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Abstract

We determine the feedback capacity region of a two user Gaussultiple access
channel (MAC) with multiple antennas at the base stationasihgle antenna at each
user. The vector MAC and broadcast channels (BC) with a siagtenna at the base
station and multiple antennas at each user are shown to ek to scalar MACs and
BCs, respectively. We also determine the capacity enhagetdue to feedback at high
SNR for the vector MAC and BC.

The capacity benefits of multiple antenna systems are hagpgndent on the amount of chan-
nel knowledge at the transmitter and receiver [1] [2]. Inctie, the channel state is learned at
the receiver from a pilot signal and conveyed back to thestratter through a feedback chan-
nel. The existence of a feedback channel opens up sevesedsiing possibilities in terms of
the information that can be conveyed from the receiver taresmitter to enhance the for-
ward channel capacity. Channel state feedback is just atesé possibilities. In this work we
explore the potential capacity benefits of a feedback cHaveyend providing channel state
information. Therefore we assume perfect channel knovded@ll transmitters and receivers.
We consider the feedback model that information theorizte raditionally been interested in:
a feedback channel that makes the received signal avatlabie transmitter instantaneously.
Feeding back the channel output to the transmitter eskaslithe absolute limit of how much
the forward channel capacity can be enhanced by relayirmgnrdtion besides channel state
information on a feedback channel. In particular, we explbie feedback capacity of a two
user vector Gaussian MAC and BC with either multiple antsratahe base station and a sin-
gle antenna at each mobile or with multiple antennas at eatfilerand a single antenna at the
base station.

For a single user discrete memoryless channel it is well kntvat feedback does not
increase the channel capacity [3]. However, for multiusemnels feedback can increase the
channel capacity. The feedback capacity of a two user s&darssian MAC is found by
Ozarow in [4]. Ozarow also shows that feedback increasesapacity of a scalar Gaussian
BC [5]. However, the capacity region of even the scalar Gan€8C with feedback remains
unknown.

1 The System Model

We begin with the channel model for the vector Gaussian MAGuife 1 shows two kinds
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Figure 1: Vector MAC

of vector multiple access channels. In the first case eacheotisers has multiple transmit
antennas while the base station has only one receive ant€éhaaecond case is when each of
the users has a single transmit antenna each and the base stet)/ receive antennas. Note
that while the additive noise is not shown in the figure forgioity, each output component
has a Gaussian noise component added to it. The noise contp@ne normalized so that they
are zero mean, unit variance Gaussian stochastic proagss@selated in space and time. The
input-output equations for the two cases are:

1. Multiple Antennas at each User

Y = H'X'+HX2+ N (1)
N ~ WN(0,1)
2. Multiple Antennas at Base Station
Y = HX' +H’X?’+N (2)
N ~ N(0,I)

Similarly, the vector Gaussian broadcast channels we densan have multiple antennas at
either the base station or at each user, as shown in figure 2.
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Figure 2: Vector BC

The input-output equations for th& user(i = 1,2) in the two cases are:

1. Multiple Antennas at each User
Y' = HX+ N (3)
N ~ N(0,1)

2. Multiple Antennas at Base Station
Yi = H' X+ N (4)
N ~ N(0,1)



2 Vector MAC and BC with Single Antenna at Base Station

In this section we show that with a single antenna at the lasers, the vector MAC and BC
are equivalent to the scalar MAC and BC obtained by a maximatia combining (MRC) of
the antennas at each user. As illustrated in Figure 3, eaattaa premultiply his input signal
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Figure 3: Transformation of Degenerate Vector MAC to ScRAaC

with a unitary matrixQ’. Note that Trac€X*Xt) = TracgX?X!), so the power constraint is
unchanged. Since a unitary transformation is an invertialesformation the capacity region
is also unchanged. Now, choosing the first cqumeﬁs% makes the remaining columns
of Q¢ orthogonal toH*! and the vector channel becomes a scalar channel with ingptio

equation:
~ 1 ~ 2
Y = [HY[X;, +|H*X;" +N (5)

Thus the vector MAC with a single antenna at the base stagiequivalent to a scalar MAC.
Similarly, it is easily seen that the vector BC with a singteesna at the base station can
also be transformed into a scalar BC. The users multiplygheived vector with a unitary ma-
trix Q¢ that transforms the channel into a scalar channel whilediserstatistics are unaffected
by multiplication with a unitary matrix.
Next we proceed to determine the capacity region of the reederate vector Gaussian
MAC.

