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Abstract— We determine the capacity region of a single-
cell isotropic fading multiple antenna downlink with perfect
channel knowledge at the mobiles and only the knowledge of
the magnitudes of the users’ channel vectors at the base station.
Using a scalar upperbound we are able to prove the optimality of
Gaussian codebooks on this vector broadcast channel. Numerical
results are provided to compare magnitude feedback against
opportunistic beamforming and antenna selection.

I. INTRODUCTION

One of the most intriguing aspects of multiple antenna
wireless systems is that the capacity benefits of using mul-
tiple antennas can depend dramatically upon the assumptions
regarding the underlying time-varying channel model and how
well it can be tracked at the transmitter and the receiver [1].
In practical systems, channel state information at the receiver
(CSIR) is obtained from pilot symbols and blind channel
estimation techniques. In the absence of delay constraints,
the receiver’s task is simplified somewhat because unlike the
transmitter, which needs real-time channel estimates, it can
wait until the end of transmission to form its channel estimate
based upon the entire received sequence of coded data symbols
as well as the pilot symbols. From an information theoretic
perspective, the assumption of perfect CSIR allows us to deal
in isolation with the issue of channel coding while ignoring
the issue of designing optimal training sequences and channel
estimation algorithms.

Channel state information is hard to obtain at the transmitter.
In a time division duplexed system where the uplink and
the downlink are using the same frequency spectrum, the
reciprocity of wireless channels allows the transmitter to
obtain channel state information from the received uplink
transmissions. However, most current cellular systems as well
as those planned in the immediate future are frequency division
duplexed. For such systems, channel state information at the
transmitter is obtained only by means of a feedback channel
through which the receiver can send its current channel es-
timates to the transmitter. The task is even harder for vector
broadcast channels because the number of channel coefficients
that each receiver needs to estimate and instantaneously feed-
back is equal to the dimension of the channel vector. While,
even with perfect CSIR, it is impractical for the receiver
to feedback all the components of the instantaneous vector
channel state to the transmitter, it may be possible to feedback
partial information about the channel state. For example, the

receiver may feedback only the norm (magnitude) of the
instantaneous channel vector with no information about its
direction. In this paper we determine the capacity region
of the vector Gaussian BC with perfect CSIR and only
channel magnitude information available to the transmitter. A
scalar upperbound is used to prove optimality of Gaussian
codebooks. We also compare magnitude feedback with other
broadcast schemes such as opportunistic beamforming and
antenna selection.

II. SYSTEM MODEL

In this paper we consider the capacity region of an isotropic
fading vector Gaussian BC with perfect CSIR and only chan-
nel magnitude information at the transmitter. By isotropic we
mean the following: the transmitter has no knowledge of the
“direction” of any user’s channel vector. In other words, all
directions are equivalent from the transmitter’s standpoint. The
precise system model is presented next.

A. Broadcast Channel Model BC-V

Consider a fading vector broadcast channel with M transmit
antennas at the base station and K users with a single receive
antenna at each user given by the input/output relationship
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where for user k at time instant t, H[k]
t is the 1×M channel

vector, Y
[k]
t is the received scalar signal and Z

[k]
t is additive

white Gaussian noise (AWGN). Xt is the M × 1 complex
vector symbol transmitted by the base station at time instant
t. Let the average transmit power be P , so that

E
[
Tr(XX†)

] ≤ P. (2)

Figure 1 shows the channel model for BC-V with two
users. The channel fade and noise processes are ergodic and
stationary. We allow the channel fade process to have memory.
Thus, successive realizations of the channel and/or the noise
may be correlated. For simplicity, the time index is suppressed.
Isotropic fading [2] is defined as follows:
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Fig. 1. BC-V

Isotropic Fading: We consider the class of channels that can
be described as

H[k] = Φ[k]h[k] (3)

where Φ[k] is a 1 × M isotropically random complex unit
vector and

h[k] = ||H[k]||, (4)

the norm of the instantaneous channel vector is a non-negative
scalar random variable independent of Φ[k]. It is important to
note that each users’ channel norm may have a completely
different distribution.

