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Abstract—We consider 2-user symmetric interference chan-
nels with confidential messages. For the linear deterministic
model of this channel, we develop inner and outer bounds
for the symmetric secure rate, which are shown to match and
characterize the symmetric secure capacity for a wide range
of channel parameters. For the achievability, we present a
cooperative jamming scheme based on interference alignment
principle, which is optimal for all regimes where the symmetric
secure capacity is established. For the converse, a tighter outer
bound than all perviously existing ones is provided for the regime
where the symmetric secure capacity is still open.

I. INTRODUCTION

Information theoretic secrecy has been studied for decades
in various channel models [1], [2], [3], [4], [5], [6]. Except
for several special cases, the exact secure capacity for general
Gaussian interference networks is still open. For instance, even
for the 2-user symmetric Gaussian interference channel, the
exact capacity, either with or without the secrecy constraints
on unintended messages, is unknown in general. In the absence
of the exact secure capacity, recent work has made significant
progress on determining the secure degrees of freedom (DoF)
of Gaussian interference networks [7], [8], [9]. However, DoF
studies essentially assume all channels are equally strong (each
non-zero channel is capable of carrying exactly one DoF),
and therefore reveal little insight for settings with disparate
channels strengths.

Recently, it has been extensively shown that a simple
Avestimehr-Diggavi-Tse (ADT) linear deterministic model
[10] can help study Gaussian interference networks, leading
to generalized degrees of freedom (GDoF) results or even
approximate capacity results at finite SNRs [11], [12], [13],
[14], [15]. Following this research direction, in this work we
consider the ADT model of the canonical 2-user symmetric
interference channel with confidential messages. We develop
inner and outer bounds for the symmetric secure rate, which
are matched for a wide range of channel parameters.

For the achievability, a cooperative jamming scheme based
on signal level interference alignment principle is developed,
where besides sending out its own useful data signals, each
transmitter also generates random jamming signals for secrecy.
For the common part of the useful data of either user (which
can be seen by both receivers), we align it with the jamming
signals at its unintended receiver to guarantee secrecy, while
make sure that it is distinguishable from the jamming signals
(and other interference) at its legitimate receiver and thus
decodable.

For the converse, in the regime where the symmetric secure
capacity is still open, a new outer bound is provided, which
is tighter than all previously known ones.

Regarding notations, throughout this work we use Im to
denote the m×m identity matrix, Om×n to denote the m×n
zero matrix, whose entries are all zeros, and Fq2 to denote the
set of q-tuples of binary numbers.

II. CHANNEL MODEL

Consider the 2-user symmetric ADT linear deterministic
interference channel with the input-output relationship

Y1(t) = Sq−ndX1(t) + Sq−ncX2(t) (1)

Y2(t) = Sq−ncX1(t) + Sq−ndX2(t), (2)

where the summations and multiplications are over F2, nd
and nc are both non-negative integers, q , max{nd, nc},
Xi(t),Yi(t) ∈ Fq2 , and S is a q × q shift matrix

S =


0 0 0 ... 0 0
1 0 0 ... 0 0
0 1 0 ... 0 0
...

. . .
... 0

0 0 0 ... 1 0

 . (3)

In the symmetric ADT interference channel, nd is the number
of direct signal levels (from Transmitter i to Receiver i, i ∈
{1, 2}), and nc is the number of cross signal levels (from
Ttransmitter i to Receiver j, i, j ∈ {1, 2}, i 6= j). Also define

α ,
nc
nd

(4)

as the normalized interference parameter.
In the 2-user ADT interference channel, Transmitter i ∈

{1, 2} intends to deliver a message Wi to Receiver i. Each
message Wi is uniformly distributed over the message set
Wi. The size of the message set Wi is denoted by |Wi|.
Transmitter i uses an encoding function fi : Wi → XT

i to
encode the message, where XT

i , [Xi(1),Xi(2), ...,Xi(T )]
is the channel input of Transmitter i with length T . Receiver i
decodes its own message as Ŵi based on the channel output. A
secure rate tuple (R1, R2), where Ri = log |Wi|

T , is achievable
if for any ε > 0, there exist T -length codes such that the
decoding error probabilities at both receivers are less than ε,
i.e.,

max
i∈{1,2}

Pr
(
Wi 6= Ŵi

)
≤ ε (5)



and the following secrecy constraints are satisfied simultane-
ously

H(W1|YT
2 ) ≥ H(W1)− Tε (6)

H(W2|YT
1 ) ≥ H(W2)− Tε (7)

