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Abstract— We show that the exact number of spatial degrees
of freedom for a two user nondegenerate (full rank channel
matrices) MIMO Gaussian interference channel with M1, M2

(respectively) antennas at transmitters1, 2 and N1, N2 antennas
at the corresponding receivers, and perfect channel knowl-
edge at all transmitters and receivers, ismin{M1 + M2, N1 +
N2, max(M1, N2), max(M2, N1)}. A constructive achievability
proof shows that zero forcing is sufficient to achieve all the
available degrees of freedom on the two user MIMO interference
channel. This is in contrast to the MIMO X channel where the
combination of zero forcing, dirty paper coding, and successive
decoding schemes is shown to achieve more degrees of freedom
than are possible with spatial zero forcing [1] alone. We also
study a share-and-transmit scheme and show how the gains of
transmitter cooperation are entirely offset by the cost of enabling
that cooperation so that the available DoF are not increased.

I. I NTRODUCTION

Multiple input multiple output (MIMO) systems have as-
sumed great importance in recent times because of their
remarkably higher capacity compared to single input single
output systems. It is well known [2]–[4] that capacity of a
point to point (PTP) MIMO system withM inputs andN
outputs increases linearly asmin(M,N) at high SNR. For
power and bandwidth limited wireless systems, this opens
up another dimension - “space” that can be exploited in a
similar way as time and frequency. Similar to time division
and frequency division multiplexing, MIMO systems present
the possibility of multiplexing signals in space. Spatial di-
mensions are especially interesting for how they may be
limited by distributed processing as well the amount of channel
knowledge. Previous work has shown that in the absence of
channel knowledge, spatial DoF are lost [5], [6]. Multiuser
systems, with constrained cooperation between inputs/outputs
distributed among multiple users, are especially challenging
since, unlike PTP case, joint processing is not possible at
inputs/outputs. The available spatial DoF are affected by the
inability to jointly process the signals at the distributed inputs
and outputs. [?] investigated DoF as a function of distributed
and partial side information for multiple access (MAC) and
broadcast (BC) channels. The two user interference channel
with single antennas at all nodes is considered by Host-
Madsen [7], [8]. It is shown that the maximum multiplexing
gain is only equal to one even if cooperation between the
two transmitters or the two receivers is allowed via a noisy
communication link. Nosratinia and Host-Madsen [9] show

that even if communication links are introduced between the
two transmitters as well as between the two receivers the
highest multiplexing gain achievable is equal to one. These
results are somewhat surprising as it can be shown that with
ideal cooperation between transmitters (broadcast channel)
or with ideal cooperation between receivers (multiple access
channel) the maximum multiplexing gain is equal to 2. A
number of challenging questions arise in a wireless network
with distributed nodes and with multiple (possibly varying
across users) antennas at each transmitter and receiver. For
example:

• What is the maximum multiplexing gain in distributed
MIMO systems?

• How can this multiplexing gain be shared among users?
• Is spatial zero forcing optimal for achieving all the avail-

able multiplexing gain, or is it possible to use dirty paper
coding and successive decoding principles to achieve
more multiplexing gain than is possible with spatial zero
forcing alone?

• How does the multiplexing gain depend on the number
of messages in the system ?

• How does limited cooperation between distributed nodes
affect the spatial degrees of freedom?

In this paper, we focus on the two user(M1, N1,M2, N2)
MIMO interference channel where transmitter1 with M1

antennas has a message for receiver1 with N1 antennas, and
transmitter2 with M2 antennas has a message for receiver
2 with N2 antennas. We develop a MIMO multiple access
channel (MAC) outerbound on the sum capacity of this
MIMO interference channel. The outerbound is used to prove
a converse result for the maximum number of degrees of
freedom. We also provide a constructive proof of achievability
of the degrees of freedom based on zero forcing. We show
that the innerbound and the outerbound are tight, thereby
establishing the precise number of degrees of freedom on
the MIMO interference channel asmin{M1 + M2, N1 +
N2,max(M1, N2),max(M2, N2)}. We also consider a simple
cooperative scheme to understand why transmitter cooperation
may not increase DoF. Through this simple scheme, we are
able to show how the benefits of cooperation are completely
offset by the cost of enabling it.