Recall that an isotropically random vector is one whose
distribution is not affected by multiplication with a unitary
matrix. It is the mathematical way to capture the notion that
the vector is equally likely to point in any direction in the
M dimensional vector space. An example of a channel that
belongs to this class is the Rayleigh fading channel with
AWGN where each users’ channel vector H[k] consists of i.i.d.
complex Gaussian elements H[k]

i ∼ N (0, α2
k), 1 ≤ i ≤ M .

Specifically, in terms of the system model BC-V, this means
that h[k] is known to the transmitter, 1 ≤ k ≤ K. Perfect CSIR
is still assumed. Next we introduce the scalar upperbound.

As the name implies, the scalar upperbound is an upper-
bound on the capacity region of the vector broadcast channel
BC-V in terms of the capacity region of a scalar broadcast
channel BC-S. The new channel BC-S is described as follows:

B. Broadcast Channel Model BC-S

Associated with the broadcast channel BC-V, we define
another channel model, BC-S, with input/output relationship

Ỹ [1] = h[1]X̃ + Z [1]

Ỹ [2] = h[2]X̃ + Z [2] (5)
...

Ỹ [K] = h[K]X̃ + Z [K]

Notice that the input X̃ is a scalar, and each users’ channel
is also a scalar equal to the norm of the corresponding original
vector channel. The additive noise experienced by each user
is the same as in the vector broadcast channel model BC-V.
The new transmit power constraint is

E[|X̃|2] ≤ P

M
. (6)

Figure 2 shows the channel model for BC-S with two users.
Of course, an alternate representation of the BC-S channel is
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Fig. 2. BC-S

where the transmit power constraint is P instead of P
M and

the users’ channels are h[k]/
√

M instead of h[k]. To avoid
confusion, in this paper we will use the system model as
represented in Figure 2.

The following theorem establishes the scalar upperbound
for the vector broadcast channel with magnitude feedback.

Theorem 1: The capacity region of the vector fading
broadcast channel BC-V with perfect CSIR and magnitude
feedback is contained within the capacity region of the scalar
fading broadcast channel BC-S with perfect CSIR and perfect
CSIT.
Proof of Theorem 1: The proof for the applicability of the
scalar upperbound is identical to that for Theorem 1 of [2]
if we also assume magnitude feedback in the scalar fading
broadcast system model BC-S. Thus, the capacity region of
the vector broadcast channel BC-V with magnitude feedback
is contained within the capacity region of the scalar broadcast
channel BC-S with magnitude feedback. Interestingly, magni-
tude feedback for the scalar broadcast channel constitutes the
entire channel state information. Thus, we can equivalently
state that the capacity region of the vector broadcast channel
BC-V with perfect CSIR and magnitude feedback is contained
within the capacity region of the scalar broadcast channel with
perfect CSIR and perfect CSIT.

For our second result in this section we need the assumption
that the additive noise is white and Gaussian. Under this
assumption, the capacity region of the scalar fading broadcast
channel with perfect CSIR and CSIT has already been found
by Li and Goldsmith (Theorem 3.1 of [3]). From Li and
Goldsmith’s result we can directly state the following:

Theorem 2: The capacity region of the scalar fading Gaus-
sian broadcast channel BC-S with perfect CSIR and perfect
CSIT is

C(P ) = ∪P∈FCCD(P), (7)

where

CCD(P) =
{
Rk ≤ E�h[·] [log (1+

(h[k])2Pk(�h[·])

1 +
∑K

j=1(h[j])2Pj(�h[·])1(h[j] > h[k])

)]

1 ≤ k ≤ K} (8)
is the achievable region with superposition coding and suc-
cessive decoding with power allocation policy P . The joint
channel state of all users is denoted by the vector �h[·] =
{h[1], h[2], · · · , h[K]}. Pk(�h[·]) is the transmit power allocated
to user k under power policy P . F is the set of all permis-
sible power policies that satisfy the average power constraint



