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Abstract

We explore the outage capacity of an isotropic fading vector channel with multiple transmit antennas at the base station and
a single antenna at the mobile receiver. Perfect channel knowledge is assumed to be available at the receiver while the transmitter
has only partial knowledge of the direction of the user’s channel vector based on quantized feedback. We provide a proof technique
to determine whether transmit beamforming is optimal in terms of outage capacity for a quantized channel direction feedback
system. The technique is used to establish the optimality of beamforming for several cases, e.g for a two antenna system with
any number of feedback bits. Extensions to more than two transmit antennas are also provided.

I. EXTENDED SUMMARY

a) Introduction: The availability of channel knowledge at the transmitter and at the receiver significantly improves the
performance of multiple antenna systems. While channel state information at the receiver can be obtained by training techniques,
it is impractical to feedback complete and accurate channel state information to the transmitter in frequency division duplex
(FDD) systems. Consequently, several partial feedback strategies dealing with different channel feedback parameters have been
proposed over the recent years [1]–[10]. Of the various channel information feedback schemes, channel direction feedback has
received considerable attention because direction information at the transmitter allows the transmitter to focus the available
power along the channel and utilize the multiple transmit antennas more effectively to increase system throughput. Seminal
work in [1]–[3] and the recent results of [4], [5] on quantized direction feedback systems form the background for this paper.

b) Optimality of beamforming (Ergodic and Outage Capacity): The quantized direction feedback system is examined
using lower bounds for outage probability in [1] while [2], [3] analyze the system from an average receive SNR perspective.
However, the transmit strategy assumed throughout [1]–[3] is beamforming. Beamforming is a desirable transmit strategy owing
to the ease of its implementation and the ability to use scalar codecs. But beamforming does not always achieve capacity when
only partial channel knowledge is available at the transmitter. Expressions for the ergodic capacity of the quantized direction
feedback system have been derived and necessary and sufficient conditions have been established for beamforming to the
optimal transmit strategy in terms of ergodic capacity [4], [5]. However, the delays involved with ergodic capacity can be
quite excessive. For practical systems with more stringent delay constraints, outage capacity is a more relevant metric [11],
[12]. Even so, it is generally harder to mathematically analyze outage capacity than it is to analyze ergodic capacity. The
input covariance matrix that maximizes the ergodic capacity does not necessarily maximize the outage capacity and vice versa.
Unlike the ergodic capacity maximization, the optimization problem for outage capacity is not convex [13]. Consequently,
this precludes using well known convex optimization techniques. This work is motivated by the need to determine whether
beamforming is optimal, in the context of outage capacity, for quantized direction feedback systems.

c) Channel Model: We explore the outage capacity of a partial feedback wireless communication system with M antennas
at the transmitter and a single antenna at the receiver. We assume that the receiver has perfect channel state information while
only a quantized estimate of the user’s channel direction is available at the transmitter. The input-output relationship for the
system under consideration is given by Y = H† ·X+Z, where X, H, Z and Y are the (M × 1) input, (M × 1) channel vector,
AWGN noise and output respectively. The power constraint at the transmitter is given by P . The finite rate feedback path can
support a rate of B bits per frame and is assumed to be error free. A predetermined set Q = {q1, q2, · · · , qN} of N = 2B unit
norm channel quantization vectors is available to both the transmitter and receiver. The quantization vectors are chosen according
to the Grassmannian criterion detailed in [1]–[3]. The receiver then sends back the index k of the quantization vector closest
to the channel, i.e, |〈H,qk〉| ≥ |〈H,qj〉| for all j ∈ {1, · · · , N} , j 6= k. We define the ‘decision region’ Dk corresponding



to the quantization vector qk as the set of all channel vectors closest to qk, i.e, Dk = {H : | 〈H,qk〉 | ≥ | 〈H,qj〉 |} for all
j ∈ {1, · · · , N} , j 6= k.

d) Contributions and Overview of Results: [1]–[3] show that if the transmit strategy is constrained to beamforming (unit
rank input covariance matrix), then the optimal beamforming direction is along the closest quantization vector. This leaves
open the possibility that higher throughputs may be obtained by using multiple beams (higher rank input covariance matrix).
Thus, the optimality of beamforming with respect to outage capacity is not known. It is this problem that we address to in
this paper.

The main contribution of this paper is a technique to determine whether beamforming along the closest quantization vector
is optimal in terms of outage capacity for quantized direction feedback systems. We begin with outage capacity expressions
for the case when the index fed back to the transmitter is k. The outage capacity to support an outage probability of Pout for
the channel in consideration when the quantization vector index that is fed back is k can be mathematically expressed as

Cout,k (Pout) = max
K:Tr[K]≤P

(
sup

{
R : Prob

[
H† ·K ·H ≤ 2R−1

P H ∈ Dk

]
≤ Pout

})
(1)

where K = E
[
X ·X†|H ∈ Dk

]
is the covariance matrix of the input. Let the input covariance matrix that maximizes the

outage capacity be Ko = Uo · Λo ·U†
o, where Uo is the matrix of the eigenvectors and Λo is a diagonal matrix containing

the eigenvalues Λo (i). Note that transmission with a covariance matrix Ko can be thought of as power allocation (based on
the eigenvalues of Ko) along the eigenvectors of Ko. The outage capacity is then