II. D EGREES OFFREEDOM MEASURE

In order to isolate the impact of distributed processing from
channel uncertainty, we assume that channel state is fixed and
perfectly known at all transmitters and receivers. Also, we
assume that the channel matrices are sampled from a rich
scattering environment. Therefore we can ignore the measure
zero event that some channel matrices are rank deficient. It
is well known that the capacity of ascalar additive white
Gaussian noise (AWGN) channel scales aslog(SNR) at high
SNR. On the other hand, for a single user MIMO channel
with M inputs andN outputs, the capacity growth rate can
be shown to bemin(M,N) log(SNR) at high SNR. This
motivates the natural definition of spatial DoF as:

η , lim
ρ→∞

CΣ(ρ)
log(ρ)

, (1)

whereCΣ(ρ) is the sum capacity (just capacity in case of PTP
channels) at SNRρ. In other words, DoFη represent the max-
imum multiplexing gain[4] of the generalized MIMO system.
For PTP case,(M,N) DoF are easily seen to correspond to
the parallel channels that can be isolated using SVD, involving
joint processing at theM inputs andN outputs, i.e.

η(PTP) = min(M,N) (2)

A. The Multiple Access Channel

The MAC channel is an example of a MIMO system where
cooperation is allowed only between the channel outputs. Let
the MAC consist ofN outputs controlled by the same receiver
and2 users, each controllingM1 andM2 inputs for a total of
M = M1 + M2 inputs. For the MAC, the available DoF are
the same as with perfect cooperation between all users.

η(MAC) = η(PTP) = min(M1 + M2, N). (3)

While the capacity region of the MIMO MAC is well known
and the spatial multiplexing gain has also been explored in
previous work, we include the following constructive proof to
introduce zero forcing (ZF) notation which will be useful in
the derivation of our main result for the interference channel.
ZF, which is normally a suboptimal strategy, is sufficient in
this case (as well as in MIMO BC channel) to utilize all DoF.
Converse: The converse is straightforward because, for the
same number of inputs and outputs,η(MAC) ≤ η(PTP) =
min(M1 +M2, N). In other words, the lack of cooperation at
the inputs can not increase DoF.
Achievability: The N × 1 received signalY at the MAC
receiver

Y =
2∑

k=1

H(k)X(k) + N = VH
†VX + Z, (4)

whereN is the N × 1 AWGN vector,H(k) is the N ×Mk

channel matrix for userk, andX(k) is theMk×1 transmitted
vector for userk. VH = V (H(·)†) is the (M1 + M2) × N

matrix obtained by vertically stacking the matricesH(1)† and
H(2)† . Similarly, VX = V (X(·)) is the(M1 +M2)×1 matrix

obtained by vertically stackingX(1) andX(2). Transforming
the output vector

Ynew =
(
VHVH

†
)−1

VHY

(using generalized Moore-Penrose inverse) and ignoring the
zero gain channels result in themin(M,N) parallel channels

Ynew(i) = VX(i)+Nnew(i), 1 ≤ i ≤ min(M,N), (5)

whereNnew(i) ∼ N (0, λi) are Gaussian noise terms andλi is

the ith diagonal term of
(
VHVH

†
)−1

. The noise terms may
be correlated across different channels but the correlations are
inconsequential since each channel is encoded and decoded
separately. Dividing power equally among themin(M,N)
channels, we can achieve

η(MAC) ≥ lim
ρ→∞

1
log(ρ)

min(M,N)∑
i=1

log
(

1 +
ρ

min(M,N)
1
λ2

i

)

= lim
ρ→∞

1
log(ρ)

[min(M,N) log(ρ)+

min(M,N)∑
i=1

log
(

1
λ2

i min(M,N)

)
] = min(M,N)

Note that the channel gains or the exact power allocation does
not affect the DoF as long as the SNR on each channel is
proportional toρ.

Combining the converse and the achievability, we have
established thatη(MAC) = min(M1 + M2, N).

