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Abstract

We determine the feedback capacity region of a two user Gaussian multiple access
channel (MAC) with multiple antennas at the base station anda single antenna at each
user. The vector MAC and broadcast channels (BC) with a single antenna at the base
station and multiple antennas at each user are shown to be equivalent to scalar MACs and
BCs, respectively. We also determine the capacity enhancement due to feedback at high
SNR for the vector MAC and BC.

The capacity benefits of multiple antenna systems are highlydependent on the amount of chan-
nel knowledge at the transmitter and receiver [1] [2]. In practice, the channel state is learned at
the receiver from a pilot signal and conveyed back to the transmitter through a feedback chan-
nel. The existence of a feedback channel opens up several interesting possibilities in terms of
the information that can be conveyed from the receiver to thetransmitter to enhance the for-
ward channel capacity. Channel state feedback is just one ofthese possibilities. In this work we
explore the potential capacity benefits of a feedback channel beyond providing channel state
information. Therefore we assume perfect channel knowledge at all transmitters and receivers.
We consider the feedback model that information theorists have traditionally been interested in:
a feedback channel that makes the received signal availableto the transmitter instantaneously.
Feeding back the channel output to the transmitter establishes the absolute limit of how much
the forward channel capacity can be enhanced by relaying information besides channel state
information on a feedback channel. In particular, we explore the feedback capacity of a two
user vector Gaussian MAC and BC with either multiple antennas at the base station and a sin-
gle antenna at each mobile or with multiple antennas at each mobile and a single antenna at the
base station.

For a single user discrete memoryless channel it is well known that feedback does not
increase the channel capacity [3]. However, for multiuser channels feedback can increase the
channel capacity. The feedback capacity of a two user scalarGaussian MAC is found by
Ozarow in [4]. Ozarow also shows that feedback increases thecapacity of a scalar Gaussian
BC [5]. However, the capacity region of even the scalar Gaussian BC with feedback remains
unknown.

1 The System Model

We begin with the channel model for the vector Gaussian MAC. Figure 1 shows two kinds



...

...

...

...

...

��
�� ���

����
������
���
��������� ���

��� ����
��

Figure 1: Vector MAC

of vector multiple access channels. In the first case each of the users has multiple transmit
antennas while the base station has only one receive antenna. The second case is when each of
the users has a single transmit antenna each and the base station has

�
receive antennas. Note

that while the additive noise is not shown in the figure for simplicity, each output component
has a Gaussian noise component added to it. The noise components are normalized so that they
are zero mean, unit variance Gaussian stochastic processesuncorrelated in space and time. The
input-output equations for the two cases are:

1. Multiple Antennas at each User��	
��

	����
�
(1)��������

2. Multiple Antennas at Base Station��	
�

	���
�
(2)��������

Similarly, the vector Gaussian broadcast channels we consider can have multiple antennas at
either the base station or at each user, as shown in figure 2.
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Figure 2: Vector BC

The input-output equations for the���user
�������in the two cases are:

1. Multiple Antennas at each User�� �	��
��
(3)�� �������

2. Multiple Antennas at Base Station�� �	���
��
(4)�� �������



2 Vector MAC and BC with Single Antenna at Base Station

In this section we show that with a single antenna at the base station, the vector MAC and BC
are equivalent to the scalar MAC and BC obtained by a maximum ratio combining (MRC) of
the antennas at each user. As illustrated in Figure 3, each user can premultiply his input signal
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Figure 3: Transformation of Degenerate Vector MAC to ScalarMAC

with a unitary matrix"�. Note that Trace
�#��#��$��

Trace
�����$�

, so the power constraint is
unchanged. Since a unitary transformation is an invertibletransformation the capacity region
is also unchanged. Now, choosing the first column of"�as

�%&&�%&&makes the remaining columns

of "� orthogonal to
	�

and the vector channel becomes a scalar channel with input-output
equation: ��''	
''#�


''	�''#�
�
� (5)

Thus the vector MAC with a single antenna at the base station is equivalent to a scalar MAC.
Similarly, it is easily seen that the vector BC with a single antenna at the base station can

also be transformed into a scalar BC. The users multiply the received vector with a unitary ma-
trix "� that transforms the channel into a scalar channel while the noise statistics are unaffected
by multiplication with a unitary matrix.