Cout,k (Pout) = sup
{

R : Prob
[ (

H† ·Uo

) ·Λo ·
(
U†

o ·H
) ≤ 2R−1

P H ∈ Dk

]
≤ Pout

}
(2)

From equation (2), it can be seen that H
′
= U†

o ·H is just a rotation of the channel vector H by the unitary matrix U†
o. If

H ∈ Dk, then H
′ ∈ U†

o ·Dk = D
′
k. In this light, the outage capacity expression can be rewritten as

Cout,k (Pout) = sup
{

R : Prob
[

H
′† ·Λo ·H′ ≤ 2R−1

P H
′ ∈ D

′
k

]
≤ Pout

}
(3)

Now that we have the necessary expressions for outage capacity, we present the procedure to test the optimality of
beamforming with respect to outage capacity. Without loss of generality, we assume henceforth that k = 1, i.e, q1 = [1 0 · · · 0]
is the quantization vector fed back to the transmitter.

1) The first step is to investigate whether the direction of the quantization vector fed back is one of the eigenbasis vectors of
the optimal input covariance matrix. If q1 is the quantization vector closest to the channel, we need to examine whether
q1 is one of the eigenvectors of Ko. One of the approaches we will use is to compare the probabilities Prob(R, P, D1) =
Prob

[
H† ·Λo ·H ≤ 2R−1

P H ∈ D1

]
and Prob(R,P, D

′
1) = Prob

[
H
′† ·Λo ·H′ ≤ 2R−1

P H
′ ∈ D

′
1

]
. If Prob(R,P, D1)

turns out to be greater than Prob(R, P, D
′
1), then it can be easily seen from equation (3) that the optimal Uo is the identity

matrix I.
2) Once it is known that q1 is one of the power allocation directions, the next step is to check if the projection of the channel

along the q1 is greater than the projection along the other orthogonal directions. This step just requires knowledge of
the structure of D1, the decision region involved. if the projection of the channel along q1 is greater than the projections
along other directions, it is optimal to direct all the available power P along q1, and beamforming is optimal.

This technique can be used to prove the optimality of beamforming for the two transmit antenna case with an arbitrary
number of beamforming vectors and also for other configurations. For a more intuitive understanding of the technique, we
consider a simple two transmit antenna system example.

e) An illustrative example: Consider a channel with two transmit antennas (M = 2), one receive antenna and one bit
(B = 1 of channel direction feedback. Let the power constraint at the transmitter be P . For simplicity of exposition, let the
channel, the input and noise be real valued, i.e, the channel and the input are two dimensional vectors in the real space R2.
Without any ambiguity, the two quantization vectors (N = 2B = 2) can be chosen to be along the two axes as shown in
Figure 1. The decision region D1 for the quantization vector q1 is delimited by the lines A and B as shown in Figure 1. For
any channel vector H = [H1 H2] ∈ D1, we have |H1| ≥ |H2|.

Let the input covariance matrix that maximizes the outage capacity be Ko = Uo ·Λo ·U†
o. Without any loss of generality,

we will assume that Λo (1) ≥ Λo (2). D
′
1 = U†

oD1 represents the rotation of the decision region D1 in the two dimensional



plane, let D
′
1 be the region between the lines A

′
and B

′
. The shaded region represents the channel vectors that are common

to D1 and D
′
1. We will compare the probabilities Prob(R, P, D1) and Prob(R, P,D

′
1). Note that every channel vector in the

shaded region contributes equally to both Prob(R, P,D1) and Prob(R, P, D
′
1). We will therefore consider closely only those

channel vectors that are not common to D1 and D
′
1.
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Fig. 1. M = 2 and N = 2 example.

For every channel vector H = [H1 H2] ∈ (D1 ∩ D
′c
1 ),

there exists a unique corresponding vector H⊥ = [−H2 H1] ∈
(D

′
1 ∩ Dc

1) as shown in Figure 1. H and H⊥ occur with the
same probability and are orthogonal. Given |H1| ≥ |H2| and
Λo (1) ≥ Λo (2), it is easy to prove that H†·Λo·H ≥ H⊥†·Λo·H⊥.
In other words, for every channel vector H in D1, there is a
corresponding equiprobable channel vector H⊥ in D

′
1 such that

H† ·Λo ·H ≥ H⊥† ·Λo ·H⊥. Therefore we have Prob(R, P,D1) ≤
Prob(R, P, D

′
1). The optimal Uo is therefore the (2× 2) identity

matrix and the optimal input covariance matrix Qo = Λo is
a diagonal matrix. Although the structure of the optimal input
covariance matrix is now defined, the power allocation scheme
along the eigenvectors has not been specified. It is straightforward
to prove that for all H ∈ D1, H† · Λo ·H (and therefore outage
capacity) is maximized when the power allocation strategy is such
that Λo (1) = P and Λo (2) = 0. In other words, beamforming
along the closest quantization vector is optimal (in terms of outage
capacity) for the M = 2 quantized direction feedback system with
N = 2. We point out that for this example, the optimal transmission
direction for the maximization of outage capacity turns out to be
the same as that for ergodic capacity [4].

f) Conclusion: We present a technique to explore the opti-
mality of beamforming for outage capacity. Using the technique, we show optimality of beamforming for the two transmit
antenna case with an arbitrary number N ≥ 2 of quantization vectors. Detailed proofs for these cases and extensions to any
number of transmit antennas are provided in the full paper.
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