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Abstract— We consider a � user isotropic fast fading ad-hoc
network with no channel state information at any transmitter
or receiver. Assuming that the users’ channels are identically
distributed we determine the capacity region of this ad-hoc
network for any partition of the users into transmitters and
receivers. The optimal strategy is such that only one pair of
transmit-receive nodes is active at a time while all the other
nodes are inactive. There is no benefit from cooperation and
the total throughput grows at most double-logarithmically with
the number of nodes. Even if the channel variations are slow
enough that the receiver can track the channel perfectly the
inability of the transmitter to track the network topology limits
the total throughput growth rate to no more than logarithmic
in the number of nodes. Our analysis extends Hochwald and
Marzetta’s single user Rayleigh fading AWGN channel result [1]
to show that under the more general model of an isotropic fading
ad-hoc network with arbitrary distribution of additive noise [2]
[3] there is no capacity benefit from increasing the number of
transmit antennas beyond the channel coherence time ��.

I. INTRODUCTION

In recent years, the capacity of ad-hoc networks has been
the subject of increasing attention. In the seminal work of
Gupta and Kumar [4] it is shown that the capacity of fixed
ad-hoc networks does not scale linearly with the number of
users, so that the capacity per user goes to zero as the number
of users becomes large. Information theoretic justification for
this result is provided by Leveque and Telatar in [5]. These
works do not assume any mobility in the network and perfect
channel knowledge is assumed. In the absence of mobility the
fundamental limitation is that communication between distant
nodes causes too much interference. Therefore most of the
communication must happen between only nearest neighbors
and multiple hops are required to carry a message to a distant
node. Allowing mobility in the network has interesting im-
plications. Grossglauser and Tse [6] show that with sufficient
mobility an ad-hoc network can exploit a form of multiuser
diversity via packet relaying. The nodes use mobile relays that
can hand off the packets to the destination when they are close
to it. The benefit of mobility is striking as it is shown that
the total throughput in a mobile adhoc network can increase
linearly with the number of nodes. A caveat of this result
is that the delays incurred are of the order of the time-scale
of node mobility. In the light of these results it might seem
as if the faster the nodes move the better the performance
of the ad-hoc network can be. However, these results assume
perfect channel knowledge. For highly mobile wireless ad-

hoc networks we need a different set of assumptions. Mobility
introduces many challenges: e.g., with fast moving nodes the
channel changes rapidly and channel estimation is harder. In
this paper, we explore the capacity of highly mobile ad-hoc
networks with multiple antennas at each node. In particular
we investigate the main implications of high mobility: channel
uncertainty, network homogeneity and the associated loss in
degrees of freedom. These notions are further explained as
follows.

Channel Uncertainty: The price for mobility is that the
channel varies rapidly and reliable channel estimation is not
possible. The amount of channel uncertainty is determined by
the coherence time �� of the channel. For the extreme case
of �� � � neither the transmitters nor the receivers are able
to track the channel. Another relevant scenario is where � � is
large enough so that the receivers are able to track the channel,
while there is no mechanism for the transmitters to acquire
channel state information.

Network Homogeneity: Mobility blurs the distinction be-
tween nearest neighbors and distant nodes as the topology
of the network is constantly changing, allowing all nodes to
approach each other at different times. This can be perceived
both as an advantage as well as a disadvantage. It is an
advantage in the sense that the connectivity of the network
is improved. In the absence of mobility multiple hops are
required to communicate between distant nodes. With enough
mobility all nodes can directly communicate with each other.
The disadvantage is that when the distinction between near and
far nodes is blurred, all transmissions interfere with each other.
Thus, nodes are no longer protected from the interference
caused by distant nodes.

Loss in Degrees of Freedom: In a multiple antenna ad-
hoc network, the available channel state information (CSI) is
directly connected to the usable degrees of freedom. Multiple
users and multiple antennas offer additional degrees of free-
dom in the spatial domain. If it is possible to use these degrees
of freedom then remarkable throughput gains are possible due
to the multiplicity of antennas and users [7] [8]. However,
the ability to use these degrees of freedom depends critically
upon the amount of channel knowledge at the transmitters and
receivers. With insufficient channel knowledge the degrees of
freedom are lost and the capacity benefits quickly disappear.
This observation has been made previously in the context of
single user multiple antenna systems [9] as well as multiple



antenna multiple access [10] and broadcast channels [11]
[2]. In this paper we will characterize the loss in degrees
of freedom due to the channel uncertainty and network ho-
mogeneity in highly mobile ad-hoc wireless networks with
multiple antennas at each node. We build upon the results of
previous work in [9] [11] and [2].

