
the rates of the remaining messages. For such a K xm X chan-
nel, deﬁne w £ {Wz i b Wi 2 Wi, Wi, oo, Wi 3,
Wi 2 Wi, Wigins s Winin }o and W 2 W/Ws,
where Vj € {1,2,...,m}, Yk € {1,2,..., K}, and S is any
subset of message indices. In words, the sets W, WI*J and
VVZ-T]c represent all the remaining messages delivered in the
channel, all the messages intended to receiver ¢;, and all
the messages coming from transmitter i, respectively, and

Wg is the complement of Ws in W. For instance, when
NS {]., 2} and S = {ilil, ilig}, then Ws = {WililaWilig}
and Wg = {Wi,i,, Wi,i, }. Modulo-m arithmetic is used on
the receiver indices, e.g., 9 = %,,. Lastly, to complete the
setup, define

Siy (1) = hiy_yi; Xi; (1) + Ziy_, (8), Vie{l,2, ..,

Then for receiver i1, we provide S7, Wy . /W through
a genie. From Fano’s inequality, we have the inequalities at
the top of the next page, where (29) follows because all the
messages are independent, and in (32) we use the fact that
dropping conditioning does not reduce entropy.

Similarly, for other receivers i;, Vj € {2,3,...,m
providing S", Wg

L1541
K
§ Rz;zk -
k=1

m} (27)

- 1}’ by
/W, through a genie we have

€) <h(S; WL /W) = h(Z] )

15—1

BYIST) —

Finally for receiver i,,, we can provide S , Wi, /W
through a genie and obtain

( ’L+1‘ zJ+1/ ij+1ij+1)

K
n( Rimik -
k=1

€) <h(SI IW! W) —R(ZE )

Im—1

+ (Y

Tm

WiTl /Wilil)

Siv.) = h(Si|

im

Then taking the sum of n(Zszl R €) for all j €

Tl

{1,2,...,m}, we have
m K m
n(3° " Riyiy —me) < SIM(YVZISE) — (23]
J=1k=1 j=1
<O IV ()18 (1) — h(Zi, (1))
t=1 j=1

where the second inequality follows the chain rule and the
fact that dropping conditioning does not reduce entropy. Once
again, using the fact that the circularly symmetric complex
Gaussian distribution maximizes conditional differential en-
tropy for a given covariance constraint and the condition (7),
we can obtain the following desired outer bound in the GDoF
sense, through the same set of manipulations as in Example



0

Riyi, —€) STV Y3, S5 Wi, /W) (28)
k=1
= I( 7,1 ’ Y;?’ Sn ‘ 1222/ (29)
* *
= I( 217 | 127,2/ ) (Wll’yn|S;n17WZCQ’LQ/ ) ) (30)
*

:h( | zzzz/ ) ( | 1212)+h(Yn|Szn17chzm/ 11)7h(y; |Sznlvwzczzz) (31)
h(sn' z’l/Wilil) _h< +h Ynl Sn' /Wi2i2) (32)
2, [2] V. S. Annapureddy, and V. V. Veeravalli, “Gaussian interference net-
works: sum capacity in the low-interference regime and new outer
mo m K m bounds on the capacity region,” IEEE Transactions on Information

Dodi, =D disi, <Y (i, — i,y (33) Theory, vol. 55, no. 7, pp. 30323050, July 2009.
j=1 ’ J=1 k=1 =1 ’ [3] X. Shang, G. Kramer, and B. Chen, “A new outer bound and the noisy-

Now we can proceed to the last step to prove that under
condition (7), the K -user interference channel and its coun-
terpart K x K X channel have the same sum-GDoF. According
to Theorem 1, for the K-user interference channel, under
condition (7), to obtain its sum-GDoF dx ¢, we need to solve
the following linear programming (LP) problem

K
madei (34)
i=1
st. 0<d; <oy, Vie{l,2,..,K} (35)
Zdij < Z(aiji.f - O‘ij—lij)>
j=1 =1 (36)
V(it,.rim) € g, Vme {2,3,...,K}

To get the sum-GDoF of its counterpart X channel dx; x, we
consider a similar LP problem. Note for this LP problem, with
the objective function Zfil aAli, it needs to follow similar con-
straints to (35) and (36), in which each d; is just replaced by ciz
Thus we have dx, ;¢ > ds; x. Obviously, in any case, the sum-
GDoF of the K-user interference channel must be less than or
equal to that of its counterpart X channel, i.e. ds ;¢ < ds x.
Therefore, under condition (7), we have established that the
K-user interference channel and its counterpart X channel
have the same sum-GDoF.

V. CONCLUSION

In this paper, we extend the optimality of TIN to more
general classes of message sets. The main result is that for the
TIN-optimal K -user interference channel, even if the message
set expands to include the X setting where each transmitter
has one independent message to each receiver, operating the
new channel as the original interference channal and treating
interference as noise at each receiver is still optimal to achieve
the sum channel capacity to within a constant gap.
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