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Abstract—It has been shown recently by Sun et al. that in
a K user parallel Gaussian interference network, if over each
sub-channel, for each user the desired signal strength is no less
than the sum of the strengths of the strongest interference from
this user and the strongest interference to this user (all signal
strengths measured in dB scale), then separate coding over each
sub-channel and treating interference as noise (TIN) is sufficient
to achieve the sum generalized degrees of freedom (GDoF),
subject to a mild invertibility condition [1]. In this work, we show
that the weighted sum GDoF is similarly separable, i.e., separate
coding and TIN is sufficient to achieve the weighted sum GDoF,
subject to a similar mild invertibility condition. This is proved
by translating the weighted GDoF optimization problem to the
sum GDoF problem of a class of compound parallel Gaussian
interference networks, giving rise to new weighted GDoF outer
bounds that are strictly stronger than what is implied by the
sum GDoF bounds obtained previously.

I. INTRODUCTION

There is much recent interest in the capacity of Gaussian in-
terference networks in the regime where the simplest scheme,
where each transmitter uses point to point Gaussian codebook
with power control and each receiver “treats interference
as noise” (TIN), is information theoretically optimal. The
information theoretic optimality of TIN is considered from
the exact capacity perspective in [2], [3], [4], [5] where such
a TIN optimal regime is identified. However, either due to the
difficulty of characterizing the exact capacity or because exact
optimality of TIN is indeed rare, the regime that is identified
so far is very small, limiting its significance in practice. On
the other hand, one would expect a much larger regime where
TIN is approximately optimal. Such a regime may be useful
for broader insights into the optimality of TIN and may be
also more tractable. Based on this intuition, recent work has
explored the optimality of TIN by relaxing the metric from
exact capacity to approximate capacity, specifically in terms
of the generalized degrees of freedom (GDoF).

The starting point of this work is the result by Geng et al.
in [6], where an elegant TIN optimality condition is identified
under which TIN is sufficient to achieve the whole GDoF
region (also the capacity region to a constant gap). The TIN
optimality condition is that in a K user Gaussian interference
network, for each user the desired signal strength is no less
than the sum of the strengths of the strongest interference
from this user and the strongest interference to this user
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(all signal strengths measured in dB scale). More recently,
[1] considers the K user parallel Gaussian TIN optimal
interference network, whereby each sub-channel satisfies the
TIN optimality condition. It is shown that the sum GDoF of the
parallel network can be achieved by separate coding and TIN
over each sub-channel, subject to a mild invertibility condition.
The main motivation of this work is to go beyond the sum
GDoF to the GDoF region, and in particular to answer the
following question: Is separate TIN over each sub-channel still
optimal for the GDoF region of the K user parallel network
collectively, given that each sub-channel individually is TIN
optimal?

As the GDoF region can be described by the weighted
sum GDoF for all choices of weights, we focus on the
weighted sum GDoF problem. We show that any weighted
GDoF optimization (that is, any supporting hyperplane of the
GDoF region) of the parallel network can, without loss of
optimality, be solved separately over each sub-channel and
the optimal value for each sub-channel can be achieved by
TIN, subject again to a mild invertibility condition similar to
the one identified in [1]. The main difficulty which limited our
previous work to sum GDoF is that, unlike the case without
parallel channels studied by Geng et al. where it is shown
that sum-GDoF bounds are sufficient to characterize the entire
GDoF region, with parallel channels it turns out that sum
GDoF bounds alone are not sufficient to describe the region
achieved by separate TIN (an example is given in [1]). This is
essentially because the GDoF region is not polymatroidal. The
new insight that allows us to overcome this difficulty in this
work is that the weighted GDoF optimization problem can be
translated into the sum GDoF problem of a class of compound
parallel Gaussian interference networks. For any given vector
of weights, we are able to define a corresponding compound
parallel Gaussian interference network such that the weighted-
sum GDoF of the original parallel network is equal to the sum
GDoF of this compound parallel network. This allows us to
use the insights from [1] to find the sum GDoF value and
show that it is achieved by separate TIN on each subchannel.

