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Abstract — The capacity of a vector Gaussian in-
terference channel is investigated. Outer bounds, and
where possible, capacity regions of a class of interfer-
ence channels is characterized. The analysis of single
transmit multiple receive antenna (SIMO) Gaussian
interference channels with strong interference can be
easily seen to be exactly analogous to that of a sin-
gle transmit single receive antenna system. This pa-
per demonstrates that, in contrast, multiple transmit
single receive antenna (MISO) Gaussian interference
channels are much harder to characterize. In this
paper, the capacity region for a class of MISO in-
terference channels with very strong interference is
characterized. Also, the rank of the optimal trans-
mit policy in a MISO Gaussian interference channel
is shown to be bounded by the number of users in
the system. Finally, outer bounds on the capacity
region of the general multiple transmit and receive
antenna (MIMO) Gaussian Interference Channels are
derived. A new outer bound is obtained, which com-
bines and improves previously known strategies for
bounding the capacity of interference channels.

I. Introduction

The discrete memoryless interference channel (abbrevi-
ated IFC) is a two transmit, two receive system (X1 ×
X2, p(y1|x1, x2)p(y2|x1, x2),Y1×Y2) [1, 4], as shown in Figure
1. This channel has two independent messages, one at each
transmitter i ∈ 1, 2, intended for receiver i.
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Figure 1: Discrete Memoryless Interference Channel

The scalar Gaussian interference channel is of the form
(Figure 2)

Y1 = X1 +
√

αX2 + N1 (1)

Y2 =
p

βX1 + X2 + N2.

with α, β ∈ R+. N1, N2 are Gaussian distributed with zero
mean and unit variance. The transmit power for transmitter
i is assumed to be Pi, i ∈ {1, 2}.

Although the capacity region of both the discrete memory-
less IFC and the particular case of the Gaussian IFC are still
open problems, the capacity regions of many families of IFCs
satisfying a given set of constraints have been found [4, 9].
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Figure 2: Scalar Gaussian Interference Channel

The first family of IFCs for which the capacity region is
known is that of twin interference channels [2]. Subsequently,
the capacity region very strong interference channels was char-
acterized in [3]. Very strong IFCs satisfy the constraints

I(X1; Y1|X2) ≤ I(X1; Y2)
I(X2; Y2|X1) ≤ I(X2; Y1).

(2)

for all (X1, X2) ∼ p(X1)p(X2). For the scalar Gaussian IFC
(2) reduces to

α ≥ P1 + 1
β ≥ P2 + 1

(3)

The authors of [9] found that this very strong interference
requirement in Equation (2) can be considerably weakened
while still being able to characterize the capacity region. Their
approach leads to the strong interference conditions ([9])

I(X1; Y1|X2) ≤ I(X1; Y2|X2)
I(X2; Y2|X1) ≤ I(X2; Y1|X1),

(4)

for all p(X1)p(X2). It is easy to show that (4) is a superset of
(2). It is shown in [9] that the capacity region of an interfer-
ence channel satisfying Equation (4) is given by the intersec-
tion of the capacity regions of two multiple-access channels.
The equivalent strong interference conditions for scalar Gaus-
sian IFCs were found in [6] to be α, β ≥ 1. Disregarding
isolated cases, the strong IFCs form the largest family of IFCs
for which the capacity region is known.

To handle non-strong IFCs, substantial contributions have
been made in obtaining good outer bounds on the capacity
regions of IFCs [12, 13, 7, 10]. These outer bounds enable us
to gauge the proximity of achievable strategies to the ultimate
capacity limit. The outer bounds obtained recently by Kramer
[12] are the best known outer bounds for general IFCs today.

This paper has the following two goals. The first is to spe-
cialize the strong interference conditions in (4) to the vector



Gaussian IFC to obtain 1) closed-form expressions for the con-
straints on the set of strong IFCs in terms of channel param-
eters, and 2) closed-form expressions for the capacity region
of vector Gaussian strong IFCs. In subsequent sections, we
shall find that both 1) and 2) are difficult to obtain in many
cases, and that alternate constraints have to be derived for
those cases.

The second goal of this paper is to derive improved outer
bounds on the capacity of Gaussian IFCs based on [12] that are
tailored to the vector Gaussian IFC capacity problem. We find
that many of the bounding strategies used for scalar Gaussian
IFCs are no longer applicable in the vector case, and that
alternate techniques need to be applied to obtain good outer
bounds.

