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Abstract—Seeking fundamental insights into multi-hop multi-
flow networks we study the simplest non-trivial setting, a 2⇥2⇥2
MIMO interference network comprised of two sources, two relays
and two destinations, wherein all nodes have M antennas, all
first-hop channels are of rank D1, and all second hop channels
are of rank D2. For this setting, we show that the optimal
sum DoF is min(4D1, 4D2, 2M � |D1 � D2|). While 4D1, 4D2

are the obvious min-cut bottlenecks that are active when either
hop is severely rank-deficient, what is remarkable is that under
moderate rank-deficiencies the DoF are limited not by the higher
or the lower of the two ranks D1, D2, but only by the difference
of the two ranks |D1 �D2|. This suggests an interesting “rank-
matching” design principle for multi-hop networks, reminiscent
of “impedance matching”, wherein the goal is not necessarily to
increase or decrease the rank of each hop, but rather to use linear
processing at intermediate hops to create effectively a two-hop
setting with matching ranks.

I. INTRODUCTION

Following significant advances in our understanding of
single-hop multi-flow [1]–[4] and multi-hop single-flow [5],
the natural next step is to extend this understanding to
multi-hop multi-flow wireless networks. An early attempt in
this direction came from translating the multi-hop multi-flow
problem into a single hop interference network, in order to
take advantage of interference alignment schemes developed
for single hop interference networks. This is known as the
precoding based network alignment (PBNA) paradigm [6]–
[8], and is based on the assumption that the intelligence
resides only at the source and destination nodes, whereas
all intermediate nodes only do random linear forwarding
operations. Going beyond PBNA, by allowing intelligence at
some (but not necessarily all) of the intermediate layers of
nodes creates a multi-hop setting where a key issue is the
optimization of the functionalities of these intermediate layers
comprised of intelligent relays. This has motivated canonical
layered models such as the 2 ⇥ 2 ⇥ 2 interference channel,
possibly with multiple antennas at each node. DoF studies of
the 2⇥ 2⇥ 2 MIMO interference channel have identified key
design principles, such as aligned interference neutralization
[9], and have contributed fundamental insights that have turned
out to be useful even in generalized settings such as K⇥K⇥K
networks [10], [11], multi-hop layered networks with arbitrary
topologies [12], [13], and even non-layered settings [14].

To seek new fundamental insights into multi-hop multi-flow
networks, it is important to further enrich the 2⇥2⇥2 MIMO
interference channel model to capture other aspects of the
multi-hop multi-flow problem. This is the motivation for this
work.

One important aspect that is yet unexplored is that the
structure of the network can vary across hops, in a way that
each hop has a distinct character. For instance, one hop may
be comprised of fewer paths and experience greater spatial de-
pendency than another which may have multiple paths and less
spatial dependency. Or in a more direct translation to two-hop
wireless networks, one hop could be line-of-sight/backhaul
and the other could be an indoor environment with abundant
scattering. A starting point to capture spatial dependencies is
to consider rank-deficient channels [15]–[17]. To this end, we
enrich the 2 ⇥ 2 ⇥ 2 MIMO interference channel model by
assuming different rank constraints in each hop. Through this
simple model we hope to identify fundamental DoF constraints
imposed by the variation in spatial dependencies from one
hop to another. Specifically, we seek new DoF outer bounds,
beyond the obvious min-cut bounds, that depend only on the
ranks of the channels within each hop. As a measure of the
quality of these outer bounds we will also explore if the bounds
are tight almost surely if the channels are generated from
continuous distributions subject to given rank-constraints.