∑K
k=1 Pk(�h[·]). 1(·) denotes the indicator function (1(x) = 1

if x is true and 0 otherwise). Note that the way this theorem
is stated it assumes that no two users have the same channel
magnitude. As mentioned in [3] the case when, for example
users i and j have identical channel magnitudes can easily
be handled by viewing the two users as one user, applying
superposition coding and successive decoding to the resulting
K −1 users. Time sharing is used for users i and j. Thus, for
simplicity, we will assume henceforth in this section that all
the users have distinct vector channel magnitudes.

Using Li and Goldsmith’s result stated above we prove the
following Theorem:

Theorem 3: The capacity region of the isotropic vector
fading Gaussian broadcast channel BC-V with perfect CSIR
and only a knowledge of �h[·] at the transmitter (magnitude
feedback) is identical to the capacity region of the scalar fading
Gaussian broadcast channel BC-S described in Theorem 2.
Note that this theorem does not make any assumption regard-
ing the distribution of users’ magnitudes.
Proof of Theorem 3: In order to prove Theorem 3 we only
need to prove achievability. The converse is already proved
from the scalar upperbound. For achievability, we start by
considering a fixed channel magnitude vector �h[·]. Without loss
of generality suppose the users’ fixed magnitudes are ordered
as

h[1] < h[2] < · · · < h[K]. (9)

Note that conditioned on the given h[k], each user’s channel
is just an isotropic random vector of the corresponding mag-
nitude. Also, since the broadcast channel capacity depends
only on the marginal distributions p(Y [i]|X) (see [4]), we can
assume that all the users’ channel vectors are parallel. The
common direction of all the channels is known to each receiver
(perfect CSIR) but not known to the transmitter.

Lemma 1: The vector fading Gaussian broadcast channel
BC-V with a fixed channel magnitude vector �h[·] is stochas-
tically degraded in the same order as the users’ channel
magnitudes.
Proof of Lemma 1: In fact for fixed channel magnitudes,
the vector fading Gaussian broadcast channel BC-V can be
transformed into a physically degraded broadcast channel
without affecting its capacity. Suppose each user scales its
received signal by the reciprocal of its channel magnitude h[k].
Then, all the users have identical channels but different noise
variances. The kth user’s additive noise is white Gaussian with
variance 1

(h[k])2 . Now, without affecting the marginals [4] we
can assume

Z [i] = Z [i+1] +



√(

1
h[i]

)2

−
(

1
h[i+1]

)2

Ni

i = {1, 2, · · · ,K − 1} (10)

Ni are i.i.d. zero mean unit variance circularly symmetric
complex Gaussian random variables. Each user’s received
signal is the same as the next user’s received signal with some
independent noise added to it. Thus, the users are physically

degraded. If we do not assume (10) then the users are only
stochastically degraded.

Lemma 2: For the vector fading Gaussian broadcast
channel BC-V with a fixed channel magnitude vec-
tor �h[·] and a fixed power allocation vector P =
{P1(�h[·]), P2(�h[·]), · · · , PK(�h[·])} the following rate tuples
are “achievable” with superposition coding and successive
decoding{

(R[1], R[2], · · · , R[K]) :

R[k] ≤ log

(
1 +

h[k]Pk(�h[·])

1 +
∑K

j=1 h[j]Pj(�h[·])1(h[j] > h[k])

)
,

1 ≤ k ≤ K} (11)
By “achievable” we mean the rate tuple lies within the

capacity region.
Proof of Lemma 2: For a stochastically degraded channel the
capacity region is given by

C = ∪p(U1,··· ,UK−1,X):U1→···→UK−1→X→(Y[1],··· ,Y[K]){
(R[1], · · · , R[K]) ∈ RK

+ :