The paper is organized as follows. The concept of strong
interference encoding and decoding for a scalar Gaussian IFC
is explained by combining in the next section by combining
techniques from [6] and [10]. This notion of strong interference
encoding and decoding is generalized to the SIMO Gaussian
IFC, and thus the capacity region of a SIMO Gaussian IFC
with strong interference is detailed in Section III. A class
of MISO Gaussian IFCs were capacity can be characterized in
closed form is illustrated in Section IV, and finally, specialized
outer bounds for the MIMO Gaussian IFC are presented in
Section V. The paper concludes with Section VI.

II. Scalar Gaussian IFCs

In this section, we describe the strong interference capacity
result for scalar Gaussian IFCs (in Figure 2) by combining the
techniques introduced by Sato [6] and Costa [10]. Consider the
two interference channels given by

Y1 = X1 + N1

Y2 =
√

βX1 + X2 + N2
(5)

and
Y1 = X1 +

√
αX2 + N1

Y2 = X2 + N2.
(6)

The capacity regions of both channels (5) and (6) are outer
bounds on the capacity region of (1) [10]. Moreover, the capac-
ity region for (5) for β ≥ 1 is bounded above by the capacity
region of the multiple-access channel [6]

Y2 =
p

βX1 + X2 + N2.

Similarly, for α ≥ 1, the capacity region of (6) is bounded
above by the capacity region of the multiple access channel

Y1 = X1 +
√

αX2 + N1.

Thus, an outer bound on the capacity of (1) is the intersec-
tion of the capacity regions of the two MACs considered above.
Since this outer bound is also achievable [6], we have the de-
sired strong interference result.

Next, we tackle the simplest vector Gaussian IFC, the
SIMO channel.

III. Single Transmit Multiple Receive Systems
This system is shown in Figure 3 and is given mathematically
by

Y1 = H1X1 + H2X2 + N1

Y2 = H3X1 + H4X2 + N2.
(7)
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Figure 3: Single Transmit Multiple Receive Interference
Channel

In this system, the additive noise vectors Ni, i = 1, 2 are as-
sumed to be zero mean Gaussian random vectors with identity
covariance. The channel vectors Hi, i = 1, . . . , 4 are assumed
to be static and known to the transmitters and the receivers.
Without loss of generality we assume that ||H1|| = ||H4|| = 1.
We seek to obtain relationships amongst the channel parame-
ters Hi, i = 1, . . . , 4 such that the capacity region of this SIMO
interference channel can be characterized in closed form.

Towards this aim, the combination of the Costa and Sato
techniques described in the previous section (Section II) to an-
alyze the scalar Gaussian IFC is applied to the SIMO Gaussian
IFC. Thus, a “Z” interference channel of the form

Y1 = H1X1 + N1

Y2 = H3X1 + H4X2 + N2
(8)

is obtained whose capacity region is an outer bound on the
capacity of the original SIMO IFC (Equation (7)).

The next important step is to note that performing an in-
vertible unitary transformation on the outputs Yi, i = 1, 2
does not change the capacity of the overall system. A smart
choice for a unitary transformation on Y1 yields a new channel

Y′
1 = [||H1||, 0, · · · , 0]T X1 + N′

1,

where N′
1 is identical in distribution to N1. Similarly Y2

can be losslessly transformed to Y′
2 = [||H3||, 0, · · · , 0]X1 +

H′
4X2 + N′

2, yielding a new channel

Y ′
11 = ||H1||X1 + N′

1

Y′
2 = [||H3||, 0, · · · , 0]X1 + H′

4X2 + N′
2

The new channel defined by Equation (9) has the same ca-
pacity region as that defined by Equation (8). Finally, we use
arguments analogous to those employed in [6] for the scalar
IFC. If a particular rate pair (R1, R2) belong to the capacity
region of the SIMO Gaussian IFC (Equation (8)), then the
receiver corresponding to Y′

2by definition of capacity, is re-
quired to be able to reconstruct X2 with an arbitrarily small
error. Hence, Y′

2 can construct

Y′′
2 = Y′

2 −H′
4X2 = [||H3||, · · · , 0]X1 + N′

2

with an arbitrarily small error. Now, if ||H3|| ≥ 1 = ||H1||,
then X1 can also be decoded with an arbitrarily small error
from Y′′

2 .