Next we proceed to determine the capacity region of the non-degenerate vector Gaussian
MAC.

3 Vector MAC Capacity Region

We start with the non-degenerate vector Gaussian MAC with multiple antennas at the base
station. To simplify the problem we first apply a unitary transformation at the base station that
reduces user 1’s channel to a scalar channel. Thus, user 1’s input only affects the first receive
antenna at the base station. Then we apply another unitary transformation on the remaining�(�receive antennas so that user 2’s signal affects only the first two receive antennas at
the base station. For simplicity of notation we scale the transmit powers of the users so that
the channel gains from the first user to the first receive antenna and the second user to the
second receive antenna are unity. Figure 4 shows the transformations. Henceforth, based on
this transformation, we use the following model for the non-degenerate vector Gaussian MAC:�
 ��
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Figure 4: Simplification of the non-degenerate Vector MAC

We wish to show that the capacity region of this non-degenerate vector Gaussian MAC with
feedback is given by:+,-� ./010
2�3
�3��4�53
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We start with the converse.

3.1 Converse

As found by Ozarow for the scalar MAC, the capacity region of the vector MAC with feedback
is contained within

+A, where
+Ais given by+A�BCD��E��F2�3
�3��4 �53
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Since Ozarow’s proof for
+Aapplies directly, we do not repeat the proof.

Next we obtain the Gaussian version of
+A. Assuming that

�
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have variancesI�




andI��, and correlation coefficient;, we bound the differential entropies as follows:J��
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In order to bound the conditional entropies we upper bound the conditional variances by the
variances around the linear estimates. Thus,J��
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Upon simplification, these bounds give us3
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This completes the converse for the capacity region specified in (6).

3.2 Achievability

The achievability is based on the Kailath Schalkwijk codingscheme. The transmitters proceed
exactly as in the scalar MAC with feedback [4]. To avoid repetition we only describe compu-
tations that are different from the scalar MAC case. Note that unlike the scalar MAC where a
scalar value is received for each channel use, we now have a two dimensional received vector.

Following the notation of [4]X� is the mapping of user�’s message into the unit interval,YX��Z�is the receiver’s estimate ofX�at the
Z
th transmission,[��Z��YX��Z�(X� is the estimation

error,\��Z��var
�[��Z��, and;�Z�is the correlation coefficient of[
�Z�and[��Z�.



At time
Z
�
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Substituting back into the previous equations we obtain after some simplification,\
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Next we wish to obtain;�Z
��in terms of;�Z�. Note that
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Now, for all values of
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solution in (0,1) of
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As for the scalar MAC the existence of a solution in

�����is easy to see, since for;��
the LHS is smaller than the RHS while for;��the RHS is smaller than the LHS.

The remaining arguments in the proof of achievability are the same as in the scalar MAC
[4].



4 MAC Feedback Capacity at High SNR

Henceforth we devote our attention to feedback capacity at high SNR. In particular we are
interested in the sum capacity with feedback,

+fbj. For the MAC, high SNR means that the
users transmit powers can be represented ask:
andk:�with klm. First we consider the
scalar MAC.

4.1 Scalar MAC

The capacity region of the scalar MAC with feedback was determined by Ozarow in [4] as:+,-� ./010
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Note that
�vw�w�w�xw� is the ratio of the geometric mean to the arithmetic mean. So it always lies

between 0 and 1. This implies that6nopqr+fbj (+j���678P�
�g:
:�:

:�O5��b/channel useu
Thus, for the scalar MAC, at high SNR, the sum capacity with feedback is higher than that
without feedback by a positive constant bounded above by 0.5bits/channel use.

