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Abstract 
We obtain the (Shannon) optimal power and rate allo- 

cation strategies for the uplink on single cell systems. For 
an N user system, we show that successive decoding which 
is independent of channel state is optimal in the Shannon 
sense. Using this result, we,frame a simple N dimensional 
convex optimization problem, which is solved to obtain op- 
timum power and rate allocation as explicit functions of the 
channel state. 

1. Introduction 

In a typical uplink scenario, we have multiple users 
transmitting to a single basestation, where each user has a 
different data rate requirement (e.g. voice, data or video 
users). We wish to determine the Shannon capacity region 
for such a system, i.e. the set of rates that this system can 
achieve with each user guaranteed an arbitrarily small prob- 
ability of error, using the best coding scheme possible and 
with no delay constraints. Assuming the transmitter and 
receiver have perfect and instantaneous knowledge of the 
channel, we are interested in resource allocation policies of 
the transmitter, as a function of channel state, that achieve a 
boundary point R* of this Shannon capacity region. 

The capacity region and optimal resource allocation poli- 
cies for this scenario have been previously studied in [6]. 
In [6], the authors define a “marginal utility function” for 
each user at each channel state. This function represents 
the marginal increase in the objective function by allocat- 
ing power to the user at an interference level z. This func- 
tion is used to allocate power to the user with the high- 
est marginal utility (called the greedy allocation problem). 
This approach, while powerful, is somewhat abstract, which 
makes it difficult to obtain intuition about the properties of 
the solution. In this paper we frame the resource alloca- 
tion problem as a simple convex optimization, where both 
the objective function and the constraints are explicit dif- 
ferentiable functions of the power allocation policies of the 
users. Thus, differentiation and solving simultaneous equa- 
tions are sufficient to obtain the optimal solution. 
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We present the system model in the next section. In Sec- 
tion 3 we show that it is optimal for the receiver to decode 
one user at a time in the same order at all channel states 
(termed the unique decoding order property). We frame the 
optimization problem and discuss the solution in Section 4. 
We provide an iterative algorithm to obtain the capacity re- 
gion boundary in Section 5 and study the special case of 
rate-sum capacity in Section 6. The results and conclusions 
are in Section 7. 

2. System Model 

For notation, we use boldface to denote vectors (vector 
v denotes { V I  212,. . . , V N } )  and Ef to denote expectation 
over the random variable f. 

We consider a discrete time uplink channel with N users 
communicating with a single receiver. The received signal 
at time n is given by y(n) = xEl &i(n)z,(n) + zi (n)  
where zi (n )  and hi (n) are, respectively, the transmitted sig- 
nal and channel gain for the ith user at time instant n, and 
zi(n) is additive white Gaussian noise (AWGN) with vari- 
ance u2. Note that we can normalize the equations to set 
U* = 1. We wish to determine the power and rate alloca- 
tion policies, Pi (h) and Ri (h) respectively, for all N users, 
as a function of the channel state h. We assume that all 
the transmitters and the receiver know all the channel states 
h = {hl(n),  hz(n).  . . h ~ ( n ) }  at the time instant n (termed 
perfect transmitter and receiver side information). We also 
assume that h is a real and positive vector. If hi(n) is com- 
plex, we can replace it by without changing the final 
solution. 

3. Uniqueness of Decoding Order 

In this section, we shall prove a simple but important 
result about any resource allocation policy that achieves a 
point on the boundary of the n dimensional region described 
in Section 1. 

Theorem 1 For any point R‘ on the boundary ofthe capac- 
ity region, the optimal decoding policy is successive decod- 
ing, with the same decoding order of avers for all channel 
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states. Thus every point on the boundary can be associated 
with a successive decoding order. 

Although this result was observed in [6] based on their 
optimization solution, it was neither emphasized nor used. 
We now obtain this result from first principles and then use 
it to greatly simplify the resource allocation optimization. 