II. ISOTROPIC FADING AD-HOC NETWORK

A. Channel Model

Let � be the total number of users in the ad-hoc network.
The index set of all users is denoted by � � ��� �� � � � ���.
For simplicity we will assume that all nodes, whether transmit-
ting, receiving or inactive, have � antennas each. The channel
is block fading with coherence time �� (measured in number
of channel uses). Block fading means that the matrix channels
between all transmit-receive node pairs are assumed to remain
constant for �� channel uses, after which they change to an
independent realization. As in [9] we will consider the ��
symbol extension of the channel. In other words, instead of
dealing with the channel inputs and outputs over each channel
use, we will work with the channel inputs and outputs over
each channel fade block of �� channel uses. The advantage
of considering the extended channel is that over successive
fade blocks the channel becomes memoryless. During the � ��

channel fade block, let ����� and ����� be the index sets
of nodes that are transmitting and receiving respectively. The
signal received by a node � � ����� is:

������� �
�

�������

���������������� � �������� (1)

where ������� is the � � �� matrix of symbols transmitted
by node � � ����� on the � transmit antennas over the ��
channel uses in the ��� fade block, ��������� is the � ��
wireless channel matrix between nodes � and �, and � ������
is ���� matrix of the additive noise experienced by node �.
To keep the notation concise, the fade block index � will not
always be explicitly mentioned. The underlying assumptions
of our channel model are listed next.

B. Isotropic Fading for MIMO Channels

The fading multiple antenna channel � �����, is said to be
isotropic fading if, ������ � �

�����
������, where ������ is an

isotropically random unitary matrix and �
�����

is a random
matrix independent of ������.

Isotropic fading captures the scenario where the amount
of channel knowledge is insufficient to discriminate between
different directions in the � dimensional space of transmitted
signals.

C. Further Assumptions and Definitions

Simplex Communication: At any instant we assume that
each user can be in only one of two states: transmitting or
receiving. Thus, ����������� � �� �����	����� � �� Note
that a transmitter or receiver can still be classified as such
even if it is inactive.
Channel and Noise: We make no assumptions on the

distribution of the additive noise process � ��� for each receiver
except that it is assumed to be a memoryless, ergodic and
stationary stochastic process, independent of the channel fade
matrix ������ and the input signal ����. The additive noise
may be non-AWGN. We also make no assumptions on the
distribution of the channel fade process � ����� except that it
is isotropic fading, memoryless, ergodic and stationary over
successive fade blocks, independent of the channel input
signal ���� and constant within each �� symbol fade block.
Note that the noise and channel fade processes corresponding
to different nodes may have different distributions.
Channel State Information : We assume no channel state
information at either the transmitter or the receiver. The
channel and noise are ergodic, stationary and memoryless
stochastic processes with the probability densities known to
the transmitter and receiver.
Transmit Power Constraint : For user 	, we assume an
average transmit power constraint of 
 ��� per fade block.
Mathematically E

�


����

�

�
� 
 ���, where 

 � 

 is the

Frobenius norm. ������� is defined to be zero if 	 �� �����.
The expectation is over all the different partitions of � into
�� and ��.

Point-to-point Transmission : We assume that each mes-
sage is encoded by exactly one transmitter and is destined
for exactly one receiver. Under this assumption we denote the
message being transmitted by user � and destined for user 	
as 
 �����.

Definition 1: [Rate-Tuples �� ] With each message 
 �	���

we associate a rate ��	��� such that over � channel uses the
message 
 �	��� is a sequence of �
������

Bernoulli ����� bits.
��	��� is defined to be zero when either � �� �� or � �� ��.
These definitions allow us to define a � �� rate-tuple

�� � ���	��� � �� � � ��� (2)
Definition 2: [Configuration Capacity Region

�������� ] Each partition of � into �� and �� is
called a configuration. Associated with each configuration is
its capacity region ��������, defined as the closure of the
set of rate-tuples �� at which reliable transmission is possible
while satisfying the transmit power constraints.
We mean reliable transmission in the conventional ergodic ca-
pacity sense, i.e. the error probabilities can be made arbitrarily
small by using the channel many times (� �
).

