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Abstract—This work bridges the gap between sharply contrast-
ing results on the degrees of freedom of the K user broadcast
channel where the transmitter is equipped with K transmit
antennas and each of the K receivers is equipped with a single
antenna. This channel has K DoF when channel state information
at the transmitter (CSIT) is perfect, but as shown recently, it
has only 1 DoF when the CSIT is limited to finite precision.
By considering the full range of partial CSIT assumptions
parameterized by � 2 [0, 1], such that the strength of the channel
estimation error terms scales as ⇠ SNR�� relative to the channel
strengths which scale as ⇠ SNR, it is shown that this channel has
1��+K� DoF. For K = 2 users with arbitrary �ij parameters,
the DoF are shown to be 1 + mini,j �ij . To explore diversity
of channel strengths, the results are further extended to the
symmetric Generalized Degrees of Freedom setting where the
direct channel strengths scale as ⇠ SNR and the cross channel
strengths scale as ⇠ SNR↵, ↵ 2 [0, 1],� 2 [0,↵]. Here, the
roles of ↵ and � are shown to counter each other on equal
terms, so that the sum GDoF value in the K user setting is
(↵��)+K(1�(↵��)) and for the 2 user setting with arbitrary
�ij , is 2� ↵+mini,j �ij .

I. INTRODUCTION

As the first step in the path towards progressively refined
capacity approximations, degrees of freedom (DoF) studies of
wireless networks have turned out to be surprisingly useful.
By exposing large gaps where they exist in our understanding
of the capacity limits, DoF studies have been the catalysts
for numerous discoveries over the past decade [1]. One of
the most striking contrasts brought to light by recent DoF
studies is between settings where the channel state information
at the transmitters (CSIT) is assumed to be perfect, and
where it is assumed to be available only with finite precision.
Consider the MISO BC, i.e., the broadcast channel where
the transmitter is equipped with K antennas and each of
the K receivers has a single antenna. If the channel state
information at the transmitter (CSIT) is perfect then the MISO
BC has K DoF almost surely. This is achievable by zero-
forcing which eliminates all interference. However, if the CSIT
is available only within finite precision, then the MISO BC
has only 1 DoF, i.e., the DoF collapse as conjectured by
Lapidoth et al. nearly a decade ago in [2]. The conjecture was
proved recently in [3]. Since the MISO BC contains within
it the K user interference and X channels, the collapse of
DoF under finite precision CSIT implies that neither zero-
forcing nor interference alignment is robust enough to provide
a DoF advantage under finite precision CSIT. Bridging this

large gap between perfect and finite precision CSIT is the
motivation for this work. It involves studying partial channel
knowledge settings where the channel estimation error scales
as ⇠ SNR�� for arbitrary exponents �.

As exemplified by the conjecture of Lapidoth et al. which
remained unresolved for nearly a decade, a key hurdle in
studying partial CSIT settings tends to be the outer bounds.
DoF outer bounds under channel uncertainty have until re-
cently been limited mostly to compound channel arguments
[4]. Remarkably, compound channel arguments produce tight
outer bounds in several settings of interest that have been
successfully explored in prior work. For instance, it is known
that in order to maintain the full DoF (i.e., the same as
with perfect CSIT), the channel estimation error should scale
as O(SNR�1

) [5], [6], [7]. Compound channel arguments
also produce tight outer bounds for various settings involving
retrospective [8] and blind interference alignment [9]. How-
ever, outer bounds based on compound channel arguments are
evidently not strong enough to bridge the gap between perfect
CSIT and finite precision CSIT. For instance, although the
collapse of DoF of the MISO BC was originally conjectured
under the compound setting by Weingarten et al. in [4],
this conjecture was settled in the negative by [10] and [11].
Therefore, in order to bridge this gap, we appeal to the
combinatorial accounting of the size of aligned image sets,
in short the AIS approach, that was introduced in [3] to settle
the conjectured collapse of DoF under finite precision CSIT.
We are also inspired by recent works that successfully apply
the AIS approach beyond DoF settings, to generalized degrees
of freedom (GDoF) characterizations under finite precision
CSIT [12]. As such, in this work our goal is not only to apply
the AIS approach to bridge the gap between finite precision
and perfect CSIT, but also to go beyond DoF toward GDoF
characterizations. The main results of this work are presented
and discussed in Section III.