4.2 Non-Degenerate Vector MAC

Next we consider the capacity of the non-degenerate vector Gaussian MAC with feedback.
From the capacity expression (6) notice that at high SNR all three bounds are maximized for;��. However,;��corresponds to the capacity region of the vector Gaussian MAC without
feedback. Thus, we conclude that at high SNR, the entire capacity region of the non-degenerate
vector Gaussian MAC with feedback is the same as that withoutfeedback.



5 Non-degenerate Vector BC Sum Capacity

We wish to compare the sum capacity of the non-degenerate vector broadcast channel with and
without feedback. Recall that the sum capacity with feedback is not known even for a scalar
broadcast channel. For this reason we bound the sum capacityas follows.+fbj y+j� (10)

i.e. the sum capacity with feedback is no less than the capacity without feedback.+fbj 5+coop,fbj �+coopj (11)

i.e. sum capacity with feedback is no larger than the capacity of a single user who receives the
signals received by both users with feedback. But for a single user feedback does not increase
capacity. Thus, the sum capacity with feedback is no larger than the capacity of a single user
who receives the signals received by both userswithout feedback.

We assume that the noises seen by the two users are independent. In general if the noisesz
�z�are correlated with a coefficient of correlation;then+coopj �;�� o{|}~/ETrD}F0w��678det�G
M� ;; �NS
	"	$T (12)
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is non-singular for the non-degenerate vector Gaussian BC.Also note that for perfectly corre-
lated noise;��the capacity

+coopj ���
is infinite because noise can be perfectly cancelled

out of one component of the received vector. From the proof ofthe sum rate capacity of the
vector Gaussian BC [6] [7] [8] [9] we know that+j� on�1�S
010
+coopj �;� (14)

Let ;idenote the worst case noise correlation, i.e. the noise correlation that minimizes the
RHS of (14). This implies that if the correlation coefficientof the users’ noise terms

�
���
is actually;ithen feedback does not improve the sum capacity. Note that this is true for any
SNR. In other words, at any SNR, there is a possible correlation coefficient of the user’s noise
terms for which feedback does not increase the sum capacity.

6 BC Feedback Sum Capacity at High SNR

Now let us consider the sum capacity with feedback at high SNR. Recall that we assume that
the users’ noise terms

�
���are uncorrelated. From the bounds developed in the previous
section we have +j5+fbj 5+coopj ���

(15)



At high SNR, the total power isk:,klm, and from (14) we have6nopqr+j � 6nopqr on�1�S
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Combining (15) and (16) we conclude that6nopqr+fbj (+j��u (17)

That is, in the limit of high SNR, the sum capacity of the non-degenerate vector Gaussian BC
with feedback is the same as the sum capacity without feedback.

7 Conclusions

We explore the feedback capacity region of two user vector Gaussian multiple access (MAC)
and broadcast channels (BC) with either multiple antennas at the base station and a single
antenna at each user or multiple antennas at each user and a single antenna at the base station.
We show that the vector MAC and BC with a single antenna at the base station and multiple
antennas at each user are degenerate vector channels as theyare equivalent to a scalar MAC
and BC. In the limit of high signal to noise ratio (SNR), we show that for the scalar Gaussian
MAC (and for the degenerate vector Gaussian MAC), the difference between the sum capacity
with and without feedback goes to a positive constant. We explicitly calculate this constant
and show that it is no more than


�bit/channel use. For the non-degenerate vector Gaussian
MAC we apply the Kailath Schalkwijk coding scheme to determine the previously unknown
capacity region with feedback. Unlike the scalar Gaussian MAC, we show that for a non-
degenerate vector Gaussian MAC the entire capacity region with feedback becomes the same
as the capacity region without feedback in the limit of high SNR. For the non-degenerate two
user vector Gaussian broadcast channel (BC) we show that there always exists a possible noise
correlation for which feedback does not increase sum capacity. In the limit of high SNR, we
show that the sum capacity of the non-degenerate vector BC with feedback is the same as that
without feedback.
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