II. SYSTEM MODEL, DEFINITIONS, AND PRELIMINARIES

A. Gaussian Interference Network and GDoF Framework

We retain the channel model of [1], represented as follows.
Consider the K user real Gaussian interference network, with
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(AWGN) at Receiver k. Noise processes are i.i.d over time
and sub-channels. All symbols are real. We call the exponent
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mapped to zero). All channel coefficients are fixed over time.
Perfect channel knowledge is available everywhere.
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produce the estimate Ŵk of the message Wk. The prob-
ability of error for Receiver k is given by the probabil-
ity that Ŵk is not equal to Wk. A rate tuple R(P ) =
(R1(P ), R2(P ), . . . , RK(P )) is said to be achievable if we
have an encoding and decoding mapping such that the prob-
ability of error for each receiver approaches zero as n ap-
proaches infinity. The capacity region C(P ) is the closure of
the set of all achievable rate tuples.

We define the (convex) GDoF region as the collection of
weighted sum GDoF problems in (2), shown at the top of the
next page, and the sum GDoF value as DΣ = maxD

∑K
k=1 dk.

If the following TIN optimality condition is satisfied
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the network (sub-channel) is referred to as a TIN optimal
network (sub-channel) and in this work, we focus exclusively
on TIN optimal networks, i.e., the condition holds throughout.

B. Weighted Directed Graph Representation

A directed graph is defined for each sub-channel of the
parallel interference network. As all definitions and notations
to be introduced are associated with one specific sub-channel,
the sub-channel index superscript is omitted in this subsection
for compactness. The directed graph representation of one sub-
channel of the parallel interference network consists of K
vertices, V1, V2, · · · , VK , one for each user. Since the vertices
correspond directly to users, we will also refer to them as
users. For all (i, j) ∈ [K] × [K], there is a directed edge
eij from user j to user i, with weight w(eij) defined as
w(eij) = αij if i 6= j and w(eij) = 0 if i = j.

We are particularly interested in the notion of cycles on this
directed graph. We define a cycle, π, as a cyclically ordered
subset of users, without repetitions. The set of all cycles is
denoted as [Π]. The cardinality of a cycle, denoted as |π| is
the number of users that it involves. |π| =

∑
Vk∈π 1,∀π ∈ [Π].

A cycle with only one user is a trivial cycle. Two cycles πp, πq ,
are said to be disjoint if they contain no common user, denoted
as πp ∩ πq = φ.

Introducing a slight abuse of notation in the interest of
conciseness, the same cycle, π, can also be equivalently rep-
resented as a set of edges representing a closed path where no
user is visited more than once. The weight of a cycle, denoted
as w(π), is the sum of the weights of all the edges traversed in
completing the cycle, i.e., w(π) =

∑
eij∈π w(eij),∀π ∈ [Π].

Note that the weight of a trivial cycle is zero. Intuitively,
the weight of a cycle is the accumulation of the strengths
of interference terms encountered in the cycle.

Cyclic Partition: A subset of the set of all cycles, Π ⊂ [Π],
is said to be a cyclic partition if πp∩πq = φ, ∀πp, πq ∈ Π and∑
π∈Π |π| = K. In other words, a cyclic partition is a disjoint

cyclic cover of the K users.
Cyclic Partition Bound: For any cyclic partition Π, define

the corresponding cyclic partition bound, DΠ
Σ , as

∑K
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k=1 αkk − w(Π), where w(Π) =
∑
π∈Π w(π) is the net

weight of the cyclic partition, representing the total interfer-
ence encountered in this partition. We also call w(π) cycle
bound, then cyclic partition bound is merely a collection of
disjoint cycle bounds. Since there are many cyclic partitions,
each of which gives rise to a cyclic partition bound, let us
denote the tightest of these bounds as the best cyclic partition
bound, DΠ∗

Σ . A cyclic partition that produces the best cyclic
partition bound is labeled an optimal cyclic partition, and
denoted by Π∗. For example, when K = 6, one possible cyclic
partition is Π = {{1, 3, 5}, {4, 2}, {6}} which decomposes the
users into three cycles, such that each user is represented in
exactly one cycle. The corresponding cyclic partition bound is∑6
k=1 dk ≤

∑6
k=1 αkk−(α13+α35+α51)−(α42+α24)−(0).