The main contribution of this work is to identify a key
”rank-mismatch” bottleneck on the DoF of a multi-hop multi-
flow network. Specifically, in a 2⇥ 2⇥ 2 MIMO interference
network, where the channels between each source and relay
node have rank D1 in the first hop, and the channels between
each relay and destination node have rank D2 in the second
hop, we show that aside from the usual min-cut bounds which
are active only when either of the hops is severely rank
constrained, the information theoretic DoF are bounded above
by 2M � |D1 � D2|. Thus, for moderate rank-deficiencies,
the loss of DoF depends only on the mismatch |D1 � D2|,
of the ranks in the two hops. Remarkably this bound is tight
almost surely for generic channel realizations subject to the
given rank constraints. This finding has interesting potential
implications for the design of multi-hop (more than 2 hops)
multi-flow settings. Through linear operations at intermediate
hops, one could create effectively a two-hop network with
matching ranks, thus allowing the full 2M DoF, i.e., the ideal
scenario where “everyone gets the entire cake” [9]–[11]. The
“rank-matching” principle is reminiscent of the “impedance
matching” principle in circuit theory for maximum power
transfer. Just as the power transfer in a circuit is maximized
when the effective load impedance matches the effective
source impedance, the DoF of the 2⇥ 2⇥ 2 MIMO multi-hop
multi-flow network are maximized when the effective first hop
rank matches the effective second hop rank.
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II. SYSTEM MODEL
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Fig. 1: 2 ⇥ 2 ⇥ 2 MIMO rank deficient interference channel

The 2 ⇥ 2 ⇥ 2 MIMO interference channel with M antennas
at each node, where the 2 transmitters send 2 independent
messages W1, W2 to the 2 receivers, is shown in Fig. 1. Over
the tth channel use, let H l

ji(t) 2 CM⇥M , i, j, l 2 {1, 2} denote
the channel in the l-th hop between node i and node j. The
signal transmitted by the ith transmitter (l = 1) or the ith relay
(l = 2) is the M ⇥ 1 vector denoted as X l

i(t), i, l 2 {1, 2}.
The received signal at each hop is given as

Y l+1
j (t) = H l

j1(t)X
l
1(t) + H l

j2(t)X
l
2(t) + Zl+1

j (t) (1)

wherein j, l 2 {1, 2} and Zl+1
j (t) is the M⇥1 i.i.d. zero mean

unit variance circularly symmetric complex Gaussian noise. At
each transmitting node, we have the average power constraint
P . The time index, t, will be suppressed for concise notation,
when no ambiguity would be caused. Define

H1 =


H1

11 H1
12

H1
21 H1

22

�
H2 =


H2

11 H2
12

H2
21 H2

22

�

The crucial assumption of rank-deficiency, is that the channels
in the lth hop have rank Dl,

rank(H l
ji) = Dl. (2)

That there are no other critical rank-deficiencies, is enforced
by the following natural assumptions.

rank
�
[H l

j1 H l
j2]

�
= min(M, 2Dl) j, l 2 {1, 2} (3)

rank
✓

H l
1i

H l
2i

�◆
= min(M, 2Dl) i, l 2 {1, 2} (4)

rank(H l) = min(2M, 4Dl) (5)

Aside from the rank constraints, the channels can take arbi-
trary values, bounded away from infinity to avoid degenerate
scenarios. Perfect channel knowledge is assumed everywhere.

The definitions of codebooks, achievable rates, capacity, and
degrees of freedom are all used here in the standard sense.

III. MAIN RESULTS

Theorem 1 (Outer Bound): An outer bound on the sum
DoF of the 2⇥2⇥2 MIMO rank deficient interference channel
described above, is

d⌃  min{4D1, 4D2, 2M � |D1 � D2|} (6)

regardless of whether the channel coefficients are time-varying
or constant.

Theorem 2 (Achievability): The outer bound of Theorem
1 is achievable if the channel coefficients are time-varying,
and generic.

Remark 1: By generic channels we mean that the channels
are drawn according to a continuous distribution over the
algebraic variety defined by the rank-constraints. For instance,
one may assume that each M ⇥ M channel over the lth hop
is a product of an M ⇥ Dl channel matrix and a Dl ⇥ M
channel matrix, each of which is generated randomly and
independently of the others, both across space and time.