3 Vector MAC Capacity Region

We start with the non-degenerate vector Gaussian MAC withiphel antennas at the base
station. To simplify the problem we first apply a unitary sérmation at the base station that
reduces user 1's channel to a scalar channel. Thus, usemplisaonly affects the first receive
antenna at the base station. Then we apply another unigrgformation on the remaining
M — 1 receive antennas so that user 2’s signal affects only thetditsreceive antennas at
the base station. For simplicity of notation we scale thegmait powers of the users so that
the channel gains from the first user to the first receive arstend the second user to the
second receive antenna are unity. Figure 4 shows the tramsfions. Henceforth, based on
this transformation, we use the following model for the rt@generate vector Gaussian MAC:

Y, = X1 4+9X24+ N,
Y2 - X2+N2
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Figure 4: Simplification of the non-degenerate Vector MAC

We wish to show that the capacity region of this non-degdaeractor Gaussian MAC with
feedback is given by:

Cpp = U {(R1, Ry) :

0<p<1
1
0< R < 510g(1+P1(1—p2))
1
0< R, < §log (1 +(1+)P(1 - Pz)) 6)

1
0< Ri+ R, < 5 log (1 4+ P+ (1+72)Ps +29p\/ PPy + P Po(1 — p2))}

We start with the converse.

3.1 Converse

As found by Ozarow for the scalar MAC, the capacity regiorhefvector MAC with feedback
is contained withirC,,, whereC, is given by

Co= Upxixzy{(Ri,Ra) 1 0< Ry <I(XL Y, Y5 [X?)
0< Ry, <I(X%*Y,YyX"
0< R+ Ry, <I(X,X?%Y,Y)}

Since Ozarow’s proof fo€, applies directly, we do not repeat the proof.
Next we obtain the Gaussian version@f. Assuming thaiX! andX? have variances?



ando2, and correlation coefficient, we bound the differential entropies as follows:
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h(Y1,Yy|X, X% =
h(Y1,Y,|XY) =

log(2me)?
(Y1|X") + A(Y2[Y1, X' (7)

In order to bound the conditional entropies we upper bouedctinditional variances by the
variances around the linear estimates. Thus,

R(Y1|XY) = A(X'+4X%+ Ny X1
(’YP0102)2)
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Upon simplification, these bounds give us
R, < %log (1 +02(1 - p2))
Ry, < %log (1+ 149031 = p%)
Ri+Ry < %log (1407 + (1 +7°)03 + 2vpo105 + 07035 (1 — p*))

Note that the region for all values of 02, 02 such that-1 < p < 1,0 < ¢ < P; and
0 < 02 < P, is contained within that for which = |p| ando? = Py, 02 = P;.
This completes the converse for the capacity region spdaifi€s).

3.2 Achievability

The achievability is based on the Kailath Schalkwijk cods#iggeme. The transmitters proceed
exactly as in the scalar MAC with feedback [4]. To avoid répet we only describe compu-
tations that are different from the scalar MAC case. Not¢ dindike the scalar MAC where a
scalar value is received for each channel use, we now have ditmensional received vector.

Following the notation of [4p¢ is the mapping of user's message into the unit interval,
0’ (k) is the receiver's estimate 6f at thekth transmissiorg’ (k) = 6(k) — ¢’ is the estimation
error,a’ (k) = var(e'(k)), andp(k) is the correlation coefficient af (k) ande?(k).