Participating Edge: Edge eij is a participating edge for the
cyclic partition Π if i 6= j and eij ∈ π for some π ∈ Π.

Cyclic Predecessor: Under cyclic partition Π, the cyclic
predecessor for user k is user Π(k), if eΠ(k)k is a participating
edge for Π. Note that if user k belongs to a trivial cycle in Π
then Π(k) = φ.

Participating Input and Output Levels (Xi,u, Yk,u): For
any sub-channel, we define participating input levels Xi,u ,
0.Xi,(1), . . . , Xi,(nΠ(i)i), nΠ(i)i = b 1

2αΠ(i)i log2 P c to be the
bits levels that are below the decimal point, sent from Trans-
mitter i and observed at its predecessor Receiver Π(i). The
received signal levels resulting from all interfering Xi,u plus
additive Gaussian noise are defined as the participating output
levels Yk,u ,

∑K
i=1,i6=k sign(h̃ki)

√
PαkiXi,u + Zk.

Invertibility: One sub-channel is said to be invertible
within bounded noise distortion if the mapping from Xu ,
(X1,u, . . . , XK,u) to Yu , (Y1,u, . . . , YK,u) is invertible for
an optimal cyclic partition Π∗. Mathematically, we require
H(Xu|Yu) = o(log(P )).
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Remark: Participating inputs and output levels (Xi,u, Yk,u)
and associated invertibility properties (H(Xu|Yu)) are defined
respective to some cyclic partition, though this dependency
is not explicitly shown in the notation. The referred cyclic
partition is understood from the context when these notations
appear. We mention that the invertibility property is mild. For
a detailed discussion, we refer to Section 5.3.2 in [1].

To consider the weighted sum GDoF problem, we translate
it to the sum GDoF problem of another network, defined next.
Suppose we are considering maximizing µ1d1 + · · ·+ µKdK
for positive integer weights µi ∈ Z+, i ∈ [K].

C. Replicated Compound Network

In the replicated compound network, Transmitter i is repli-
cated µi, i ∈ [K] times. Each replicated transmitter k ∈ [K]
has

∏K
i=1,i6=k µi compound receivers. An example with K =

3, (µ1, µ2, µ3) = (3, 2, 1) is shown in Figure 1.
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Fig. 1. (a) The second sub-channel of an network, (b) the corre-
sponding replicated compound sub-channel and (c) the corresponding
auxiliary sub-channel (to be used in later proof). The channel strength
level is indicated by the color of each link. To avoid cluttering the
figure, in (b), only the channels to the receivers associated with the
first replicate of each transmitter are shown.

The input output relationship of the replicated compound
network is described as (3), shown at the top of this page,
where over the m-th sub-channel, the transmitted symbol from
the p-th replicate of Transmitter j is denoted as X̄ [m]

j;p ,∀p ∈
{1, . . . , µj}, the received signal and AWGN observed at the
l-th compound receiver associated with the p-th replicate
of Transmitter i are represented by Ȳ

[m]
i;p:l and Z̄

[m]
i;p:l,∀p ∈

{1, . . . , µi}, l ∈ {1, . . . ,
∏K
j=1,j 6=i µj}, respectively. The in-

dices are interpreted modulo K. We set Z̄ [m]
i;p:l = Z

[m]
i . In

words, the network is designed such that each compound re-
ceiver sees one and only one interference from each interfering
replicated transmitter, without repetition.

For the replicated compound network, each transmitter has
an independent message for its compound receivers. Capacity
region and associated notions are defined similar to those of
the original network. Specifically, we denote the GDoF tuple
as (d̄1;1, . . . , d̄1;µ1

, d̄2;1, . . . , d̄K;µK ) and the sum GDoF value
as D̄Σ = maxD̄(

∑K
k=1

∑µk
j=1 d̄k;j), where D̄ is the GDoF

region of the replicated compound network.
The usage of the replicated compound network lies in the

following lemma, which reduces the weighted sum GDoF
problem to the sum GDoF problem.