Definition 3: [Feedback-Free Capacity Region � ] We
define the feedback-free capacity region as the convex hull
of the union of the configuration capacity regions over all
configurations:

� � co �	�������������� � (3)

where co��� denotes the convex hull operation.
The reason we call this the “feedback-free” capacity region
is the following. Feedback is not possible in a configuration
capacity region because the set of transmitting nodes never
receive and the receiving nodes never transmit, i.e., there is
no feedback. � is simply achieved by time sharing between



the rate-tuples from different configuration capacity regions.
The feedback-free capacity region is simply a convenient way
to summarize our results in a way that is not configuration
specific.

III. CHANNEL UNCERTAINTY

In this section we generalize a result shown in [9] for a
single user Rayleigh fading AWGN channel to the general
isotropic fading ad-hoc network.

Theorem 1: Given any partition of the set of nodes �
into mutually exclusive and collectively exhaustive subsets of
transmitting and receiving nodes, �� and �� (respectively),
the capacity region �������� of the isotropic fading ad-hoc
network described in Section II is unaffected as the number
of antennas at any transmitting node is increased beyond the
channel coherence time ��.
Theorem 1 is configuration specific. In other words the parti-
tion of nodes into transmitting and receiving nodes is assumed
fixed for all time. However, since the feedback free capacity
region is simply obtained by time sharing between different
configurations, the result of Theorem 1 is also true for the
overall feedback-free capacity region. The proof of Theorem 1
follows from the following lemmas. The proofs for the lemmas
are presented in [3].

Lemma 1: For any given configuration �������, ad-
hoc networks that have the same marginal distributions
�
�
����

���� � for all � � ��, have the same capacity region
��������. �� is the set of all transmitted signals over a fade
block, defined as:

�� � ����� � � � ��� (4)
Lemma 1 is an extension of the corresponding observation
for broadcast channels due to Cover [12]. The second lemma
presents another basic observation. In simple words, it states
that any change in the input signal that does not affect the
output statistics, does not affect the capacity.

Lemma 2: Let ���� � ���
� � ���
� be a mapping
from the space of input signals to the same space such that ����
does not violate the power constraint. That is, 

�

�
����

�


 �



����

. Suppose, instead of transmitting ����, each node � �
�� transmits �

�
����

�
. Then, the capacity is unaffected by this

change in the input signal, if

�
�
����
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�
� �

�
����

���� � �
�
��

��
� �� � ���

(5)
Here, �

�
��

�
� �������� � � � ���.

Proof of Theorem 1: Suppose the number of transmit anten-
nas � at each node is greater than the coherence time ��.
To prove Theorem 1 we need to show that, capacity-wise,
only �� antennas are needed at each transmitting node: i.e.,
the remaining � � �� antennas are redundant and can be
eliminated without affecting the capacity region. Define the
mapping ���� � ���
� � ���
� as

���� ���� (6)

where� � ���� is the QR factorization of the tall (����)
matrix �, such that �� � ���� is a unitary matrix and
�� � ���
� is an upper-triangular matrix.

The mapping ���� does not affect the power constraint
because



�

� � Trace����� � Trace�������
���

�� (7)

� Trace�����
�� � 

����

�� (8)

Next we show that the mapping ���� does not affect the
marginal distribution of the channel outputs at any receiving
node in the ad-hoc network given the channel inputs of all the
transmitting nodes, �

�
����

���� �. Starting with the channel
model description (1) and using the definition of isotropic
fading we have

���� �
�
����

�
�����
��������

�����
��� � ����� (9)
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�
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������������� � ����� (11)

Equations (9) through (11) imply that

�
�
���� 
�� ���

�
� �

�
����

��
�
� ����� �

�
� �� � ��� (12)

Combining (6), (8) and (12) with the result of Lemma 2 we
obtain the result that transmitting the input signal ���� instead
of� does not affect the capacity region of the ad-hoc network.
However, note that ���� is a tall upper triangular matrix of
dimensions � � ��. The main diagonal of this matrix ends
at row ��, and therefore rows �� � � through � contain
only zeros. But each row of the transmitted signal matrix
corresponds to the signal sent on the corresponding antenna.
Therefore, we obtain the result that only zeros are transmitted
on transmit antennas number ����� ����� � � � �� . In other
words, only �� transmit antennas are needed at each node
� � �� and the remaining � ��� antennas can be eliminated
without affecting the capacity region. This completes the proof
of Theorem 1.
The result of Theorem 1 is especially interesting for its
generality. No assumptions are needed on the distributions
of the additive noise ���� seen by each receiving node, or
the channel fade matrix �

�����
between each pair of nodes.

Thus, the result of Theorem 1 applies when the noise is
not AWGN, the fading is not Rayleigh, and different nodes
have different channel fade and noise statistics. Moreover,
although we assume equal number of antennas at each node
for simplicity, one can easily verify that the result of Theorem
1 holds even when the number of antennas at each node is
different.