The secure capacity region Cs is the closure of the set of all
the achievable secure rate tuples, and the symmetric secure
rate is defined as

Rs , max{R : (R,R) ∈ Cs}. (8)

III. MAIN RESULTS

The main results are presented in the following theorems.
Theorem 1: (Achievability) For the 2-user symmetric ADT

interference channel, the following normalized symmetric se-
cure rate is achievable

Rs
nd

=



1− α, 0 ≤ α ≤ 2
3

2α− 1, 2
3 < α ≤ 3

4
1− 2α

3 ,
3
4 < α < 1

0, α = 1
α
3 , 1 < α < 3

2
2− α, 3

2 ≤ α < 2
0, α ≥ 2

(9)

Proof : See Section IV.
Theorem 2: (Converse) For the 2-user symmetric ADT

interference channel, the normalized symmetric secure rate is
upper bounded by

Rs
nd
≤



1− α, 0 ≤ α ≤ 1
2

1
2 ,

1
2 < α ≤ 3

4
1− 2α

3 ,
3
4 < α < 1

0, α = 1
α
3 , 1 < α < 3

2
2− α, 3

2 ≤ α < 2
0, α ≥ 2

(10)

Proof : See Section V.
Remark 1: For the sake of illustration, the derived inner and

outer bounds of the normalized symmetric secure rate Rs

nd
, and

the well-known “W” curve in [11] (the normalized symmetric
capacity for the case without any security constraints) are
depicted in Fig. 1. One can find that except for the regime
1
2 < α < 3

4 , the inner and outer bounds are matched, hence
leading to the optimal characterization of the symmetric secure
capacity.

Remark 2: Note that for the regime 0 ≤ α ≤ 1
2 the

secrecy constraint does not incur any capacity penalty. In
the corresponding symmetric Gaussian interference channels,
this is the regime where using Gaussian channel inputs and
treating interference as noise (TIN) is optimal from the GDoF
perspective [11], [16]. Remarkably, a broad TIN-optimal
regime is identified for the K user fully asymmetric Gaussian
interference channel in [16] and is also shown from a GDoF
perspective to suffer no loss due to secrecy constraints in [17].
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Fig. 1. Inner and outer bounds on the normalized symmetric secure rate.

IV. PROOF OF THEOREM 1
To achieve the symmetric secure rate given in Theorem 1, a

cooperative jamming scheme based on interference alignment
principle is adopted, where the jamming signals are designed
to align with the unintended data signals at each receiver to
guarantee secrecy. We first describe the common aspect of the
transmission scheme. Let the transmit signals X1,X2 ∈ Fq2 be

X1 = V1,pX̂1,p + V1,cX̂1,c + V1,jX̂1,j (11)

X2 = V2,pX̂2,p + V2,cX̂2,c + V2,jX̂2,j (12)

where for i ∈ {1, 2}, the column vectors of the matrix
• Vi,p are precoding vectors for the private part of the data

signal X̂i,p

• Vi,c are precoding vectors for the common part of the
data signal X̂i,c

• Vi,j are precoding vectors for the jamming signal X̂i,j

of User i, respectively. Specifically, the precoding vectors are
designed such that the private part of the transmit data X̂i,p can
only be seen by its desired Receiver i, the common part of the
transmit data X̂i,c are received by both receivers, and the jam-
ming signals X̂i,j are aligned with the unintended data signals
to guarantee secrecy. The elements of the column vectors X̂i,p

and X̂i,c are from i.i.d. binary source of the corresponding
message Wi, and the elements of the column vector X̂i,j are
from i.i.d. binary source following the Bernoulli distribution
Bern(1, 12 ). Clearly, the jamming signals X̂i,j are independent
with the data signals X̂i,p and X̂i,c.

Note that only when nd > nc, we can send private transmit
data to its legitimate receiver while keep the unintended
receiver from receiving it, i.e., the construction of Vi,p is
related to the null space of the channel matrix Snd−nc . Thus
when nd > nc, we let

Vi,p =

[
Onc×(nd−nc)

Ind−nc

]
nd×(nd−nc)

(13)

In words, each of the least significant nd−nc signal levels of
Xi is used to carry one bit of the private transmit data. Since
these signal levels are not received by the unintended receiver,
the data transmitted over these levels is always kept secret.

In this following, we give the specific design of the trans-
mission scheme for each regime.