Lemma 1: The weighted GDoF of the original network is
equal to the sum GDoF of the replicated compound network,
i.e., µ1d1 + · · ·+ µKdK = D̄Σ.

The proof is based on using the coding schemes of the
original network in the replicated compound network and vice
versa. Details are presented in the extended paper [7].

After this reduction, the problem is still not immediately
solved, as the sum GDoF of a parallel TIN optimal compound
interference network is generally open. But our constructed
replicated compound network contains some symmetry that
allows us to solve its sum GDoF value analytically. To find
D̄Σ, it is helpful to introduce the weighted directed graph
representation for the replicated compound network, similar
to that of the original network.

We have one directed graph for each compound
state of the replicated sub-channel. One compound state
is defined by keeping only one compound receiver
for each replicated transmitter. Consider one sub-channel
and one compound state where the received signals
are Ȳ1;1:l1;1

, · · · , Ȳ1;µ1:l1;µ1
, Ȳ2;1:l2;1

, · · · , ȲK;µK :lK;µK
. Note

that the sub-channel index superscript is omitted for
brevity. The directed graph consists of

∑K
k=1 µk vertices,

V̄1;1, · · · , V̄1;µ1 , V̄2;1, · · · , V̄K;µK , one for each user. For all
i, j ∈ [K], pi ∈ {1, · · · , µi}, pj ∈ {1, · · · , µj}, there is a
directed edge ēipi jpj from user (j; pj) to user (i; pi), with
weight w(ēipi jpj ) defined as w(ēipi jpj ) = αij if i 6= j, aj = pi
and 0 otherwise, where aj is defined according to the index of
the compound receiver li;pi . In words, the weight of an edge



is equal to the strength of the interfering link.
A cycle, π̄, is a cyclically ordered subset of users, without

repetitions. The set of all cycles is denoted as [Π̄]. The
cardinality of a cycle, denoted as |π̄| is the number of users
that it involves. π̄, can also be equivalently represented as a set
of edges representing a closed path where no user is visited
more than once. The weight of a cycle, denoted as w(π̄), is
the sum of the weights of all the edges traversed in completing
the cycle.

Cyclic Partition: A subset of the set of all cycles, Π̄ ⊂ [Π̄],
is said to be a cyclic partition if π̄p ∩ π̄q = φ, ∀π̄p, π̄q ∈
Π̄,
∑
π̄∈Π̄ |π̄| =

∑K
k=1 µk.

Cyclic Partition Bound: For any cyclic partition Π̄,
define the corresponding cyclic partition bound, D̄Π̄

Σ , as∑K
k=1

∑µk
j=1 d̄k;j ≤

∑K
k=1 µkαkk − w(Π̄), where w(Π̄) =∑

π̄∈Π̄ w(π̄).
We denote the tightest of cyclic partition bounds for all

cyclic partitions as the best cyclic partition bound, D̄Π̄∗
Σ . A

cyclic partition that produces the best cyclic partition bound
is labeled an optimal cyclic partition, and denoted by Π̄∗.

Participating Edge: Edge ēipi jpj is a participating edge for
the cyclic partition Π̄ if i 6= j and ēipi jpj ∈ π for some π̄ ∈ Π̄.

Cyclic Predecessor: Under cyclic partition Π̄, the cyclic
predecessor for user (k; pk) is user Π̄(k; pk), if ēΠ̄(k;pk)kpk

is
a participating edge for Π̄.