In other words, in the interference channel defined by (8)
with ||H3|| ≥ 1, the receiver corresponding to Y2 possesses the
ability to decode both X1 and X2 with arbitrarily small error.
Thus the capacity region of (8) and thus that of the MISO
Gaussian IFC (7) is bounded above by

R1 ≤ 1

2
log |I + H3H

T
3 P1|

R2 ≤ 1

2
log |I + H4H

T
4 P2| (9)

R1 + R2 ≤ 1

2
log |I + H3H

T
3 P1 + H4H

T
4 P2|

The same argument can be repeated for the “Z” interfer-
ence channel

Y1 = H1X1 + H2X2 + N1

Y2 = H4X2 + N2
(10)

to obtain a second outer bound on the capacity region of (7)
for ||H2|| ≥ 1 = ||H4||. It is easy to show that the intersection
of the outer bounds given by the two multiple access channels
capacity regions is achievable. Thus, we have completely char-
acterized the capacity of (7) for ||H2||, ||H3|| ≥ 1.

Note that the same result can also be obtained by applying
the strong interference condition (4) [9]. However, the strategy
described above is enhances our intuitive understanding of the
problem, and is also constructive.

Another case in which the capacity of this system allows
easy characterization is when HT

1 H2 = HT
2 H4 = 0, i.e., when

the signal and interference are orthogonal. In this case, the
system reduces to two parallel channels.

IV. Multiple Transmit Single Receive Systems

This system is shown in Figure 4 and is given mathematically
by

Y1 = HT
1 X1 + HT

2 X2 + N1

Y2 = HT
3 X1 + HT

4 X2 + N2.
(11)

where Hi, i = 1, . . . , 4 and Xj , j = 1, 2 are 1 × m column
vectors, ||H1|| = ||H4|| = 1, and the noise at each receiver is
assumed to be zero mean Gaussian with unit variance. Unlike
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Figure 4: Multiple Transmit Single Receive Interference
Channel

the multiple receive case, the capacity region for this channel
is considerably more difficult to analyze even in the strong

interference case. Take for instance the strong interference
condition (4):

I(X1; Y1|X2) ≤ I(X1; Y2|X2)

which in this case reduces to

h(HT
1 X1 + N1)− h(N1) ≤ h(HT

3 X1 + N2)− h(N2) (12)

where h(·) represents the differential entropy function. For the
channel to be characterized as a it strong interference channel,
this inequality (12) must hold for all input distributions on X1.
Unlike the SIMO IFC case, it is very difficult to characterize
the family of channels satisfying (12) without imposing specific
structural constraints on both H1 and H2. Thus, a direct
application of the strong interference conditions (4) for the
MISO IFC case does not lead to explicit conditions for all
channel realizations.

To present a tractable methodology for identifying IFCs
where the channel capacity region can be characterized, we
utilize an approach analogous to that for SIMO channels in
Section 3 (and scalar channels in Section 2). Consider the “Z”
interference channel of the form

Y1 = HT
1 X1 + N1

Y2 = HT
3 X1 + HT

4 X2 + N2,
(13)

Now, we perform an invertible unitary transformation U1 on
the input X1 to obtain X′

1 = U1X1. Note that replacing
X1 by X′

1 as the transmitted signal in (13) does not impact
the capacity of the system, and the power constraint on the
transmitter Tr(UX1) = Tr(X1), and is hence satisfied. Thus,
a new system that has the same capacity region is

Y1 = HT
1 U1X1 + N1

Y2 = HT
3 U1X1 + HT

4 X2 + N2,
(14)

Let X1 , [x11, . . . , x1m]. We choose U1 as a unitary matrix
with its first column given by the normalized channel vector

H1
||H1|| = H1. The remaining columns are generated using a
Gram-Schmidt orthonormalization procedure on the columns
of an identity matrix. This choice of U1 permits us to rewrite
the system in (14) as

Y1 = [1, 0, · · · , 0]X1 + N1

Y2 = HT
3 U1X1 + HT

4 X2 + N2,

The only component of X1 reaching receiver Y1 is x11. Intu-
itively, the only reason for non-zero components x12 through
x1m is to “aid” the decoding of X2 at Receiver 2.