Attime k 4+ 1, users 1 and 2 send,

X'(k+1) = al(k)el(k)sgr(p(k))
X2(k+1) = aj?k)e?(k)

After thek + 1st transmission, the receiver forms the following estimate

bk +1) = 6(k) — Kb (k+1)Kyp(k +1) { %EZ :LL B ]
where
Ky (k+1) = E{[ Yi(k+1) Yy(k+1)]e(k)}
Kyy(k+1) = E{[%E’HB } [ Yi(k+1) Yok +1) ]}
Thus

€k+1) = ei(k)_K;G(kH)KY%,(kH){Yl(kﬂ)]

Yo (k+1)
al(k+1) = a'(k)— Ky (k+1)Kyy(k+ 1)K (k+1)
Ki (k+ 1) andKyy(k + 1) can be explicitly computed as
Ky (k+1) = sgnp(k)va'(k) [ VP +9vPalp(k)] VPalp(k)| ]
K2 (k+1) = Va2(®) [ VPlok)| + WP VP ]

Kyy(k+1) = | BBt 20VRPIpR)]|+1 P2+ VPABp(k)]
v VPs + VPP o(k)| 14 P,

Substituting back into the previous equations we obtair &dme simplification,

1+ (1+9%)P(1 = p*(k))
1+ P+ (1+92) P+ 29|p(k) [V PP, + PLP (1 — p*(k))
1+ Pi(1 - p%(k))
1+ P+ (14+7?) P+ 29|p(k) [V PP + PiPy(1 — p*(k))
Next we wish to obtaip(k + 1) in terms ofp(k). Note that
Ele'(k+1)e’(k+1)] = E[e'(k)e*(k)] — Ky (k +1)Kyy(k+ 1)Ky (k+ 1)
which gives us the following relationship betweg(t + 1) andp(k):

p(k) — sgrp(k))7vPiPa(1 — p?(k))
V(L +Pi(1—p2(k)))(1+ (1+92) Pa(1 — p*(k)))
Now, for all values ofP;, P, the serieso(k) converges tgp(k) = (—1)Fp* wherep* is the
solution in (0,1) ofl + P, + (1 + ’72)P2 + 2")/|p(k)|\/ PP, + P1P2(1 — pQ(k?)) =
(1+ (1 +77)Pa(1 = 02(k)) (1 + Po(1 = p2(K)))

As for the scalar MAC the existence of a solution(ih1) is easy to see, since for= 0
the LHS is smaller than the RHS while fpr= 1 the RHS is smaller than the LHS.

The remaining arguments in the proof of achievability aeeghme as in the scalar MAC

[4].

adl(k+1) = al(k)

Ak+1) = (k)

plk+1) =




4 MAC Feedback Capacity at High SNR

Henceforth we devote our attention to feedback capacityight BNR. In particular we are

interested in the sum capacity with feedbadgb. For the MAC, high SNR means that the
users transmit powers can be represente@iigsand P, with 5 — oco. First we consider the
scalar MAC.

4.1 Scalar MAC
The capacity region of the scalar MAC with feedback was deitezd by Ozarow in [4] as:

Cpn=|J {(B,Ry):

0<p<1
1
0<R; < §log(1+ﬁP11— ))
1
0< Ry < —10g(1+ﬁP21— %) (8)

0SRi+R < L log (1 +B(P + Py + 2,0\/P1P2))}
The sum capacity is achieved fathat is the solution of

(1+B8P(1—p"))(1+ BP(1—p?)) = 14 B(P1+ P2+ 2py/ P P,)

The solution of this equation in the limit @s— oo is given byp* = 1. This gives us

1
lim [Cfb C’E] = lim - log (1 +B(P + Py + 2\/P1P2)> —log(1+ B(P + By))
B—ro0 B—o0 2

1 2P P,
= 210g<1+P1+P2)' 9)

Note thatQP—Vplpp2 is the ratio of the geometric mean to the arithmetic mean.t Stways lies
between 0 and 1. This implies that

1 2/ P, P.
lim € — Cp = Zlog 14+ 2122 ) < = b/channel use
B—o0 2 P1 P2

Thus, for the scalar MAC, at high SNR, the sum capacity wittdfeack is higher than that
without feedback by a positive constant bounded above bpiGEhannel use.

4.2 Non-Degenerate Vector MAC

Next we consider the capacity of the non-degenerate vecaois§dan MAC with feedback.
From the capacity expression (6) notice that at high SNRhadle bounds are maximized for
p = 0. However,p = 0 corresponds to the capacity region of the vector Gaussia@ Wifout
feedback. Thus, we conclude that at high SNR, the entirectiggpagion of the non-degenerate
vector Gaussian MAC with feedback is the same as that wittematback.