II. SYSTEM MODEL

A. Problem Formulation

Under the GDoF framework, the channel model for the
K user MISO BC is defined by the following input-output
equations.
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The channel uses are indexed by t 2 N, X
l

(t) is the symbol
sent from Transmitter l subject to a unit power constraint,
Y
k

(t) is the symbol observed by Receiver k, Z
k

(t) is the zero
mean unit variance additive white Gaussian noise (AWGN)
at Receiver k, and G

kl

(t) are the channel fading coefficients
between Transmitter l and Receiver k. P is the nominal SNR
parameter that is allowed to approach infinity. The channel
strengths are represented in ↵

kl

parameters. We focus on the
symmetric setting, where for all k, l 2 [K], we set

↵
kl

=

⇢
↵, k 6= l
1, k = l.
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i
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region C(P ) are standard. The GDoF region is defined as
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where C
o

(P ) is a reference capacity of an additive white
Gaussian noise channel Y = X + N with transmit power
P and unit variance additive white Gaussian noise. For real
settings, C

o

(P ) = 1/2 log(P ) + o(log(P )) and for complex
settings C

o

(P ) = log(P ) + o(log(P )).
An important definition for this work is the notion of a

“bounded density” assumption.
Definition 1 (Bounded Density): A set of random variables,

A, is said to satisfy the bounded density assumption if there
exists a finite positive constant f
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bounded as follows,
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B. Partial CSIT

Under partial CSIT, the channel coefficients may be repre-
sented as

G
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(t) +
p
P��kl ˜G

kl

(t)

where ˆG
kl

(t) are the channel estimate terms and ˜G
kl

(t) are
the estimation error terms. To avoid degenerate conditions,
the ranges of values are bounded away from zero and in-
finity as follows, i.e., there exist constants �
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,�
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channel variables ˆG
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subject to the bounded density assumption with the difference
that the actual realizations of ˆG

kl

(t) are revealed to the
transmitter, but the realizations of ˜G

kl

(t) are not available
to the transmitter. Note that under the partial CSIT model,
the channel coefficients G

kl

(t) have variance that behaves as
⇠ P��kl and the peak of the probability density function that
behaves as ⇠

p
P �kl .

III. MAIN RESULT

Let us denote the sum-GDoF value as D
⌃

(↵, [�
kl

]). Further,
let us assume that

↵ 2 [0, 1] (3)
�
kl

2 [0,↵] (4)

For the K = 2 users, there is no loss of generality in assuming
↵ 2 [0, 1] because following the reasoning in [14]1, we have

D
⌃

(↵, [�
kl

]) = ↵D
⌃

(1/↵, [�
kl

/↵]) (5)

There is no loss of generality in assuming �
kl

2 [0,↵] because
for ↵ 2 [0, 1], we will see that this range of values spans the
entire space between finite precision CSIT (� = 0) and perfect
CSIT (� = ↵).

Our main results are the sum GDoF characterizations for the
K user MISO BC defined above. We start with K = 2 users,
where we allow arbitrary �

ij

parameters, so that each channel
is associated with its own level of channel uncertainty. The
sum GDoF for this setting are characterized in the following
theorem.

Theorem 1: Under partial CSIT, the sum GDoF value of the
2-user MISO BC is

D
⌃

(↵, [�
kl

]) = 2� ↵+min

kl

�
kl

(6)

The general K user setting is considered next, where addi-
tional assumptions of symmetry are made on the �

kl

values
in order to control the explosion of parameters. Specifically
we set all �

kl

= �, so that every channel is subject to the
same level of channel uncertainty. The GDoF characterization
in this setting is presented in the following theorem.

Theorem 2: Under partial CSIT, the sum GDoF value of the
K-user MISO BC is

D
⌃

(↵, [�]) = (↵� �) +K(1� (↵� �)) (7)

Recall that the DoF are obtained as a special case of GDoF, by
setting ↵ = 1. With this specialization, we note that Theorem
2 shows that the K user MISO BC has 1 � � + K� DoF.
This covers the extremes of perfect CSIT (� = 1) where the
DoF become equal to K and finite precision CSIT (� = 0)
where the DoF collapse to 1. It also shows that � � 1

is necessary to achieve the full K DoF, thus matching the
results of [6]. However, most significantly, it goes well beyond
these specializations, for the first time bridging these divergent
extremes by characterizing the DoF for all intermediate values
of � as well.