Theorem 1 characterizes the loss in the usable degrees
of freedom due to mobility in an ad-hoc wireless network.
As the mobility increases and the nodes move faster, the
channel coherence time decreases. Theorem 1 shows that
the number of useful transmit antennas decreases as well.



Thus, although multiple transmit and receive antennas provide
additional degrees of freedom that can increase throughput
remarkably, the ability to use these degrees of freedom is
limited by the mobility of the network as manifested in the
form of increased channel uncertainty.

IV. NETWORK HOMOGENEITY

In this section we investigate another consequence of mobil-
ity: network homogeneity. With enough mobility the statistics
of the channels between different node pairs over the duration
of the codeword may be assumed similar. Therefore, in this
section we model the channels between all node-pairs as
statistically equivalent.

�������� � ��������� ���� �� � ��� ��� �� � ��� (13)

Instead of individual power constraints we use a common
power constraint E

��
����



����

�
�
� 
�� with the under-

standing that since the users are statistically equivalent, the
overall average transmit power constraint of �
 translates to
an individual power constraint of 
 per user.

Definition 4: [Single User Capacity �� ] Define

���
 � � 	
�
�����E����������

������� ��� (14)

In other words, ���
 � is the single user channel capacity with
transmit power 
 .

A. Extreme Mobility: �� � �

We consider the limiting case of extreme mobility, i.e., �� �
�, when the channel changes to an independent realization
every symbol. No CSIT or CSIR is available.

Theorem 2: For any given configuration �������, the
capacity region of the ad-hoc network described in Section
II is:

�������� � ��� �
�
����

�
����

������ � ����
 ��

������ � 
 if � �� �� or 	 �� ���

The feedback-free capacity region of the ad-hoc network
described in Section II is:

� � ��� �

��
���

��
���

������ � ����
 ��� (15)

The entire capacity region is achievable with a combination
of single user communication and time division multiplexing.

Notice that the theorem makes no assumptions about the
additive noise distribution, or channel fade distribution except
that it is isotropic fading. Thus, Theorem 2 is a fundamental
result that generalizes the findings of [10] for the multiple
access channel to the ad-hoc network scenario. It proves that
all the degrees of freedom associated with multiple users and
multiple transmit antennas are lost in a fast fading (�� � �)
ad-hoc network due to the network homogeneity induced by
extreme mobility. In the absence of channel state information,
and with statistically equivalent nodes, there is nothing to
be gained by simultaneous transmission by many users or

simultaneous reception by more than one user. Also, the
overall throughput of the ad-hoc network is the same as a
single user system.

Achievability of the capacity region is quite straightforward
by time division. We present the proof of converse.
Proof of Theorem 2 [Converse] : Let us assume that the
rate-tuple �� is achievable in the configuration �������. Then
we wish to show that the sum rate is less than the single user
capacity. �

����

�
����

������ � ����
 �� (16)

A sketch of the proof is outlined as follows.
Step 1: Suppose we allow all the transmitters to co-operate.
The resulting system is a vector broadcast channel with � 
��

transmit antennas at the base station and � antennas at each
of the 
��
 receivers. There is no CSIR or CSIT. Since
cooperation does not hurt the capacity, the sum rate of this
broadcast channel can not be smaller than the sum rate of the
original ad-hoc network.
Step 2: Notice that in this broadcast channel each receiver
is i.i.d. In other words, the received signals of the users are
statistically equivalent. Since all users are alike, if one user is
capable of decoding a message 
 , then each of the 
��
 users
must be capable of decoding the message 
 . Thus, each user
is capable of decoding all the transmitted messages. This in
turn implies that the sum rate of this broadcast channel can not
be more than the channel capacity between the multi-antenna
base station and a single user with � antennas.
Step 3: Now consider the single user communication system,
with the 
��
 transmit antennas and a single receive antenna.
This is an isotropic fading system with coherence time ��� �
��, i.e. the channel changes to an independent value every
symbol. There is no CSIR or CSIT. In Theorem 1 we have
shown that under these assumptions the capacity is unaffected
if we discard all but one transmit antennas.
Step 4: Let us discard all but one transmit antennas. Then
we are left with a single user communication system with
one transmit antenna and � receive antennas. The power
constraint is �
 , the channel is isotropic fading and �� � �.
We already defined the capacity of this system as ����
 �.