5 Non-degenerate Vector BC Sum Capacity

We wish to compare the sum capacity of the non-degeneratenlmoadcast channel with and
without feedback. Recall that the sum capacity with feellbamot known even for a scalar
broadcast channel. For this reason we bound the sum capaditjows.

ctb > ¢y, (10)

i.e. the sum capacity with feedback is no less than the cgpathout feedback.

coop,fb_

C;b < S coop

Cy (11)

i.e. sum capacity with feedback is no larger than the capati single user who receives the
signals received by both users with feedback. But for a singer feedback does not increase
capacity. Thus, the sum capacity with feedback is no latggn the capacity of a single user
who receives the signals received by both usetisout feedback.

We assume that the noises seen by the two users are indepeimdgeneral if the noises
n!,n? are correlated with a coefficient of correlatiptthen

1 -1
cS%%p) =  max -logdet| I+ [ Lp } HQH! (12)
@>0,Tr(Q)<P 2 p 1
Note that
H! Hl}
H = 1o 13
n (43

is non-singular for the non-degenerate vector GaussianAB0. note that for perfectly corre-
lated noisep = 1 the capacitﬁgoolo(l) is infinite because noise can be perfectly cancelled
out of one component of the received vector. From the prodfi@fsum rate capacity of the

vector Gaussian BC [6] [7] [8] [9] we know that

Oy = min_ C5°Np) (14)
Let p* denote the worst case noise correlation, i.e. the noiselation that minimizes the
RHS of (14). This implies that if the correlation coefficiaftthe users’ noise term§!, N2
is actuallyp* then feedback does not improve the sum capacity. Note tlsisttrue for any
SNR. In other words, at any SNR, there is a possible coroglatoefficient of the user’s noise
terms for which feedback does not increase the sum capacity.

6 BC Feedback Sum Capacity at High SNR

Now let us consider the sum capacity with feedback at high SR#eall that we assume that
the users’ noise termdI!, N? are uncorrelated. From the bounds developed in the previous
section we have

s < ofb < ¢SO g (15)



At high SNR, the total power i8P, 5 — oo, and from (14) we have

lim Cy; = lim min max
B-y00 B—ro0 pi—1<p<1 >0, Tr(Q)<AP

1 1 0] ;
210gdet<[+[p 1} HQH)

= lim max log det(HQH'
B0 Q>0,TrH(Q)<sP g det(HQH)

I p
—p:glgz(gllogdet<{p 1})

— 1im c$°R0) (16)

B—o0

Combining (15) and (16) we conclude that
lim P — ¢y, = 0. (17)

B—o0
That is, in the limit of high SNR, the sum capacity of the nagenerate vector Gaussian BC
with feedback is the same as the sum capacity without fe&dbac

7 Conclusions

We explore the feedback capacity region of two user vectars&an multiple access (MAC)
and broadcast channels (BC) with either multiple antenndleabase station and a single
antenna at each user or multiple antennas at each user argleaitenna at the base station.
We show that the vector MAC and BC with a single antenna at #se Istation and multiple
antennas at each user are degenerate vector channels asetemyivalent to a scalar MAC
and BC. In the limit of high signal to noise ratio (SNR), we wshibat for the scalar Gaussian
MAC (and for the degenerate vector Gaussian MAC), the difiee between the sum capacity
with and without feedback goes to a positive constant. Weia@ttp calculate this constant
and show that it is no more th@ﬁbit/channel use. For the non-degenerate vector Gaussian
MAC we apply the Kailath Schalkwijk coding scheme to deterenthe previously unknown
capacity region with feedback. Unlike the scalar Gaussia&&ClMwe show that for a non-
degenerate vector Gaussian MAC the entire capacity regitnfeedback becomes the same
as the capacity region without feedback in the limit of highRS For the non-degenerate two
user vector Gaussian broadcast channel (BC) we show thatdlveays exists a possible noise
correlation for which feedback does not increase sum cgpdai the limit of high SNR, we
show that the sum capacity of the non-degenerate vector BCf@@dback is the same as that
without feedback.
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