Participating Input and Output Levels
(X̄i;pi,u, Ȳk;pk,u): We define the participating input levels
as X̄i;pi,u , 0.X̄i;pi,(1), . . . , X̄i;pi,

(
n̄Π̄(i;pi)ipi

), n̄Π̄(i;pi)ipi
=

b 1
2w(Π̄(i; pi)ipi) log2 P c. We define the participating

output levels as the linear combination of the
interfering participating input levels plus noise,
Ȳk;pk,u ,

∑K
i=1,i6=k sign(h̃ki)

√
PαkiX̄i;ai,u + Zk, where ai

is defined with the index of the compound receiver lk;pk .
Invertibility: The compound state of one sub-channel is

said to be invertible within bounded noise distortion if the
mapping from X̄u , (X̄1;1,u, . . . , X̄K;µK ,u) to Ȳu ,
(Ȳ1;1,u, . . . , ȲK;µk,u) is invertible for an optimal cyclic parti-
tion Π̄∗. Mathematically, we require H(X̄u|Ȳu) = o(log(P )).
One sub-channel is said to be invertible if the compound state
whose best cyclic partition bound is the tightest among all
compound states is invertible.

III. GDOF REGION

We first review the result in [1] on the sum GDoF of K
user parallel Gaussian TIN optimal interference networks.

Theorem 1: (Theorem 5 in [1]) In a K user parallel Gaus-
sian TIN optimal interference network with M sub-channels,
if each sub-channel is individually invertible, then the sum
GDoF value of the parallel Gaussian interference network is
achieved by separate TIN over each sub-channel. Further, the
sum GDoF value is given by the sum of best cyclic partition
bound over each sub-channel, i.e., DΣ =

∑M
m=1DΠ[m]∗

Σ =∑M
m=1

[∑K
i=1 α

[m]
ii − w(Π[m]∗)

]
.

We now move from sum GDoF to GDoF region. Interest-
ingly, when we only have one sub-channel, the sum GDoF

bounds proved in Theorem 1 are sufficient to describe the
GDoF region, which can be achieved by TIN. This is proved
by Geng et al. in [6]. We restate this result in the following,
as it gives us the achievable TIN region for each sub-channel
by itself. For a parallel network, the Minkowski sum of the
TIN region for each sub-channel is the achievable region by
separate TIN.

Theorem 2: (Theorem 1 in [6]) In a K user Gaussian TIN
optimal interference network with one sub-channel, power
control and treating interference as noise achieve the entire
GDoF region. Moreover, the GDoF region is given by all sum
GDoF bounds given in Theorem 1 for all subsets of users.

The situation is different as we proceed from single sub-
channel case to multiple parallel sub-channels. We have the
following observation from Theorem 10 in [1], “the region
described by all tight sum-GDoF bounds for all subsets of
users is in general not the same as the region achievable by
separate TIN over each sub-channel.” Then it is noted [1]
that “either the separate TIN achievable region is not tight or
we need more than sum-rate bounds.” Here we show that the
latter is true, i.e., the sum GDoF bounds do not suffice.
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Fig. 2. A K = 3 user Gaussian interference network with 2 sub-
channels. The channel strength level is indicated for each link. Each
sub-channel is TIN optimal and invertible [1].

To be specific, we consider an example, which was intro-
duced in [1] to show the above notes. Consider a K = 3 user
Gaussian TIN optimal interference network with M = 2 sub-
channels, depicted in Figure 2. We set ε = 0.01. It is shown
in [1] that each sub-channel is invertible such that Theorem 1
applies. The sum GDoF bounds proved in Theorem 1 for all
subsets of users are the following.

d1 ≤ 1 + 1 = 2 (4)
d2 ≤ 1 + 1 = 2 (5)
d3 ≤ 1 + 1 = 2 (6)

d1 + d2 ≤ 1.5 + (1 + ε) = 2.5 + ε (7)
d2 + d3 ≤ 1.5 + (1 + ε) = 2.5 + ε (8)
d3 + d1 ≤ 1.5 + (1 + ε) = 2.5 + ε (9)

d1 + d2 + d3 ≤ 1.5 + 1.5 = 3 (10)

We now consider the tightest possible bound for 3d1+2d2+
d3, from only sum GDoF bounds, (4) - (10). That is

(4) + (7) + (10)⇒ 3d1 + 2d2 + d3 ≤ 7.5 + ε (11)