A. 0 ≤ α ≤ 2
3

In this regime, Transmitter i ∈ {1, 2} only sends the private
transmit data X̂i,p over the least significant nd − nc signal
levels, i.e.,

Xi = Vi,pX̂i,p (14)

Apparently, the transmit data can only be seen by its intended
receiver and thus kept secret. Since each user achieves (nd −
nc) bits, the normalized symmetric secure rate is 1− α.

B. 2
3 < α ≤ 3

4

In this regime, for i, k ∈ {1, 2} and i 6= k, let

Vi,c = Vk,c =

[
I3nc−2nd

O3(nd−nc)×(3nc−2nd)

]
nd×(3nc−2nd)

(15)

and

Vi,j = Vk,j =

 O(nd−nc)×(3nc−2nd)

I3nc−2nd

O2(nd−nc)×(3nc−2nd)


nd×(3nc−2nd)

(16)

Note that Vi,j = Snd−ncVk,c. The received signal of Receiver
i is

Yi =Xi + Snd−ncXk

=(Vi,pX̂i,p + Vi,cX̂i,c + Vi,jX̂i,j)

+ Snd−nc(Vk,cX̂k,c + Vk,jX̂k,j) (17)

=Vi,pX̂i,p + Vi,cX̂i,c + ṼkX̂k,j + Vi,j(X̂k,c + X̂i,j)
(18)

where

Ṽk = Snd−ncVk,j

=

 O2(nd−nc)×(3nc−2nd)

I3nc−2nd

O(nd−nc)×(3nc−2nd)


nd×(3nc−2nd)

(19)

In (18), the first two terms correspond to the desired data
of User i, and the last term indicates that the unintended data
signals from User k are aligned with the jamming signals from
User i. Denote by Li the set of the signal levels of User i where
the unintended data signals are aligned with the jamming
signals. Without loss of generality, consider one signal level
l ∈ Li. Denote by Yi,l, Dk,l, and Ji,l the received signal, the
unintended data signal from User k, and the jamming signal
from User i over the level l, respectively. We have

Yi,l = Dk,l + Ji,l (20)

According to the chain rule, we obtain

H(Dk,l, Yi,l) =H(Dk,l) +H(Yi,l|Dk,l) (21)
=H(Dk,l) +H(Ji,l) (22)
=H(Dk,l) + 1 (23)

and

H(Dk,l, Yi,l) =H(Yi,l) +H(Dk,l|Yi,l) (24)
=H(Dk,l|Yi,l) + 1 (25)

Thus

H(Dk,l) = H(Dk,l|Yi,l) (26)

which indicates that over the signal level l of User i, the unin-
tended data signal Dk,l is kept secret from User i information-
theoretically. Applying the same argument for all the signal
levels in Li together, it is not hard to establish that the secrecy
constraints (6) and (7) are satisfied.

From (18), it is easy to verify that when 2
3 < α ≤ 3

4 , the
desired data signals of User i (i.e., X̂i,c and X̂i,p) are not
interfered by other signals at Receiver i and thus decodable.
Note that X̂i,c and X̂i,p carries 3nc − 2nd and nd − nc bits,
respectively. The resulting normalized symmetric secure rate
is [(3nc − 2nd) + (nd − nc)]/nd = 2α− 1.

C. 3
4 < α < 1

For simplicity of exposition, in this regime we first consider
the case where nc is a multiple of 3 to avoid fractional
rates. Construct the precoding vectors through a matrix V ∈
Fnd×nc

3 . For i, k ∈ {1, 2} and i 6= k, let

Vi,c = Vk,c = V (27)

Vi,j = Vk,j = Snd−ncV (28)

Then the transmit signal of User i is

Xi = Vi,pX̂i,p + VX̂i,c + Snd−ncVX̂i,j (29)

and the received signal of Receiver i is given by

Yi =Xi + Snd−ncXk

=Vi,pX̂i,p + VX̂i,c + S2(nd−nc)VX̂k,j

+ Snd−ncV(X̂k,c + X̂i,j) (30)

where the first two terms in (30) correspond to the desired
data of User i, and the last term shows that the unintended
data signals from User k are aligned with the jamming signals
from User i and thus kept secret.

Next, we invoke the following lemma to complete the
achievability proof.

Lemma 1: (Lemma 4.2 in [14]) Let nc be an integer that is
a multiple of 3, and nd be an integer such that 3

4 <
nc

nd
< 1.