Combining steps 1 through 5, we conclude that the sum rate
of the ad-hoc network with the configuration ������� is not
more than the single user capacity ����
 �. This proves the
converse for the configuration capacity region. The converse
for the overall capacity region follows directly because the
overall capacity region is just the convex hull of the union
of the configuration capacity regions. Since the sum rate in
each configuration is not more than ����
 �, the sum rate in
the convex hull can not be more than ����
 � either. This
completes the proof of the converse to Theorem 2.

B. Rate of Growth of Total Throughput with Nodes

We start with the case of fast fading: �� � �. The
feedback free sum capacity of the ad-hoc network in this
case is ����
 �. The asymptotic growth rate of ����
 � has
been studied previously by Lapidoth and Moser in [13]. A



direct application of the results of [13] leads to the following
corollary.

Corollary 1: The feedback-free sum capacity of the ad-
hoc network defined in Section II grows at most double
logarithmically with the number of nodes for large number
of nodes.

��	
��	

�����
 �� ��� �����
 �� �
� (17)

Compare this to the growth rate of sum-capacity of a fixed
ad-hoc network, which is of the order of the square root of
the number of nodes [4]. Thus if the transmitters and receivers
are unable to estimate the channel, the throughput of a highly
mobile ad-hoc network is worse than that of a fixed mobile
network. In other words, too much mobility limits the capacity
of wireless ad-hoc networks.

Next we consider the case of �� � �. For any given
coherence time �� we can still use steps 1 and 2 of the proof of
Theorem 2. As in Step 1 we let all the transmitters cooperate
to form one transmitter with � 
��
 antennas. As in step 2,
we eliminate all but one receiving nodes. Thus the feedback-
free sum capacity of the ad-hoc network is bounded above by
the capacity of a single user Rayleigh fading multiple antenna
channel with � 
��
 transmitting antennas and � receiving
antennas with transmit power �
 , and no CSIT or CSIR. We
assume that the number of transmitting nodes 
��
 goes to
infinity as � � 
. The single user asymptotic growth rate
of capacity with SNR for �� � � has been explored by Zheng
and Tse in [14]. Using the results of [14] we arrive at the
following corollary.

Corollary 2: As the number nodes � �
 the feedback-
free sum capacity, �	, of the ad-hoc network defined in
Section II is bounded above as:

�	 � 	��������������
�������������
��

� �����
 � � �� �����
Finally we consider the slow fading case where the receiver

is able to track the channel. Allowing cooperation between
transmitting nodes and eliminating all but one receiving nodes,
followed by a simple application of Jensen’s inequality leads
to the following upperbound on the sum capacity.

Corollary 3: As the number nodes � �
 the feedback-
free sum capacity, �	, of the ad-hoc network defined in
Section II, with the additional assumption of perfect CSIR,
is bounded above as �	 � � ����� ��
 �.
Note that in this case we do not know the configuration
capacity region and time-division may not be optimal.

V. CONCLUSION

We explore the implications of extreme mobility in a
wireless ad-hoc network. The cost of high mobility is that
the channel fluctuates too rapidly and can not be tracked
at the transmitter or the receiver. We characterize the loss
in degrees of freedom due to channel uncertainty. For the
broad class of isotropic fading channels with completely
general additive noise distributions we show that increasing
the number of transmit antennas � at any node beyond the
channel coherence time �� (measured in units of channel uses)
does not affect the capacity region of the ad-hoc network.

In [3] we also explore spatially correlated Rayleigh fading
channels. For these channels we show that the capacity region
depends only on the 	�������� largest eigenvalues of each
users’ transmit fade covariance matrix. Spatial correlation is
shown to enhance the capacity region of the fast (� � � �)
Rayleigh fading ad-hoc network.

Another cost of high mobility is that it blurs the distinction
between the near and distant nodes. In other words, mobility
makes the network more “ homogeneous”. Assuming statisti-
cally equivalent nodes and fast fading (�� � �) we are able
to determine the capacity region of the ad-hoc network. It
turns out that all the degrees of freedom corresponding to
multiple users and transmit antennas are lost. The best strategy
is to allow only one pair of nodes to communicate at a time.
There is no benefit in letting transmit nodes cooperate. Thus,
in a highly mobile wireless network, the loss in degrees of
freedom due to the inability of the transmitter and receiver to
track the channel limits the capacity. The network throughput
growth in this case is shown to be no more than double-
logarithmic with the number of users, which is even worse
than fixed wireless networks. The sum throughput grows no
more than logarithmically with the number of nodes even if
we assume that all the receiving nodes are able to track the
channel perfectly.
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