R[1] ≤ I(U1;Y [1]),
R[k] ≤ I(Uk;Y [k] |U1, · · · ,Uk−1 ),

k ∈ {2, · · · ,K − 1}
R[K] ≤ I(X;Y [K] |U1, · · · ,UK−1 )

}
(12)

To obtain an achievable point within the capacity region let
us substitute (U1,U2, · · · ,UK,X) jointly Gaussian into (12)
such that:

X = U1 + U2 + · · · + UK

Uk ∼ N
(

0,
Pk(�h[·])

M
IM

)
(13)

and U1,U2, · · · ,UK are independent. Then it is easily seen
that the resulting achievable rate region is the same as (11).
This completes the proof of Lemma 2.

Finally, to prove Theorem 3 we use the idea of multiple
codebooks, such that each codebook corresponds to a joint
channel magnitude vector �h[·]. Since both the transmitter
and receiver know the instantaneous channel magnitudes it
is possible to multiplex these codebooks such that for every
channel realization the corresponding codebook is used. Each
codebook is designed for a rate that can be supported by the
channel if the channel magnitudes are constants represented
by the channel magnitude vector �h[·] corresponding to that
codebook. The overall rate vector achieved in this manner is
the average of the rate vectors of all the codebooks, where
the averaging is over the distribution of the joint channel
magnitudes vector �h[·]. Since this argument is quite standard
we will simply refer the reader to [5] and [6]. It is also shown
in [6] that multiple codebooks are not necessary to achieve
this capacity region.



III. OPPORTUNISTIC BEAMFORMING, ANTENNA

SELECTION AND MAGNITUDE FEEDBACK

In this section, we qualitatively describe two other possible
transmission schemes the base station can adopt - opportunistic
beamforming and antenna selection.

Opportunistic beamforming [7] uses multiple antennas at
the base station to send the same signal from each of the
M antennas multiplied by a gain (

√
βm(t)) and a phase

shift (ej·θm(t)) at the mth antenna. These gains and phases
of the antennas are varied in a pseudo random manner with
the constraint that

∑M
m=1 βm(t) = 1. The basic idea in

opportunistic beamforming is that in a heavily populated
system, there is always at least one user whose beamforming
configuration is very close to the transmitted vector. At any
time, the throughput can be maximized by allocating resources
to the best user at that time.

In transmit antenna selection, the base station has a fixed
number of antennas. Each user determines the best subset of
antennas and sends this information to the transmitter. The
transmission is then done using only the subset of antennas
chosen by that user. We will only look at single antenna
selection for future comparisons, where the user selects the
best transmit antenna at the base station. The transmitter then
puts all the available power into that single antenna during
transmission. Single antenna selection is a special case of
quantized beamforming, where the number of transmit beam-
forming vectors is equal to the number of transmit antennas.

IV. NUMERICAL RESULTS

In this section, we present numerical results obtained with
magnitude feedback, and compare the magnitude feedback
scheme with opportunistic beamforming and single antenna
selection. For each of the three schemes discussed, we consider
four simulation scenarios:

• I.I.D and Non I.I.D Rayleigh fading: The I.I.D case
has users with identically distributed Rayleigh fading
channels with an average receive SNR of 5.965dB. In
the non I.I.D case, the channel for each user is Rayleigh,
but the average SNR is generated independently for each
of the K users according to the CDF given in [8].

• I.I.D and Non I.I.D Rician fading: The I.I.D case has
identically distributed Rician fading channels with κ =
5 and an average SNR of 5.965dB. κ is the K-factor
of the distribution, defined as Edirect/Especular, where
Edirect and Especular are the energies in the direct and
specular paths respectively. For the non I.I.D part, the
channel for each user is Rician with κ = 5, and the
average SNR is generated independently for each of the
K users according to the CDF given in [8].

The performance of the three schemes for each of the four
channel conditions above is simulated with and without
scheduling of users in the system. We use the proportional
fair (PF) scheduling algorithm described in [7], with tc = 400
time slots in all our simulations.