Then there exists a matrix V ∈ Fnd×nc
3 such that

rank([V Snd−ncV S2(nd−nc)V Vnull]nd×nd
) = nd (31)

where Vnull = Vi,p ∈ Fnd×(nd−nc)
2 , whose column vectors

form a basis for the null space of the shift matrix Snd−nc .
According to Lemma 1, from (30) Receiver i can decode

its desired message by linear decoding. Note that the first and
second terms in (30) carry nd − nc and nc

3 bits, respectively.
The resulting normalized symmetric secure rate is (nd−nc +
nc

3 )/nd = 1− 2α
3 .

For the case where nc is not a multiple of 3, the argument
is essentially the same. The only difference is that to deal with
fractional rates, we use a three-symbol extension and obtain
an extended channel

Ȳi = X̄i + H̄X̄k (32)



where

Ȳi =

 Yi(3t)
Yi(3t+ 1)
Yi(3t+ 2)

 X̄i =

 Xi(3t)
Xi(3t+ 1)
Xi(3t+ 2)

 (33)

H̄ =

 Snd−nc Ond×nd
Ond×nd

Ond×nd
Snd−nc Ond×nd

Ond×nd
Ond×nd

Snd−nc


3nd×3nd

(34)

and i, k ∈ {1, 2}, i 6= k. In this extended channel, the inputs
and outputs are symbols over F3nd

2 . Like the case where nc
is a multiple of 3, we use a matrix V̄ ∈ F3nd×nc

2 to construct
the precoding vectors. Following the similar argument given
above, it is easy to show that at each receiver, the unintended
data signals are aligned with the jamming signals and thus kept
secret. Finally, it remains to show that there exists a matrix V̄
such that

rank([V̄ H̄V̄ H̄2V̄ V̄null]3nd×3nd
) = 3nd (35)

to guarantee the messages are decodable at their legitimate re-
ceivers, where the column vectors of V̄null ∈ F3nd×(3nd−3nc)

form a basis for the null space of H̄. The following lemma in
[14] helps complete the proof.

Lemma 2: (Lemma 4.3 in [14]) Let nc and nd be inte-
gers such that 3

4 < nc

nd
< 1. Then there exists a matrix

V̄ ∈ F3nd×nc such that

rank([V̄ H̄V̄ H̄2V̄ V̄null]3nd×3nd
) = 3nd (36)

D. 1 < α < 3
2

Similar to the regime 3
4 < α < 1, we first consider the case

where nc is a multiple of 3. For i, k ∈ {1, 2} and i 6= k, we
construct the precoding vectors through a matrix V ∈ Fnc×nc

3

and let

Vi,c = Vk,c = Snc−ndV (37)
Vi,j = Vk,j = V (38)

Recall that when α > 1 (i.e., nd < nc), there are no private
signal levels which can only be seen by the intended receiver.
Thus the transmit signals contain no private data. The transmit
signal of User i is

Xi = Snc−ndVX̂i,c + VX̂i,j (39)

and the received signal of Receiver i is given by

Yi = Snc−ndXi + Xk

= S2(nc−nd)VX̂i,c + VX̂k,j + Snc−ndV(X̂i,j + X̂k,c)
(40)

where the first term in (40) corresponds to the desired data
of User i, and the last term indicates that the unintended data
signals from User k are aligned with the jamming signals from
User i and thus kept secret. We have the following lemma to
get the desired secure rate.

Lemma 3: Let nc be an integer that is a multiple of 3, and
nd be an integer such that 1 < nc

nd
< 3

2 . Then there exists a
matrix V ∈ Fnc×nc

3 such that

rank([V Snc−ndV S2(nc−nd)V]nc×nc
) = nc (41)

Proof: The proof of Lemma 3 is essentially the same as that
of Lemma 1 and thus omitted due to limited space.

Lemma 3 guarantees that from (40) Receiver i can decode
its desired message. Since the first term in (40) carries nc

3 bits,
the resulting normalized symmetric secure rate is nc

3nd
= α

3 .
For the case where nc is not a multiple of 3, we also use a

three-symbol extension to deal with fractional rates. We con-
struct the precoding vectors based on a matrix V̄ ∈ F3nc×nc

2 .
The left procedure is similar to the case where nc is a multiple
of 3. We omit the details due to the space limit. Just note
to guarantee that the legitimate receiver can decode its own
message, we need the following lemma.

Lemma 4: Let nc and nd be integers such that 1 < nc

nd
< 3

2 .
Then there exists a matrix V̄ ∈ F3nc×nc such that

rank([V̄ H̃V̄ H̃2V̄]3nc×3nc
) = 3nc (42)

where

H̃ =

 Snc−nd Onc×nc Onc×nc

Onc×nc Snc−nd Onc×nc

Onc×nc
Onc×nc

Snc−nd


3nc×3nc

(43)

Proof: The proof of Lemma 4 is an extension of the proof of
Lemma 3 and omitted due to limited space.