Successive decoding means that users are decoded se- 
quentially, and that the user to be decoded treats all the users 
yet to be decoded as noise, and subtracts out the symbols 
transmitted by the users already decoded from the received 
codeword. Since each user is transmitting at an arbitrarily 
small probability of error, we can subtract out the users al- 
ready decoded without introducing additional errors. For 
any given channel state, the optimality of successive de- 
coding follows directly from the chain rule for mutual in- 
formation [3]. To show that the optimal ordering of suc- 
cessive decoding is independent of the channel state, we 
state the expression for the capacity region of this system 
for a given a power allocation policy P(h) that satisfies 
E$,[Pi(h)] = 4, 1 5 i 5 N without proof (please see 
[6] for proof) as 

C s z d e ( h :  p) 
= {R : R(S) I $ h [ l o g ( l +  Ci,ghiPi(h))], VS},(l) 

were S isany subset of {1,2, .  . . N }  and R(S)  = CiEs Ri. 
The meaning of this expression is that the sum of the rates 
of any subset S of users in this system is less than the 
rate obtained as if one user had the entire received power 
CiES hiPi(h). Suppose the transmitter has no side infor- 
mation (i.e. knows nothing about the channel) but the re- 
ceiver has perfect side information, then the capacity region 
is given by [3] 

In this case, we cannot allocate any resources dynamically, 
since the transmitter has no side information. After look- 
ing at Equations (1) and (2) carefully, we note that the only 
difference between the two is the time varying power allo- 
cation in (1). Thus, if we treat the variation in power P, (h) 
as part of the channel [ 11, i.e. if we were to consider a new 
channel h&(h) for user i ,  1 5 i 5 n with no transmit- 
ter side information and an average power of unity for each 
user, then 

where denotes the Hadamard product of the two vectors. 
As pointed out before, when the transmitters of all the users 
have no side information, they must transmit at a constant 
rate and power and cannot change codebook from state to 
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state to achieve a point in the capacity region. Since the re- 
ceiver decodes one user at a time, and since the codeword of 
each user spans many different channel states, the receiver 
cannot change decoding order from one channel state to an- 
other. Thus, using a constant codebook (and hence decod- 
ing order) and varying the power allocation with the chan- 
nel state achieves any point in the capacity region, and as a 
special case, the boundary. 

In the next section, we employ Theorem 1 to solve the 
problem of finding the optimal rate and power allocations 
that achieve the boundary of the capacity region. 

4. Problem Formulation and Solution 

It is well known that a point on the capacity region 
boundary can be obtained by solving the equivalent convex 
problem [6] 

(4) 

subject to Eh [P;(h)] = Pi 1 5 i I N ,  where . represents a 
dot product. We call p = {PI , .  . . , ,UN} ,  a vector of prior- 
ities', where pt = landpt 2 0. In this formulation, 
each user is assigned a priority value p. In Equation (4), the 
rate policy vector R(h) is implicitly a function of the power 
policy vector P(h) (and vice versa). If the optimal decod- 
ing order at the receiver were not unique but differed from 
state to state, it would be extremely difficult to characterize 
R(h) in terms of the P(h) and using utility arguments as 
in [6] is the only known approach for solving this problem. 
But using the unique decoding order property and the fol- 
lowing theorem, we can explicitly write R(h) in terms of 
P(h), and hence rewrite (4) in a simpler form. 

Theorem 2 The unique decoding order is the reverse order 
of the priorities p,. If we label the users in the decreasing 
order of their priorities, i.e. mers 1, . . . N have priorities 
p1 2 p2 2 . . . 2 p~ then the decoding order is N ,  N - 
1,. . . , 1. Thus, the user with the lowestpriority is decoded 

,first, the user with the next lowestpriority is decoded second 
and so on with the highestpriority user decoded last. 

To prove this we assume an optimal decoder ordering of the 
form ~ (1 ) :  .(2), . . . , r ( N ) .  Then the maximal rate achiev- 
able by User i given a power policy P(h) is 

since all the users to be decoded after User i are noise, 
and all the users already decoded have been subtracted out. 

'Geometrically, p . R = c represents a hyperplane in n dimensional 
space. This hyperplane will be a tangent to the convex capacity region for 
the maximum value of c. 
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Thus, for a given power policy, 
mum value given by 

[p . R(h)] has a maxi- 

If in (6) ,  there are two users such that for i < j , ~ ( i )  < 
~ ( j ) ,  then by interchanging their decoding orders, we can 
increase (6). Thus, the optimal decoding order must be 
n ( i )  = N - i. A complete proof of this can be found in 

The results obtained above allow us to rewrite Equation 
[71. 