The DoF value of 1 � � + K� has a simple intuitive
interpretation. Using terminology analogous to [13], the signal
power levels split into the bottom � levels where CSIT is
perfect and the remaining top 1 � � levels where CSIT is
only available to finite precision. This is because transmission
in a direction orthogonal to estimated channel vector of
undesired user (zero-forcing) with power up to ⇠ P � leaks no

1This is easily shown by a change of variables argument, re-casting the
GDoF framework so that instead of P we use P 0 = P↵.



power above the noise floor at the undesired receiver. Due to
essentially perfect zero-forcing, the bottom � levels contribute
K� DoF. The top 1� � levels, which cannot be zero-forced,
contribute the remaining 1� � DoF.2

Another interesting aspect of our results is that they reveal
how the CSIT requirement changes with channel strengths. It
is clear that the CSIT requirements must depend on the channel
strengths. For instance, it is obvious that if cross channels
are too weak (below the noise floor) then no CSIT is needed
to simultaneously achieve full interference-free transmission
to both users (in the GDoF sense), but if the cross channels
are as strong as direct channels then essentially perfect CSIT
(� � 1) is required. The gap between these extremes is
also bridged by Theorem 2. Unlike DoF which implicitly
assume all channels are equally strong, by allowing ↵ < 1,
the GDoF setting allows us in this work to characterize the
impact of different channel strengths (albeit restricted within
assumptions of symmetry). Remarkably here we find that
cross-channel strength parameters ↵ and channel uncertainty
parameters � counter each other on equal terms, so that only
their difference matters.

Finally, for the 2 user setting where the number of param-
eters is more manageable, we are able to study the impact of
arbitrary channel uncertainty �

kl

for each channel coefficient,
as in Theorem 1. What is especially remarkable, perhaps even
surprising, is that the GDoF are limited by the channel with
the worst uncertainty, i.e., the smallest �

kl

.

IV. PROOF

We present the proof for the K = 2 user setting (Theorem
1) here. The generalization to arbitrary K (Theorem 2) is
relatively straightforward, and is relegated to the full paper.
The most challenging aspect of the proof is to obtain a tight
outer bound, for which we will generalize the Aligned Image
Sets (AIS) argument of [3]. For this generalization we will
skip the repetitive details and focus on the distinct aspects. We
will focus on the real setting here. The extension to complex
settings follows along the lines of similar extensions in [3].

A. Outer Bound

For notational convenience, let us define

¯P =

p
P (8)

The first step in the AIS approach is the transformation
into a deterministic setting such that a GDoF outer bound
on the deterministic setting is also a GDoF outer bound on
the original setting. Since the derivation of the deterministic
setting is identical to [3], we directly present the deterministic
model as follows.

2The achievability argument extends naturally to other settings. For exam-
ple, we can show that in the corresponding K user interference channel the
DoF value of 1� � + K

2 � is similarly achievable.

1) Deterministic Channel Model: The deterministic chan-
nel model has inputs ¯X
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i
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N, i 2 {1, 2}, such that
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2) Functional Dependence and Aligned Image Sets: Fol-

lowing directly along the AIS approach [3], and omitting
o(log(P )) and o(n) terms that are inconsequential for GDoF,
we have n(R
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) is the aligned image set, i.e., the set of
codewords that cast distinct images at Receiver 1 but the
same image ¯Y [n]
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Also as in [3], there is no loss of generality in assuming the
following functional dependence
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where the notation a = f(b) is used to indicate that a is some
(not necessarily the same) function of b.

3) Bounding the Probability that Images Align: Given
G[n]
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, consider two distinct realizations of User 1’s output
sequence ¯Y [n]

1
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We wish to bound the probability that the images of these two
codewords align at User 2, i.e., ⌫[n] 2 S
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similarly bounded by 4f
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completing the proof of the outer bound for Theorem 1.

B. Achievability

Since the GDoF depend only on the worst channel uncer-
tainty, i.e., the minimum �

ij

, for the achievability proof, we
can assume without loss of generality that all �

ij

are equal
to �. With this assumption we will prove that 2 � ↵ + � is
achievable.

Without loss of generality, we ignore measure zero events
such as channel rank-deficiencies. This is because the channels
are generated according to bounded densities, so that the
probability mass that can be placed in a space whose measure
approaches zero, must also approach zero.