Example 1: The achievable scheme for the 2-user symmetric
ADT interference channel with nd = 9 and nc = 12 is
illustrated in Fig. 2. It is not hard to verify that at each receiver,
the unintended data signals from the other user are aligned
with the jamming signal from its own transmitter and thus
kept secret, and its desired data signals are all decodable.

E. 3
2 ≤ α < 2

In this regime, for i, k ∈ {1, 2} and i 6= k, let

Vi,j = Vk,j =

[
I2nd−nc

O2(nc−nd)×(2nd−nc)

]
nc×(2nd−nc)

(44)

and

Vi,c = Vk,c =

 O(nc−nd)×(2nd−nc)

I2nd−nc

O(nc−nd)×(2nd−nc)


nc×(2nd−nc)

(45)

Note Vk,c = Snc−ndVi,j . The received signal of Receiver i
is

Yi =Snc−ndXi + Xk

=Snc−nd(Vi,cX̂i,c + Vi,jX̂i,j)

+ (Vk,cX̂k,c + Vk,jX̂k,j) (46)

=V̂iX̂i,c + Vk,jX̂k,j + Vk,c(X̂k,c + X̂i,j) (47)
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Fig. 2. The achievable scheme for the 2-user symmetric ADT interference
channel with nd = 9 and nc = 12, where the secure rate of each user is 4.

where

V̂i = Snc−ndVi,c =

[
O2(nc−nd)×(2nd−nc)

I2nd−nc

]
nc×(2nd−nc)

(48)

In (47), the first term corresponds to the desired data of User i,
and the last term shows that the unintended data signals from
User k are aligned with the jamming signals from User i and
thus kept secret. It is easy to verify that when 3

2 ≤ α < 2, the
desired data are not interfered by other signals and thus the
desired message can be decoded at its legitimate receiver. The
resulting normalized symmetric secure rate is (2nd−nc)/nd =
2− α.

V. PROOF OF THEOREM 2

For the converse, we first consider the regime 0 ≤ α ≤ 1
2 . In

this regime, the capacity of the 2-user symmetric interference
channel without secrecy constraint [11], [12] serves as the
desired outer bound straightforwardly. We also notice that in
[15], the authors consider a 2-user symmetric interference
channel with confidential messages and transmitter cooper-
ations, and derive outer bounds for this channel. Based on
the converse results in [15], by setting the capacity of the
cooperative link between transmitters as 0, we obtain the
desired outer bound for α ≥ 3

4 .
In the following, for the remaining regime 1

2 < α < 3
4 , we

provide a tighter outer bound than all previously known ones,
i.e., Rs ≤ nd

2 . Before starting, define

S1(t) , Xtop nc

1 (t), S2(t) , Xtop nc

2 (t)

In words, Si(t), i ∈ {1, 2}, is the input of Transmitter i in the
top nc signal levels (which cause interference at the other
receiver). To prove the desired outer bound, we start with
Fano’s inequality and have the following set of inequalities

T (R1 − ε0)

≤ I(W1; YT
1 ) (49)

≤ I(W1; YT
1 ,S

T
1 ) (50)

= I(W1; ST1 ) + I(W1; YT
1 |ST1 ) (51)

= H(ST1 ) +H(YT
1 |ST1 )−H(YT

1 |ST1 ,W1)−H(ST1 |W1)
(52)

≤ H(ST1 ) +H(YT
1 |ST1 )−H(YT

1 |XT
1 ,W1)−H(ST1 |W1)

(53)

= H(ST1 ) +H(YT
1 |ST1 )−H(ST2 )−H(ST1 |W1) (54)

≤ H(ST1 ) +

T∑
t=1

H(Y1(t)|S1(t))−H(ST2 )−H(ST1 |W1)

(55)

≤ H(ST1 ) + Tnc −H(ST2 )−H(ST1 |W1) (56)

where (55) follows chain rule and the fact that dropping
conditioning does not reduce entropy, and in the last inequality
(56), we use the fact that α = nc

nd
> 1

2 , or in other words
nc > (nd − nc). The top (nd − nc) elements of Y1(t)
(which are interference free) are exactly the same as the top
(nd−nc) elements of S1(t) for each time t. Hence, the bound
on H(Y1(t)|S1(t)) ≤ nc follows directly.