(4) as the follows: Given _> p2 2 . . . 2 p ~ ,  

subject to [Pi (h)] = pi, 1 5 i 5 N .  This problem def- 
inition is, as promised, an explicit function of the N power 
policies Pi(h), 1 5 i 5 N ,  and of nothing else. Also, 
since the decoding order is fixed, the rate policy of User 
i is 1/21og (1 + l + < ~ ~ ~ J ~ h l ) ,  which is a function of 
P(h). Thus, we can concentrate on solving for the optimal 
P(h), which is turn gives us R(h). For this optimization 
we use standard methods: forming the Lagrangian (Equa- 
tion (8)),  differentiating the Lagrangian with respect to each 
of the N variables Pi (h) and setting the derivatives to zero. 
Specifically, the Lagrangian is: 

N 

- CXiPi(h) 
i = l  

and we wish to solve 

(9) 

Equation (9) yields N equations in P(h). We label the 
equation in (9) obtained by differentiating with respect to 
P, (h) as dL(i) .  Note that until now we have ignored the 
positivity constraint on P(h), i.e. that the power of each 
user is non-negative. Including this constraint divides the 
space of all possible h vectors (which is I%+" in general) 
into 2N disjoint regions, since each user can be transmit- 
ting or not and there are N users. Since P,(h) > 0 in a 
region implies that dL( i )  gives us a non-negative solution 
for Pi(h) in that region, this is equivalent to dividing 
into 2 N  disjoint regions based on where the subsets of the 
equation set {aL,} have a non-negative solution for P, (h). 
We denote these regions using Rj, with the binary expan- 
sion of j determining which users transmit in the region !J17. 
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Thus, if the binary expansion of j is [jl,. . . , j k ,  . . . , jN], 
then j k  = 1 implies that user k transmits in region !JIJ and 
j ,  = 0 implies that he does not. Similarly, let 6j denote a 
subset of the N equations {aL( i ) } :  such that a L ( k )  E 6.j 
if and only if jk = 1 (Equivalently,aL(k) E 6j if solving 
63,. yields Pk(h) > 0 . By solving the subset of equations 
6j simultaneously, we obtain the power policy of each ac- 
tive user in R3 in terms of A. 

We find the region boundaries of !Rj  using two facts: that 
the powers obtained by solving 6j are positive, and that 
all the other powers are zero. After performing this for all 
the 2N equation subsets 6j and finding the corresponding 
boundaries of the regions Rj, we obtain X by using the N 
power constraints in the problem definition. Say 6J were 
the subset { b L ( i l ) ,  OL(jz),  . . . , 6'L(in)} with il < . . . < 
ik < . . . < i,, representing the positions where the binary 
expansion of j equals unity. Then the optimum power and 
rate allocation policies in region !Rj  obtained by solving 6j 
is found to be: 

.,, . , 

where hi, represents the channel of user ik. The power poli- 
cies in (10) show that the power of each user increases with 
his own channel gain. In Section 4.2 we shall provide an in- 
tuitive understanding of the power policies obtained above 
for a two user system based on a waterfilling argument. As 
mentioned before, the boundaries of Rj are obtained by us- 
ing positivity constraints on the power policies in (lo), and 
that Pk(h) = 0, V k { i l , .  . . , i n } .  

4.1 Characteristics of the Optimum Power Policy 

Based on Equations (lo), we can draw the following con- 
clusions 

Observation 1 The power policy of User ik given by (IO) 
within each region %k, is a,function onfy of hik,hik-l and 
hi,+,. Moreove,: Pi, (h) is a strictly increasing function of 
hi, and a strictly decreasing function in hik-l and hiktl. 

In other words, the power policy of a given user for chan- 
nel state h depends only on his channel gain and the chan- 
nel gains of the users decoded immediately before and after 
him. Specifically, if the channel of User i improves with 
the channels of other users remaining fixed, his power must 
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increase and the powers of those adjacent to him in decod- 
ing order must decrease to allow User i a higher rate and 
an overall increase in system throughput. If the channel of 
those adjacent in decoding order improves, his power must 
decrease to allow their throughputs to increase. Thus, across 
all regions, User ak “waterfills” to the channel, except that 
the waterfill level depends on which users are active in re- 
gion !Rj, and within each region on the channels of the users 
decoded immediately before and after. 

For the special case of the user being decoded first, we 
state the following theorem 

Theorem 3 The optimal power and rate allocation for the 
user being decodedjrst is “waterfilling” to the SIR it oh- 
serves, where waterfilling is used in the same sense as in 
[4], i.e. for U; = 1 + hkPk(h), the optimum 
power is of the form 

This theorem is proved by rewriting BL(N) in this form. 