IV. PROOF OF THEOREM 1

Proof: We begin with a change of basis operation (an
invertible linear transformation that does not affect the DoF)
along the lines of [18]. The subsequent genie-aided dimen-
sion counting arguments used for information theoretic outer
bounds are consistent with the frameworks developed in [18].

A. Change of basis operation
The outcome of the change of basis operation is illustrated

in Fig. 2 for the case where Dl > M
2 . The change of basis for

the case where Dl  M
2 is trivial because there is no overlap

between the signal spaces accessed by channels from different
nodes, so a complete orthogonalization of all 4 channels is
possible. Here we describe the change of basis operation for
the first hop, where D1 > M

2 . The change of basis for the
second hop is very similar, with D2 replacing D1, relays
replacing transmitters, and destinations replacing relays.

Step 1: At each relay, the received signal is rotated such that
the first M � D1 antennas of relay k (denoted by ka) do not
hear Transmitter j, j 6= k and the last M�D1 antennas of relay
k (denoted by kc) do not hear Transmitter k. This operation
is guaranteed because of the rank-deficiency assumptions. The
remaining 2D1 � M antennas are denoted as kb.

Step 2: At transmitter k, k 2 {1, 2}, there is a D1-
dimensional transmit subspace orthogonal to M � D1 relay
antennas ka and another D1-dimensional subspace orthogonal
to M � D1 relay antennas jc, j 6= k. These two D1-
dimensional subspaces have 2D1�M dimensional intersection
within the M -dimensional space seen from the transmitter.
The change of basis at transmitter k maps these 2D1 � M
dimensions to the 2D1 � M antennas denoted as kb. Then,
the first M �D1 antennas of transmitter k are mapped to the
space that is not heard by Relay j, j 6= k and the last M �D1

antennas of Transmitter k are mapped to the space not heard
by Relay k. This operation is guaranteed again because of the
rank deficiency assumptions.

B. Outer Bound
1) Region 1: D1 > M

2 ,D2 > M
2 :

(1.1) When D1  D2: Let a genie provide G1 =
{Xn

2b, X
n
2c, R

n
2a} to Receiver 1, which has M antennas. The

total number of dimensions available to Receiver 1 (including
genie) is:

M + |G1| = M + |Xn
2b| + |Xn

2c| + |Rn
2a| = 2M � (D2 � D1)
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Fig. 2: Change of Basis for Region 1. D1 > M
2 , D2 > M

2
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D1 X2a �
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� S2a(X2a) D1

� S2b() M � 2D1

� S2c(X1c) D1

M �D2 R2a �
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Fig. 3: Change of Basis for Region 2. D1  M
2 , D2 > M

2

Receiver 1 can decode its desired message W1 and can
obtain Xn

1a, Xn
1b, X

n
1c. Using genie information Xn

2b, X
n
2c,

Receiver 1 can reconstruct the received signal at Relay 1
and obtain Rn

1a, Rn
1b, R

n
1c. This enables receiver 1 to remove

Rn
1a, Rn

1b, R
n
1c from the received signal and decode Rn

2b, R
n
2c.

With additional genie information Rn
2a, Receiver 1 would be

able to decode Xn
2a and as a result, decodes message W2

(subject to noise distortion) sent from Transmitter 2. Hence,
the sum DoF is bounded as d⌃  M+|G1| = 2M�(D2�D1).

(1.2) When D1 > D2: Let a genie provide G1 =
{Xn

2c, R
n
2a, Rn

2b} to Receiver 1, which has M antennas. The
total number of dimensions at Receiver 1 (including genie) is:

M + |G1| = M + |Xn
2c| + |Rn

2a| + |Rn
2b| = 2M � (D1 � D2)

Receiver 1 can decode its desired message W1 and can obtain
Xn

1a, Xn
1b, X

n
1c. Receiver 1 can decode Rn

2c using M � D2

antennas. Using genie information Rn
2a, Rn

2b and decoded Rn
2c,

Receiver 1 can reconstruct the received signal at Relay 2
and obtain Xn

2a, Xn
2b. With additional genie information Xn

2c,
Receiver 1 would be able to decode message W2 (subject to
noise distortion) sent from Transmitter 2. Hence, the sum DoF
is bounded as d⌃  M + |G1| = 2M � (D1 � D2).