B. The Broadcast Channel

The BC channel is an example of a MIMO system where
cooperation is allowed only between the channel inputs. Let
the BC consist ofM inputs controlled by the same transmitter
and2 users, each controllingN1 andN2 outputs for a total of
N = N1 + N2 outputs. In a similar fashion as the MAC, it is
possible to show that by ZF at the BC transmitter,min(M,N)
parallel channels can be created, so that the total DoF are the
same as with perfect cooperation between all the users.

η(BC) = η(MAC) = η(PTP) = min(M,N). (6)

III. I NTERFERENCECHANNEL

Consider an(M1, N1), (M2, N2) interference channel with
two transmittersT1 and T2, and two receiversR1 and R2,
whereT1 has a message forR1 only andT2 has a message
for R2 only. T1 andT2 haveM1 andM2 antennas respectively.
R1 andR2 haveN1 andN2 antennas respectively. We denote
the channels for link 1 withN1xM1 channel gain matrixH(1),
for link 2 by N2xM2 matrix H(2), for the channel betweenT1

andR2 by N2xM1 channel matrixZ(2), and betweenT2 and
R1 by N1xM2 matrix Z(1). We assume that the channels are
non-degenerate, i.e., all channel matrices are full rank. Figure
1 shows an illustration of this interference channel. Without
loss of generality we arrange the links so that link 1 always
has the most number of antennas either at its transmitter or
receiver, i.e.max(M1, N1) ≥ max(M2, N2).
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Fig. 1. (M1,N1) , (M2,N2) Interference channel

A. Achievability: Innerbound on the Degrees of Freedom

For the(M1, N1), (M2, N2) interference channel we prove
the following innerbound on the available degrees of freedom.

η(INT) ≥ min(M1, N1)
+ min(M2 −N1, N2)+ 1(M1 > N1)
+ min(M2, N2 −M1)+ 1(M1 < N1), (7)

where 1(.) is the indicator function and(x)+ = max(0, x).
1) Sketch of Achievability Proof:According to our model,

either M1 ≥ N1,M2, N2 or N1 ≥ M1,M2, N2. First, we
consider the case whenM1 ≥ N1,M2, N2.
Step 1: From SVD, Z(2) = UΛV H , where U and V are
N2xN2 andM1xM1 unitary matrices respectively andΛ is the
diagonal matrix of singular values ofZ(2). By applying SVD
to Z(2), we decompose the channel intomin(M1, N2) parallel
channels. Therefore, there areM1−N2 effective inputs atT1

that are not connected toR2, and do not cause any interference
to R2.
Step 2:Similarly, applying SVD toZ(1) createsmin(M2, N1)
parallel connections. There are(M2 − N1)+ effective inputs
at T2 that are not connected toR1, and therefore do not cause
any interference withR1.
Step 3:For link 1, all N1 effective outputs are used byR1.
Step 4:T1 transmits toR1 usingN1 effective inputs such that
at most(N1 + N2 −M1)+ effective inputs that are active are
also connected toR2.
Step 5:Link 2 uses only those effective inputs/outputs that are
not connected to an active effective input/output of link 1.
Step 6:Link 1 is left with N1 effective inputs andN1 effective
outputs, i.e. the number of DoF for link 1= N1.
Step 7:For link 2,T2 is left with (M2−N1)+ effective inputs
while R2 is left with min(M1−N1, N2) effective outputs, i.e.
the number of DoF for link 2= min(M2 − N1,min(M1 −
N1, N2))+ = min(M2 − N1, N2)+ since M1 ≥ M2 by
assumption. Hence proved.

For the case whenN1 ≥ M1,M2, N2, the same logic is
followed. Then, the total number of DoF ismin(M1, N1) +
min(M2, N2 − M1)+. By adding the results from the two
cases, we obtain a general achievable proof of (8). An illus-
tration of this proof is shown in figure 2.

N1

.
M1−N1

N1

min(M1−N1,N2)

Link 1

Link 2

M2−N1

Fig. 2. Achievability proof for (M1,N1) , (M2,N2) Interference channel
whenM1 ≥ M2, N1, N2

B. Converse: Outerbounds on the Degrees of Freedom

For the(M1, N1), (M2, N2) interference channel we prove
the following outerbound on the available degrees of freedom.