4.2 Two User Example 
For illustrative purposes, we consider a two user exam- 

ple with p1 > pz. In this case, we have 4 different f l j  

regions. We can combine the power policies of User 1 in all 
the regions as: 

Note that when User 2 is not transmitting, User 1 water- 
fills to the channel with a constant waterlevel. When User 
2 transmits, User 1 still waterfills to the channel, but the 
waterlevel increases with hl . The power policy of User 2 is 

(12) 

i.e., User 2 waterfills to the SIR he observes, with a constant 
waterlevel regardless of User 1. The capacity region for 
this two-user example in the case of Rayleigh flat fading, 
i.e. when hi are exponential distributed as e-h*,  and with 

= { 1,l) is shown in Figure 1. The region boundaries for 
the system are plotted in Figure 2. Notice that Pl and P2 
cutoff below a certain value of hl and hz respectively, and 
that this cutoff value is independent of the channel state of 
the other user. Also note that beyond a certain value of hl, 
User 1 always transmits regardless of hz, but that for every 
value of hz there is an hl such that User 1 alone transmits, 
i.e that User 2 is cutoff. 
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Now we revisit Equation (9) to explain the practical 
implications of this approach. Differentiating L(P(h ) ,  A) 
with respect to P, (h) and setting it to zero gives us the op- 
timal power distribution of User i, given the power policies 
of the remaining users. Thus, if the system preassigns prior- 
ity values to each user, and performs successive interference 
cancellation [2] at the receiver, then the optimal power pol- 
icy of User i is obtained from dL( i ) ,  even when the other 
users in the system allocate powers in an arbitrary fashion. 
This result suggests an interpretation of our result based on 
competitive non-cooperative equilibrium, where the users 
compete among themselves to maximize the objective func- 
tion (7). The end result of such a game will be the joint 
optimal power allocation as described in (10). 

In the next section, we present a simple technique for 
computing the Lagrangian X which is needed to find the 
capacity region. 

5. Iterative Algorithm for Obtaining Capacity 
Region Boundary 

Since solving for the vector X is complicated in general, 
we suggest a simple iterative algorithm that finds the X i  one 
at a time. We consider a two user example for illustrative 
purposes, with p1 > p2. 

Step 1 : Find the single user optimum power distribution 
for User 1, i.e., find XI such that Ehl [ p ~ / X l  - No/hl]+ = 

PI where [f(x)]+ = maximum(f(x), 0). Denote this esti- 
mate of the two user optimum power distribution of User 1 
by Pl. 

Step 2: Find the power distribution of User 2 according 
to Equatio? (12) satisfying the power constraint for User 2, 
using the PI found earlier for PI (h).This process gives us 
Xz . Denote this estimate of the optimum power distribution 
of User 2 by PZ . 

Step 3: Find X1 and the power distribution for User 1 
using Equation (1 l),  the power constraint for User 1 and 
the X2 obtained in Step 2. 

Step4: TerminateifIXl(n)-Xl(n-l)l <c,lXz(n)- 
X z ( n  - 1)1 < 6, where E ,  6 are design parameters (chosen 
to be suitably small) and n the iteration number. Else go to 
Step 2. 

Since p1 > p2, the iterative algorithm begins by assum- 
ing that User 1 achieves the best possible performance on 
the channel (effectively assuming that p2 = 0), and then 
adjusts the power distribution of the users towards the true 
values of p1 and pz. This algorithm is useful since finding 
A1 and Xz one at a time is not as difficult as solving for them 
simultaneously. We have not yet proved the convergence of 
this algorithm, but in our calculations it always converges. 
The example capacity region for Rayleigh flat fading shown 
in Figure 1 uses this algorithm. 
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6. Rate-Sum Capacity 

Rate-sum capacity is the point on the capacity regon 
where all the users have equal priority (pi = pj Vi,j in 
Equation (7)), i.e. when we wish to maximize EL1 Ri. 
This case has already been studied in [5] and 261, where the 
authors show that TDMA is optimal for this scenario. We 
provide an altemative argument based on the optimality of 
an arbitrary decoding order. 

Using the strict concavity of the logarithm in Equation 
(7), it is easy to see that the rate-sum (ELl &) will be 
maximized at a unique point. Revisiting the proof of Theo- 
rem 2, we find that any decoding order at the receiver will 
maximize the sum of rates. This can also be understood by 
noticing that the rate-sum point on the boundary of the ca- 
pacity region can be approached from different directions, 
each of them corresponding to a different decoding order. 
Hence, the power policies P are such that the rates achieved 
by the users (R) is the same for all decoding orders. This 
implies that, for User i 
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Figure I. Capacity region for the two user flat 
fading channel 

PI = 0 ,  Pz > 0. I 

Figure 2. Regions !Rj for the two user example 
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