Combining bounds of (1.1) and (1.2), we get the bound:

d⌃  2M � |D1 � D2| (7)

2) Region 2: D1  M
2 ,D2 > M

2 : Let a genie provide
G1 = {Xn

2c, R
n
2a} to Receiver 1, which has M antennas. The

total number of dimensions at Receiver 1 (including genie) is:

M + |G1| = M + |Xn
2c| + |Rn

2a| = 2M � (D2 � D1)

Receiver 1 can decode its desired message W1 and can
obtain Xn

1a, Xn
1b, X

n
1c. Using genie information Xn

2c, Re-
ceiver 1 can reconstruct the received signal at Relay 1 and
obtain Rn

1a, Rn
1b, R

n
1c. This enables receiver 1 to remove

Rn
1a, Rn

1b, R
n
1c from the received signal and decode Rn

2b, R
n
2c.

With additional genie information Rn
2a, Receiver 1 would be

able to decode Xn
2a and as a result, decodes message W2

(subject to noise distortion) sent from Transmitter 2. Hence,
the sum DoF is bounded as d⌃  M+|G1| = 2M�(D2�D1).

When M > D1 + D2, outer bound on the sum DoF is the
same as the cutset bound, d⌃  4D1. Hence, outer bound on

the sum DoF for Region 2, is:

d⌃  min{4D1, 2M � (D2 � D1)} (8)

3) Region 3: D1 > M
2 ,D2  M

2 : Let a genie provide
G1 = {Xn

2c, R
n
2a, Rn

2b} to Receiver 1, which uses only 2D2

antennas. The total number of dimensions (including genie):

2D2 + |G1| = 2D2 + |Xn
2c|+ |Rn

2a|+ |Rn
2b| = 2M � (D1 �D2)

Receiver 1 can decode its desired message W1 and can
obtain Xn

1a, Xn
1b, X

n
1c. Receiver 1 can decode Rn

2c using D2

antennas. Using genie information Rn
2a, Rn

2b and known Rn
2c,

Receiver 1 can decode the received signal at Relay 2 and
obtain Xn

2a, Xn
2b. With additional genie information Xn

2c,
Receiver 1 can decode the message W2 (subject to noise
distortion) sent from Transmitter 2. Hence, the sum DoF is
bounded as d⌃  M + |G1| = 2M � (D1 � D2).

When M > D1 + D2, outer bound on the sum DoF is the
same as the cutset bound, d⌃  4D2. Hence, outer bound on
the sum DoF for Region 3, is :

d⌃  min{4D2, 2M � (D1 � D2)} (9)

4) Region 4: D1  M
2 ,D2  M

2 : In this region, DoF outer
bound is the same as the min-cut, d⌃  min(4D1, 4D2).

This completed the converse proof. Alternate converse proof
for a more asymmetric setting is discussed in [19].

V. PROOF OF THEOREM 2

Proof: Achievability is shown for time-varying generic
channels through an allocation of signal dimensions over space
or time, for Zero-Forcing (ZF), Interference Alignment in X
channel (X), Zero-Forcing over Broadcast channel (BC), and
Aligned Interference Neutralization (AIN), with the fraction
of signal dimensions used for each denoted as fZ , fX , fB , fA,
respectively. NZ , NX , NB , NA denote the corresponding num-
ber of symbols (listed in Table I). Symbol extensions are
used if necessary. Since all achievable schemes are linear and
duality applies in the reciprocal direction, we assume that the
first hop channel rank is smaller, i.e., D1  D2, and show
achievability of min{4D1, 2M � (D2 � D1)} DoF.
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M �D1 X1a �
2D1 �M X1b �
M �D1 X1c �

� S1a(X1a) M �D1

� S1b(X1a, X1b, X2b, X2c) 2D1 �M
� S1c(X2c) M �D1

D2 R1a �
M � 2D2 R1b �

D2 R1c �

� Y1a(R1a) D2

� Y1b() M � 2D2

� Y1c(R2c) D2

M �D1 X2a �
2D1 �M X2b �
M �D1 X2c �

� S2a(X2a) M �D1

� S2b(X2a, X2b, X1b, X1c) 2D1 �M
� S2c(X1c) M �D1

D2 R2a �
M � 2D2 R2b �

D2 R2c �

� Y2a(R2a) D2

� Y2b() M � 2D2

� Y2c(R1c) D2

Fig. 4: Change of Basis for Region 3. D1 > M
2 , D2  M

2

Let us denote the precoding matrix used by Transmitter or
Relay k of hop l as V l

k which is of size M ⇥ 2D1 or M ⇥
(M � D2�D1

2 ), depending on the channel ranks.

Sl
1 = [H l

11V
l
1 H l

12V
l
2 ] Sl

2 = [H l
21V

l
1 H l

22V
l
2 ] (10)

The signal space matrices Sl
1, l 2 {1, 2}, can be shown to

be full rank, since H l
11 and H l

12 are time-varying, generic
channels, and they rotate the vectors in different directions.
Hence, apart from the precoding vectors that are chosen to
align at Relay 1 or Receiver 1, the remaining rotated vectors
would lie in different directions. Similarly, the signal space
matrices Sl

2, l 2 {1, 2} can be shown to be full rank. We now
discuss the construction of the precoding matrices.

A. D1 + D2  M ! d⌃ = 4D1

In this region, zero-forcing (ZF) is sufficient to achieve 4D1

DoF. In both hops, 4D1 vectors are chosen by the transmitters
and the relays from the nullspace of the 4 channels.

B.

3
2D1 + 1

2D2  M < D1 + D2 ! d⌃ = 4D1

In the first hop, 4D1 zero-forcing vectors are chosen similar
to Region A. In the second hop, each relay constructs a
M⇥2D1 precoding matrix with vectors for ZF and X-channel
alignment.

V 2
i = [V 2

Z1i V 2
Z2i V 2

X1i V 2
X2i] i 2 {1, 2}

dim(V 2
Zji) = M �D2 dim(V 2

Xji) = D1 +D2 �M

wherein V 2
Zji denotes the vectors from the nullspace of chan-

nel H2
ji, i, j 2 {1, 2}.

Alignment vectors V 2
Xji, i, j 2 {1, 2} are chosen to satisfy

the following X-channel interference alignment conditions.

H2
11V

2
X21 = �H2

12V
2
X22 ✓ H2

11 \ H2
12 (11)

H2
21V

2
X11 = �H2

22V
2
X12 ✓ H2

21 \ H2
22 (12)

Note that

dim(H2
11 \ H2

12) = dim(H2
21 \ H2

22) = 2D2 � M

� D1 + D2 � M = dim(V 2
Xji)

Hence 2D1 linearly independent vectors can be chosen at each
relay. Signal spaces at the receivers are as follows

S2
1 =

⇥
H2

11[V
2
Z21 V 2

X11 V 2
X21] H2

12[V
2
Z22 V 2

X12]
⇤

(13)
S2

2 =
⇥
H2

22[V
2
Z12 V 2

X12 V 2
X22] H2

21[V
2
Z11 V 2

X21]
⇤

(14)

The receiver signal spaces S2
1 , S2

2 are full rank since the
channels are generic and non-aligned vectors would be rotated
in different directions.