The maximum rate achievable by Transmitter 2 (with cor-
responding transmit signal X2 is when X1 is absent from the
system. Equivalently, when HT

3 H1 ≥ 1+P2, Y2 is guaranteed
the ability to decode X1 irrespective of all other parameters in
the system, including the transmit policy of X2. Under this
assumption, the two channels in (15) decouple, and the ca-
pacity achieving strategy in (15) sets x12, . . . , x1m = 0. Hence
the system reduces to

Y1 = x11 + N1

Y2 = HT
3 H1x11 + HT

4 X2 + N2.
(15)



The capacity region of (15) is equivalent to that of a system
with two parallel non-interfering users, given by

Y1 = x11 + N1

Y2 = x21 + N2.
(16)

which is clearly an outer bound on capacity. Considering the
system

Y1 = HT
1 X1 + HT

2 X2 + N1 (17)

Y2 = HT
4 X2 + N2.

If HT
2 H4 ≥ 1 + P1, it can be similarly deduced that the ca-

pacity of this system is outer bounded by that of (15).

These outer bounds on capacity are apparently simple ones.
It is important to note, however, that they are also tight for
the overall MISO IFC (11) when HT

2 H4 ≥ 1+P1 and HT
3 H1 ≥

1 + P2. Also, the conditions derived above can be shown to
be equivalent to the very strong interference conditions (2).
Thus, unlike the strong interference conditions (4), the mutual
information based very-strong interference conditions (2) can
be translated into closed form channel constraints HT

3 H1 ≥
1 + P2 and HT

2 H4 ≥ 1 + P1. Moreover, capacity under these
constraints can also be characterized in closed form.

The unitary transformations discussed above also lead to
the following observation: For the multiple transmit single
receive interference channel described by (11), the rank of the
input covariance matrix of each transmitter is no more than
the number of users. For two users we have,

rank
�
E
h
XiX

T
i

i�
≤ 2, i ∈ {1, 2}. (18)

The result of (18) is easily seen by applying two unitary
transformations U1 and U2 to the input X1. First, U1 is
chosen so that HT

1 U1 is reduced to the new channel vector
H

[1]
1 = [1, 0, · · · , 0] as described above. Note that U1 also

effectively rotates the channel vector H3 into H
[1]
3 = HT

3 U1.
The second unitary transformation U2 is chosen so that the
first row and column of U2 are the same as an identity ma-
trix. Thus, HT

1 U1U2 = HT
1 U1 = [1, 0, · · · , 0] is not af-

fected by the second transformation. However, the remaining
(m−1)× (m−1) unitary submatrix U′

2 of U2 is chosen to ro-

tate H
[1]
3 into H

[2]
3 = H

[1]
3 U2 where only the first two elements

of H
[2]
3 can be non-zero. This is achieved by choosing the first

column of U′
2 as the normalized (m−1)×1 sub-vector of H

[1]
3

obtained by omitting the first element. Similar rotations can
be applied to the input X2 and the resulting channel is shown
in Fig. 5. Thus, the unitary transformations applied to the
vector inputs eliminate the redundant spatial dimensions and
we are left with only as many transmit antennas at each user
as the number of users. The result of (18) follows because the
rank of the input covariance matrix can not be more than the
effective number of dimensions. For a more detailed explana-
tion of these transformations, we refer the reader to [15] where
these transformations have been used to eliminate redundant
spatial dimensions in the context of vector multiple access and
broadcast channels.

V. Multiple Transmit and Receive Systems:
Outer Bounds
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Figure 5: Equivalent Multiple Transmit Single Receive
Interference Channel

In the general case where there are both multiple transmit
and receive antennas in the system, deriving closed-form ex-
pressions for both the strong and the very-strong interference
cases becomes a tedious task. Thus, it is very useful to focus
on deriving clever outer bounds on capacity, and then to iso-
late conditions under which the upper bounds are tight, i.e.,
yield capacity expressions.

Considerable effort has been put into obtaining outer
bounds on the capacity region for discrete memoryless IFCs
[12, 11, 8, 10]. Also, outer bounds specific to subclasses such as
the scalar Gaussian IFC have been designed that are amongst
the best known outer bounds for these channels [8, 12]. How-
ever, the outer bounds obtained for discrete memoryless IFCs
are based on principles that are common to all IFCs, and hence
are weak outer bounds when applied to MIMO Gaussian IFCs.
On the other hand, outer bounds developed for scalar Gaus-
sian IFCs are too specific, and do not always generalize to the
MIMO case. In this section, we list the set of applicable outer
bounds to the MIMO IFC case, and obtain a new outer bound
based on the principles developed in Sections II – IV.