However, it turns out that the tightest bound for 3d1 +2d2 +
d3 is

3d1 + 2d2 + d3 ≤ 7 + 3ε (12)

which is tighter than (11). A proof of (12) can be found in the
extended paper [7]. Here we show how to get the RHS value
of this bound. As we will show that separate TIN is sufficient
to achieve any weighted sum GDoF, the tightest bound for
3d1 + 2d2 + d3 could be evaluated separately for each sub-
channel and then add them up. That is

3d1 + 2d2 + d3 = 3d
[1]
1 + 2d
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2 + d

[1]
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1 + 2d

[2]
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[2]
3
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[m]
1 , d

[m]
2 , d

[m]
3 ) ∈ R3

+,m ∈ {1, 2} denotes the GDoF
tuple of the m-th sub-channel by itself. They satisfy the
following constraints given by Theorem 2.
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d
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d
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3 ≤ 1 (22)

d
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1 + d
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2 ≤ 1 + ε (23)

d
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3 ≤ 1 + ε (24)

d
[2]
3 + d

[2]
1 ≤ 1 + ε (25)

d
[2]
1 + d

[2]
2 + d

[2]
3 ≤ 1.5 (26)

Thus the tightest bound on 3d1 + 2d2 + d3 based only on
sum GDoF bounds for each sub-channel by itself is obtained
by the sum of the following two bounds (referring to (12))

(13) + (16) + (19)⇒ 3d
[1]
1 + 2d

[1]
2 + d

[1]
3 ≤ 4 (27)

2× (23) + (25)⇒ 3d
[2]
1 + 2d

[2]
2 + d

[2]
3 ≤ 3(1 + ε) (28)

Let us now see why linear combinations of sum GDoF
bounds are loose. Note that the RHS of the sum GDoF
bounds of the parallel network, (4) - (10) are the sum of the
corresponding RHS of the sum GDoF of each sub-channel by
itself, (13) - (19) and (20) - (26). But in order to get the tightest
bound on 3d1 + 2d2 +d3, as shown in (27) and (28), we need
two different linear combinations of the sum GDoF bounds
of each sub-channel by itself, which is not available from the
sum GDoF bounds of the parallel network. The fundamental
reason is that the TIN region for each sub-channel is not
polymatroidal such that their Minkowski sum is not described
fully by the direct sum of corresponding inequalities for each
sub-channel.

With some additional effort, we can show that the bound
(12) is achievable as well, by separate TIN. In fact, this
example on maximizing weighted GDoF is representative of
our general result. We will show that any weighted sum GDoF
problem can be solved separately over each sub-channel and
the optimal value for each sub-channel is achieved by TIN.
We state this result in the following theorem.

Theorem 3: In a K user parallel Gaussian TIN optimal in-
terference network with M sub-channels, if each sub-channel
of the replicated compound channel is invertible, then the
weighted sum GDoF of the parallel Gaussian interference
network is achieved by separate TIN over each sub-channel.

The sketch of the proof is given as follows. Lemma 1
translates the weighted sum GDoF problem of the original
network to the sum GDoF problem of the replicated compound
network. To find the sum GDoF of the replicated compound
network, we resort to an auxiliary non-compound network (see
Figure 1(c)), which contains all interfering links in all possible
states. Such an auxiliary network has the property that its best
cyclic partition bound is the same as the replicated compound
network and it is further achievable by separate TIN over each
sub-channel. Details are given in [7].

IV. CONCLUSION

For K user parallel Gaussian TIN optimal interference
networks, we show that separate TIN over each sub-channel
is optimal under a mild invertibility condition, from the
perspective of weighted sum GDoF, extending previous work
on sum GDoF. As in the sum GDoF case, we conjecture
that the invertibility condition is mild, i.e., it holds in almost
all cases. Varying the weights of the weighted sum GDoF
problem, we are able to cover all supporting hyperplanes of
the compact convex GDoF region. But we do not claim the
separability of the whole GDoF region as we are not sure the
GDoF region is described by a finite number of weighted sum
GDoF inequalities and we need to verify the invertibility for
the replicated compound network for every possible weights
(possibly infinite).
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