C. 2D1  M < 3
2D1 + 1

2D2 ! d⌃ = 2M � (D2 � D1)

In the first hop, when common symbols are sent to both
relays, relays can cooperate and the second hop could be
treated as a Broadcast channel (BC), over which zero-forcing
could be performed to send symbols only to the intended
receivers. Hence, each transmitter sends one fraction of the
symbols privately to the 2 relays, and another fraction as
common information to the 2 relays.

In the second hop, ZF vectors are chosen to the extent
possible (4(M�D2)) and the remaining signal dimensions are
used for treating the second hop as a BC and an X channel.
C.1. Beamforming in the first hop

In the first hop, Transmitter i constructs the precoding
matrix V 1

i with M � D2�D1
2 vectors, as follows.

V 1
i = [V 1

Z1i V 1
Z2i V 1

Bi] i 2 {1, 2} (15)

wherein V 1
Bi, i 2 {1, 2} denotes the 3D1+D2�2M

2 vectors
chosen so that both relays can receive the symbols, and V 1

Zji

denotes the M� D1+D2
2 vectors from the nullspace of channel

H1
ji, i, j 2 {1, 2}. Since M � D1+D2

2  M � D1 and M �
D1+D2

2 + 3D1+D2�2M
2 = D1, such precoding vectors exist.

S1
1 =

⇥
H1

11[V
1
Z21 V 1

B1] H1
12[V

1
Z22 V 1

B2]
⇤

(16)
S1

2 =
⇥
H1

22[V
1
Z12 V 1

B2] H1
21[V

1
Z11 V 1

B1]
⇤

(17)

The relay signal spaces S1
1 , S1

2 are full rank (2D1), since the
channels are generic, and the vectors are rotated in different
directions. Thus, each relay decodes 2M�(D1+D2) symbols
sent privately through zero-forcing and 3D1 + D2 � 2M
symbols sent common to both relays.
C.2. Beamforming in the second hop

In the second hop, Relay i uses an M ⇥ 2D1 precoding
matrix V 2

i to send 2M � (D2 � D1) symbols, as follows.

V 2
i = [V 2

Z1i V 2
Z2i V 2

X1i V 2
X2i V 2

Bi] (18)

dim(V 2
Zji) = M � D2, dim(V 2

Xji) =
D2 � D1

2
,

dim(V 2
Bi) = 3D1 + D2 � 2M, i, j 2 {1, 2}

wherein V 2
Zji denotes the vectors from the nullspace of the

channel H2
ji, i, j 2 {1, 2}. Vectors V 2

Xji, i, j 2 {1, 2} are
chosen to satisfy the conditions in (11),(12) as in Region B.
Since D2�D1

2 < 2D2 �M (signal space overlap), vectors can
be chosen to align interference in D2�D1

2 dimensions.
Broadcast channel vectors are constructed as V 2

B1 =
[V 2

B11 V 2
B21] and V 2

B2 = [V 2
B12 V 2

B22]. Symbols intended for
Receiver 1 are precoded using 3D1+D2�2M

2 vectors (V 2
B11 and

V 2
B12) from the nullspace of [H2

21 H2
22]. Symbols intended for

Receiver 2 are precoded using 3D1+D2�2M
2 vectors (V 2

B21 and
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Table I: Dimension of precoding vectors for 2⇥ 2⇥ 2 rank deficient interference channel with D2 > D1

D1, D2 Region NA NB NX NZ Total DoF

D1 +D2  M 0 0 0 4D1 4D1

3
2D1 + 1

2D2  M < D1 +D2 0 0 4(D1 +D2 �M) 4(M �D2) 4D1

2D1  M < 3
2D1 + 1

2D2 0 3D1 +D2 � 2M 2(D2 �D1) 4(M �D2) 2M � (D2 �D1)

M < 2D1 2(2D1 �M) D2 �D1 2(D2 �D1) 4(M �D2) 2M � (D2 �D1)

V 2
B22) from the nullspace of [H2

11 H2
12]. Thus, 3D1+D2�2M

2
symbols can be decoded at each receiver free of interference.