Primarily, two families of outer bounds on the capacity re-
gion of the discrete memoryless IFC channel have been stud-
ied. The first is that of genie-aided outer bounds, where lim-
ited extra information is provided to either one receiver (say
Y1) or to both receivers simultaneously [12]. A new channel
is now generated whose capacity region is a superset of the
channel under consideration. The aim of the genie aided outer
bound is to render the capacity problem of the new channel
tractable, while ensuring that “minimal” information is trans-
ferred between receivers. The second approach, pioneered by
Sato in [8], is for degraded IFCs, where transmitter coopera-
tion is introduced to generate a degraded broadcast channel.
Recent work by Kramer in [12] finds improved bounds for both
of these techniques, placing an emphasis on the scalar Gaus-
sian IFC. Interestingly, most of the bounds introduced in [12]
are also applicable to the MIMO Gaussian IFC case.

A New Outer Bound

A new outer bound on the capacity of MIMO IFCs can be
obtained by combining Costa’s bounding strategy [10] with
Sato’s receiver cooperation strategy [7]. Consider the MIMO
IFC given by:



Y1 = H1X1 + H2X2 + N1

Y2 = H3X1 + H4X2 + N2.
(19)

Using the strategy developed in the previous sections, the
capacity of this channel is outer bounded by that of

Y1 = H1X1 + N1

Y2 = H3X1 + H4X2 + N2.
(20)

Now, we provide Y1 to Receiver 2. This transfer enhances
the capacity region of the entire system. Simultaneously, we
exploit a result realized by Sato that the capacity region of
the IFC is dependent solely on the marginals, and hence “con-
trol” the increase in capacity resulting from providing Y2 with
added information by allowing the joint distribution between
N1 and N2 to be an arbitrary Gaussian distribution with fixed
marginals.

Let the covariance for the noise vector N = [N1 N2] be
given by Z. The new channel thus obtained is:

Y1 = H1X1 + N1

Y′
2 = H′

3X1 + H′
4X2 + N

(21)

where H′
3 = [H3 H1]

T and H′
4 = [H4 0]T . This new

Interference channel is degraded as Receiver 2 is capacble of
decoding both X1 and X2. Thus, the capacity region of (21)
is bounded above by that of the multiple-access channel given
by

Y′
2 = H′

3X1 + H′
4X2 + N (22)

The capacity region of the MIMO multiple-access channel
is well known, and is given by

R1 ≤ log |I + Z−1H′
3S1H

′
3

T |
R2 ≤ log |I + H4S2H

T
4 |

R1 + R2 ≤ log |I + Z−1(H′
3S1H

′
3

T + H′
4S2H

′
4

T )|
(23)

A similar outer bound can be obtained by first removing X1

from the Y2 term in (19), and next transferring information
from Y2 to Y1. This yields an outer bound of the form

R1 ≤ log |I + H1S1H
T
1 |

R2 ≤ log |I + W−1H′
2S2H

′
2

T |
R1 + R2 ≤ log |I + W−1(H′

1S1H
′
1

T + H′
2S2H

′
2

T )|
(24)

where H′
1 = [H1 0]T , H′

2 = [H2 H4]
T and W the corre-

sponding covariance matrix for [N1 N2]. Thus, an intersec-
tion of (23) and (24) form a new outer bound on the capacity
of (19).

This outer bound is superior to techniques that involve full
receiver cooperation (such as the bounds in [7]), as one of
the interference terms is absent. For example, in (24), the
effect of the H3 term is removed. The presence of the added
interference term can considerably weaken the bound, as it
acts as a signal term in the cooperative outer bound.

VI. Conclusions
This paper addresses the capacity region of the vector interfer-
ence channel. It investigates the capacity of Single Input Mul-
tiple Output (SIMO) interference channels under strong inter-
ference conditions, and that of Multiple Input Single Output

(MISO) interference channels under very strong interference.
The procedure adopted in this paper to obtain these capacity
results is based on simple unitary transformations and intu-
itive arguments. These techniques can be also used to show
that the rank of the optimum transmit policy for the MISO
interference channel is no more than the number of users in
the system. Finally, outer bounds on the capacity region are
detailed, and a new outer bound derived for general Multiple
Input Multiple Output (MIMO) Gaussian interference chan-
nels.
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