First, consider ↵ = 1, i.e., the DoF setting. We wish to
achieve the sum-DoF value of d
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with unit powers, producing the transmitted symbols as fol-
lows.
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is a diagonal matrix. In words, V
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is a unit vector orthogonal
to the estimated channel vector of User 2, and V

2p

is a unit
vector orthogonal to the estimated channel vector of User 1.
V

c

is a generic unit vector. Thus, the private messages are
zero-forced to the estimated channels of the undesired users,
whereas the common message is sent along a generic direction
so it is heard by both users. c

o

is a scaling factor, O(1) in P ,
chosen to ensure that the transmit power constraint is satisfied.
The signal seen at Receiver 1 is,
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where the c
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are non-zero and bounded, i.e., O(1) functions
of P .

User 1 first decodes X
c

while treating all other signals as
white noise. This is possible because X

c

is received with
power ⇠ P , the effective noise has power ⇠ P � , and X

c

carries 1 � � DoF. After decoding X
c

, the receiver subtracts
its contribution from its received signal and then proceeds to



decode X
1p

while treating remaining signals as noise. Since
X

1p

is received with power ⇠ P � , the remaining signals and
noise are received with only O(1) power, and X

1p

carries �
DoF, this decoding is successful as well. Thus, User 1 achieves
1 � � + � = 1 DoF. User 2 proceeds similarly to achieve �
DoF, so that the total DoF achieved equal 1 + �.

Next, let us consider the general case where ↵  1. Here we
prove the sum-GDoF value of d

1

+ d
2

= min(2�↵+�, 2) is
achievable through the tuple d

1

= 1, d
2

= min(1� ↵+ �, 1).
Let us assume �  ↵, as the achievability for � = ↵
suffices for all � > ↵ as well. To do this, let us split User
1’s message as W

1

= (W
c

,W
1p

) where W
1p

acts as a
private sub-message to be decoded only by User 1, while
W

c

acts as a common message that can be decoded by both
users. W

c

, W
1p

and W
2

carry ↵ � �, 1 � ↵ + �, 1 � ↵ + �
GDoF respectively. Messages W

c

,W
1p

,W
2

are encoded into
independent Gaussian codebooks X

c

, X
1p

, X
2p

, with unit
powers. The transmitted symbols are constructed as follows.

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p
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p
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p
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 p
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0

0 1

�
V
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X
2p

where c
o

, V
c

, V
1p

, V
2p

are defined as
before. The signal seen at Receiver 1 is,
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p
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X
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+

p
P 1+��↵c

2

X
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3

X
2p

+ Z
1

where the c
i

are non-zero and bounded, i.e., O(1) in P .
User 1 first decodes X

c

while treating all other signals
as white noise. This is possible because X

c

is received with
power ⇠ P , the effective noise has power ⇠ P 1+��↵, and X

c

carries 1 � (1 + � � ↵) = ↵ � � GDoF. After decoding X
c

,
the receiver subtracts its contribution from its received signal
and then proceeds to decode X

1p

while treating remaining
signals as noise. Since X

1p

is received with power ⇠ P 1+��↵,
the remaining signals and noise are received with only O(1)

power, and X
1p

carries 1 + � � ↵ DoF, this decoding is
successful as well. Thus, User 1 achieves ↵��+1��+↵ = 1

GDoF. User 2 proceeds similarly to achieve 1 � � + ↵ DoF,
so that the total GDoF achieved equal 2 + � � ↵.

V. CONCLUSION

Because of the coarse and asymptotic character of DoF and
GDoF metrics, even small gaps in our understanding of these
coarse approximations can hide the most consequential ideas.
Numerous discoveries around interference alignment emerged
from efforts to find new achievable schemes to bridge the
gap between the best inner and outer bounds. Following in
the same spirit, this work bridges the extremes of known
DoF results between perfect and finite precision CSIT. In
the process, it expands our understanding of a relatively new
idea – the aligned image sets (AIS) approach. Interference

alignment and AIS can be seen as two sides of the same
coin. In the pursuit of DoF and GDoF characterizations, just as
interference alignment enables powerful achievable schemes to
close the gap from below, the AIS approach enables powerful
outer bounds to close the gap from above. Whether these
ideas are enough to close the GDoF gaps for all channels
and regimes of interest, if so then what new insights emerge
from the new GDoF characterizations, and if not, then what
new ideas hide in the remaining gaps, are exciting questions
for the future.
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