S2
1 =

"
H2

11[V
2
Z21 V 2

X11 V 2
X21] H2

12[V
2
X12 V 2

Z22]
2X

i=1

H2
1iV

2
B1i

#

S2
2 =

"
H2

22[V
2
Z12 V 2

X12 V 2
X22] H2

21[V
2
X21 V 2

Z11]
2X

i=1

H2
2iV

2
B2i

#

The receiver signal spaces S2
1 , S2

2 are full rank (M ), since
the channels are generic with D2 � D1+D2

2 , D2 � M �
D1+D2

2 , and non-aligned vectors would lie in different di-
rections. Each receiver decodes 2(M � D2) symbols through
zero-forcing, D2 �D1 symbols through X-channel alignment
and 3D1+D2�2M

2 symbols through ZF on Broadcast channel.

D. M < 2D1 ! d⌃ = 2M � (D2 � D1)

In this region, interference can be aligned in the first hop
enabling us to perform Aligned Interference Neutralization
over 2D1 � M dimensions. We solve a linear programming
problem to determine the fraction of signal dimensions for the
4 schemes in the second hop, and the fractions are:

fA =
2(2D1 � M)

2M
fB =

D2 � D1

2M
fX =

3(D2 � D1)

2M
fZ =

4(M � D2)

2M

D.1. Beamforming in the first hop

In the first hop, Transmitter i uses a precoding matrix V 1
i

with M � D2�D1
2 vectors, as follows

V 1
i = [V 1

Z1i V 1
Z2i V 1

Bi V 1
Ai] i 2 {1, 2} (19)

wherein V 1
B2 denotes the D2�D1

2 vectors chosen so that both
relays can receive the symbols, V 1

Zji denotes the M � D1+D2
2

vectors from the nullspace of channel H1
ji, i, j 2 {1, 2} and

V 1
Ai, i 2 {1, 2} denotes the 2D1�M vectors used for Aligned

Interference Neutralization. Since M� D1+D2
2  M�D1 and

M � D1+D2
2 + D2�D1

2 + (2D1 �M) = D1, zero-forcing and
broadcast vectors exist.

In order to perform Aligned Interference Neutralization in
the first hop, we identify matrices U1

1 , U1
2 each of size M ⇥

(2D1 � M), such that

H1
11U

1
1 = H l

12U
1
2 (20)

H1
21U

1
1 = H l

22U
1
2 (21)

For the solution of (20), the basis of U1
1 has rank D1,

M � D1 of which will have H1
11U

1
1 = 0 and the remaining

2D1 � M will produce H1
11U

1
1 = H1

11 \ H1
12. Similarly,

for the solution of (21), U1
1 has rank D1. These two D1

dimensional spaces will intersect in a 2D1 � M dimensional
space, which is the solution that we seek since it satisfies
both equations. Similar solution can be found for U1

2 as well.
Thus, we have found two 2D1 � M dimensional spaces,
one at each relay, that are accessible by the same space at
each transmitter. Using these 2D1 � M dimensional spaces,
we perform Aligned Interference Neutralization as in [9],
where Transmitter 1 sends p , 2D1 � M symbols with p
precoding vectors V 1

A1,1, · · · , V 1
A1,p and Transmitter 2 sends

p � 1 = 2D1 � M � 1 symbols with p � 1 precoding vectors
V 1

A2,1, · · · , V 1
A2,p�1. Each precoding vector has size M ⇥ 1.

The alignment relationship is same as that in Table I of [9].
Vectors are chosen to align at the two relays, as follows

H1
11V

1
A1,q+1 = H1

12V
1
A2,q, q = 1, · · · , p � 1 (22)

H1
21V

1
A1,q = H1

22V
1
A2,q, q = 1, · · · , p � 1 (23)

Here to find a solution, we will start from a random one di-
mensional subspace of U1

1 and set it as V 1
A1,1, then go through

(22),(23) to find all other vectors. Note that as p = 2D1 �M ,
we are guaranteed to find such independent vectors.