A. Performance with increase in number of users

In Fig 3, average throughputs for magnitude feedback,
opportunistic beamforming and antenna selection are plotted
against the number of users (K) in the system. There is no
scheduling of users. It can be seen that for small number
of users in the system, magnitude feedback achieves higher
throughputs than opportunistic beamforming. This is mani-
fested prominently in the unscheduled non I.I.D Rayleigh and
Rician cases. As the number of users increases, the probability
of a user being in its beamforming configuration is higher. As
a result, opportunistic beamforming performs better when the
system has a large number of users.
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Fig. 3. Average throughput (in bps/Hz) of opportunistic beamforming (solid
lines), magnitude feedback (solid lines marked with circles) and single antenna
selection (dashed lines) against the number of users with M = 4 base station
antennas. The users are not scheduled.

In Figure 4, the three schemes are compared with the users
time shared using the PF scheduling algorithm. The plots
follow the same trend as for the unscheduled case.

B. Performance with increase in number of base station
antennas

We now compare the three schemes considered with respect
to the number of transmit antennas (M ) in the system. We
show the average throughputs for the three schemes with K =
5 and K = 50 users without scheduling in Figure 5. Figure 6
shows the throughputs for the three schemes when the users
are scheduled according to the PF scheduling algorithm.

We observe that the throughputs for magnitude feedback
decrease with an increase in the number of transmit antennas.
This may seem counter-intuitive, as one would expect that
if that is the case, then the base station would use only a
subset of the available antennas for transmission. Thus, the
sum-capacity, even if it does not increase with more antennas,
should not decrease as the number of transmit antennas is
increased. However, it is important to note that under the
magnitude feedback model, the transmitter only knows the
magnitude of the channel vector comprising of all the trans-
mit antenna elements. At any time t, the base station has
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Fig. 4. Performance of opportunistic beamforming (solid lines), magnitude
feedback (solid lines marked with circles) and single antenna selection (dashed
lines) with PF scheduling against the number of users. M = 4 base station
antennas is assumed.

knowledge of h[k] for the kth user and this does not provide
magnitude information for any sub-vector corresponding to a
smaller subset of antennas. Given the magnitude feedback for
the isotropic channel vector corresponding to M antennas it is
therefore optimal to transmit on all M antennas and the total
throughput can be smaller as the number of transmit antennas
increases, as indicated by the plots.
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Fig. 5. Performance of opportunistic beamforming (solid lines), magnitude
feedback (solid lines marked with circles) and single antenna selection (dashed
lines) with respect to number of base station antennas. Thin lines denote plots
for K = 5 users, whereas thick lines represent K = 50 users. The base
station does not schedule the users.

V. CONCLUSIONS

We determine the full capacity region of an isotropic fading
vector broadcast channel when the channel state is perfectly
known at the receivers and only the magnitudes of the chan-
nel vectors are available at the transmitter. Using a scalar
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Fig. 6. Average throughput (in bps/Hz) of opportunistic beamforming (solid
lines), magnitude feedback (solid lines marked with circles) and single antenna
selection (dashed lines) with PF scheduling against the number of base station
antennas. Thin lines denote plots for K = 5 users, whereas thick lines
represent K = 50 users.

upperbound we are able to prove the optimality of Gaussian
codebooks on this vector broadcast channel.

From the results obtained, we see that for a small number
of users in the system, magnitude feedback outperforms op-
portunistic beamforming. However, increasing the number of
transmit antennas decreases the throughput in the magnitude
feedback case. This behavior stems from the fact that the base
station cannot determine the channel magnitude for a subset of
antennas used from the overall magnitude fed back from each
user. On the other hand, the lack of directional information
at the transmitter is responsible for the small throughputs
achieved by magnitude feedback. This indicates that at least
some directional information about the users is also required
to effectively employ multiple antennas at the base station.
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