By symmetry, we have

T (R2 − ε0) ≤ H(ST2 ) + Tnc −H(ST1 )−H(ST2 |W2) (57)

Adding (56) and (57), we end up with

T (R1 +R2 − 2ε0) ≤ 2Tnc −H(ST1 |W1)−H(ST2 |W2)
(58)

Next, we incorporate the secrecy constraint for message W1

as follows

T (R1 − ε0)

≤ I(W1; YT
1 ,Y

T
2 ,W2) (59)

= I(W1; YT
1 |YT

2 ,W2) + I(W1; YT
2 ,W2) (60)

≤ I(W1; YT
1 |YT

2 ,W2) + Tε (61)

= H(YT
1 |YT

2 ,W2)−H(YT
1 |YT

2 ,W1,W2) + Tε (62)

≤ H(YT
1 |YT

2 ,W2)−H(YT
1 |YT

2 ,X
T
2 ,W1,W2) + Tε (63)

= H(YT
1 |YT

2 ,W2)−H(XT
1 |ST1 ,XT

2 ,W1,W2) + Tε (64)

= H(YT
1 |YT

2 ,W2)−H(XT
1 |ST1 ,W1) + Tε (65)

where (61) holds due to the secrecy constraint for W1. Sim-
ilarly, we also have the following inequality for the message
W2,

T (R2 − ε0) ≤ H(YT
2 |YT

1 ,W1)−H(XT
2 |ST2 ,W2) + Tε

(66)



We add the three inequalities (58), (65), and (66) together and
obtain

2T (R1 +R2 − 2ε0)

≤ 2Tnc +H(YT
1 |YT

2 ,W2) +H(YT
2 |YT

1 ,W1)

− [H(ST1 |W1) +H(XT
1 |ST1 ,W1)]︸ ︷︷ ︸

=H(XT
1 |W1)

− [H(ST2 |W2) +H(XT
2 |ST2 ,W2)]︸ ︷︷ ︸

=H(XT
2 |W2)

+2Tε (67)

= 2Tnc +H(YT
1 |YT

2 ,W2) +H(YT
2 |YT

1 ,W1)

−H(XT
1 |W1)−H(XT

2 |W2) + 2Tε (68)

Now, in the above inequality, we need to bound the two posi-
tive terms in terms of the negative terms for the compensation
to be of any use. To this end, we state the following claim:

Claim 1:

H(YT
1 |YT

2 ,W2) ≤ T (nd − nc) +H(XT
2 |W2) (69)

H(YT
2 |YT

1 ,W1) ≤ T (nd − nc) +H(XT
1 |W1) (70)

Since the inequalities in Claim 1 are symmetric, we will only
prove the first one

H(YT
1 |YT

2 ,W2)

≤ H(YT
1 ,X

T
2 |YT

2 ,W2) (71)

= H(YT
1 |XT

2 ,Y
T
2 ,W2) +H(XT

2 |YT
2 ,W2) (72)

≤ H(YT
1 |XT

2 ,Y
T
2 ,W2) +H(XT

2 |W2) (73)

= H(XT
1 |XT

2 ,S
T
1 ,W2) +H(XT

2 |W2) (74)

= H(XT
1 |ST1 ) +H(XT

2 |W2) (75)

≤
T∑
t=1

H(X1(t)|S1(t)) +H(XT
2 |W2) (76)

≤ T (nd − nc) +H(XT
2 |W2), (77)

where (77) follows from the fact that S1(t) represents the
top nc levels of X1(t), and hence the conditional entropy
H(X1(t)|S1(t)) for each t can be bounded by (nd − nc).
This completes the proof for Claim 1.

Therefore, from (68), and the two inequalities stated in
Claim 1, we have

2T (R1 +R2 − 2ε0)

≤ 2Tnc + 2T (nd − nc) + 2Tε (78)
= 2Tnd + 2Tε (79)

which implies

R1 +R2 ≤ nd ⇒ Rs ≤
nd
2
. (80)

VI. CONCLUSIONS

For the 2-user symmetric ADT linear deterministic inter-
ference channel with confidential messages, we establish its
symmetric secure capacity except for the regime 1

2 < α < 3
4 .

In this regime, a tighter outer bound than previous ones
is given. For the achievability, we resort to a cooperative

jamming scheme which adopts the interference alignment
principle to align jamming signals with unintended data signals
for secrecy. Future work includes closing the gap between
inner and outer bounds for the regime 1

2 < α < 3
4 , and

translating the results to the Gaussian setting.
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