Signal spaces at the relays are given as

S1
1 =

⇥
H1

11[V
1
Z21 V 1

B1 V 1
A1] H1

12[V
1
Z22 V 1

B2]
⇤

(24)
S1

2 =
⇥
H1

21[V
1
Z11 V 1

B1 V 1
A1] H1

22[V
1
Z12 V 1

B2]
⇤

(25)

The relay signal spaces S1
1 , S1

2 are full rank (M ), since the
channels are generic with D1 > M � D1 and based on the
precoding vectors construction. Hence, the non-aligned vectors
are rotated in different directions. Thus, each relay receives
2M � (D1 +D2) symbols sent privately through zero-forcing,
2D1 �M symbols through Interference Alignment and D2 �
D1 symbols sent common to both relays.
D.2. Beamforming in the second hop

In the second hop, Relay i uses a precoding matrix V 2
i with

M vectors to send 2M � (D2 � D1) symbols.

V 2
i = [V 2

Z1i V 2
Z2i V 2

X1i V 2
X2i V 2

Bi V 2
Ai] (26)

dim(V 2
Zji) = M � D2, dim(V 2

Ai) = 2D1 � M

dim(V 2
Xji) = dim(V 2

Bi) =
D2 � D1

2
i, j 2 {1, 2}

wherein V 2
Zji denotes the vectors from the nullspace of

channel H2
ji, i, j 2 {1, 2}. Vectors V 2

Xji, i, j 2 {1, 2} are
chosen such that the conditions in (11),(12) are satisfied,
as in Region B. Since D2�D1

2 < 2D2 � M (signal space
overlap), vectors can be chosen to align interference in D2�D1

2
dimensions. In order to perform Aligned Interference Neutral-
ization, precoding matrices V 2

A1, V
2
A2 of size M ⇥ (2D1 �M)
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Fig. 5: Achieving 2M � (D2 � D1) DoF in Region D: D1 > M
2

are constructed similar to the alignment vectors construction
in the first hop (see Table II of [9]), using which we can
achieve 2p � 1 = 2(2D1 � M) � 1 DoF. By considering a
k-symbol extension, we can send 2k(2D1 �M)� 1 symbols
over such symbol-extended network by Aligned Interference
Neutralization, resulting in 2(2D1 � M) DoF asymptotically.

Vectors V 2
B1 and V 2

B2 are constructed similar to that in
Region C. Thus, D2�D1

2 symbols are decoded at each receiver
free of interference.

S2
1 =

"
H2

11[V
2
Z21 V 2

X11 V 2
X21 V 2

A1] H2
12[V

2
Z22 V 2

X12]
2X

i=1

H2
1iV

2
B1i

#

S2
2 =

"
H2

22[V
2
Z12 V 2

X22 V 2
X12] H2

21[V
2
Z11 V 2

X21 V 2
A1]

2X

i=1

H2
2iV

2
B2i

#

The receiver signal spaces S2
1 , S2

2 are full rank (M ), since
the channels are generic with D2 � D1+D2

2 , D2 � M �
D1+D2

2 , and the non-aligned vectors lie in different direc-
tions. Each receiver decodes 2(M � D2) symbols through
ZF, D2 � D1 through X-channel alignment, D2�D1

2 symbols
through zero-forcing for BC, and 2D1 � M symbols through
Aligned Interference Neutralization, as illustrated in Fig. 5.

VI. CONCLUSIONS

Genie-based outer bounds are developed for the DoF of the
2⇥2⇥2 MIMO rank deficient interference channel with time-
varying or constant channels. These outer bounds are better
than the cutset bounds (function of the rank mismatch, |D1 �
D2|) and are shown to be tight when the channel coefficients
are time-varying and generic. DoF of multi-hop multi-flow
networks are discussed in the full version of this paper [19].
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