η(INT) ≤ min{M1+M2,N1+N2,max(M1,N2),max(M2,N1)}

To start with, notice that a trivial outerbound is obtained
from the PTP case, i.e.η(INT) ≤ min(M1 + M2, N1 + N2).
Indeed this outerbound coincides with the innerbound when
either min(M1,M2) ≥ N1 + N2 or min(N1, N2) ≥ M1 +
M2. In general, while the capacity region of the interference
channel is not known even with single antennas at all nodes,
various outerbounds have been obtained [10]–[12] that have
been useful in finding the capacity region in some special cases
[13], [14]. Most of the existing outerbounds are for single
antenna systems.

For our purpose, we develop a genie based outerbound for
MIMO interference channel where the number of antennas at
either receiver is≥ the number of transmit antennas at the
interfering transmitter, i.e. eitherN1 ≥ M2 or N2 ≥ M1. This
outerbound is the key to the tight converse needed to establish
the number of DoF. Note that for this section, since we do not
need the assumption thatmax(M1, N1) ≥ max(M2, N2), the
proof for the casesN1 ≥ M2 or N2 ≥ M1 is identical.

Theorem 1: For the (M1, N1), (M2, N2) interference
channel with N1 ≥ M2, the sum capacity is bounded
above by that of the corresponding(M1,M2, N1) MAC
channel with additive noiseN(1) ∼ N (0, IN) modified to
N(1)′ ∼ N (0,K

′
) where

K
′

= IN − Z(1)
(
Z(1)†Z(1)

)−1

Z(1)† + αZ(1)Z(1)† ,

α = min
(

1
σ2

max(Z(1))
,

1
σ2

max(H(2))

)
.

Proof:



Let us define

N(1)
a ∼ N

(
0, IN − Z(1)

(
Z(1)†Z(1)

)−1

Z(1)†
)

N(1)
b ∼ N

(
0,Z(1)

(
Z(1)†Z(1)

)−1

Z(1)† − αZ(1)Z(1)†
)

N(1)
c ∼ N

(
0, αZ(1)Z(1)†

)
,

as threeN × 1 jointly Gaussian and mutually independent
random vectors. The positive semidefinite property of the
respective covariance matrices is easily established from the
definition of α.

Without loss of generality we assume

N(1) = N(1)
a + N(1)

b + N(1)
c

N(1)′ = N(1)
a + N(1)

c

Furthermore, becauseN(1) andN(2) have the same marginal
distributions and the capacity of the interference channel does
not depend on the correlation betweenN(1) and N(2), the
capacity region is not affected if we assume

N(1) = N(2).

Since a part of the proof is similar to the corresponding
proof for the single antenna case, we will summarize the
common steps, and emphasize only the part that is unique to
MIMO interference channel. Consider any achievable scheme
for any rate point within the capacity region of the interference
channel, so thatR1 andR2 can correctly decode their intended
messages from their received signals with sufficiently high
probability.
Step 1:We replace the original additive noiseN(1) at R1 with
N(1)′ as defined in Theorem 1. We argue that this does not
make the capacity region smaller because the original noise
statistics can easily be obtained by locally generating and
adding noiseN(1)

b at R1. Therefore, sinceR1 was originally
capable of decoding its intended message with noiseN(1), it
is still capable of decoding its intended message withN(1)′ .
Step 2:Suppose that a genie providesR2 with side information
containing the entire codewordX(1). SinceX(2) is indepen-
dent of X(1), R2 simply subtracts out the interference from
its received signal. Thus, the channelZ(2) can be eliminated
without making the capacity region smaller.
Step 3:By our assumption,R1 can decode its own message
and therefore it can subtractX(1) from its own received signal
as well. In this manner, after the interfering signals have been
subtracted out we have

Y(1) = Z(1)X(2) + N(1)′ ,

Y(2) = H(2)X(2) + N(2).

To complete the proof we need to show that ifR2 can decode
X(2) then so canR1. This would imply thatR1 can decode
both messages, hence giving us the MAC outer bound.
Step 4:Without loss of generality, let us perform SVDH(2) =
U(2)Λ(2)V(2) on the channel betweenT2 and R2. This is a

lossless operation that leads to:

Y(2)new = X(2)new+
(
Λ(2)

)−1

N(2), (8)

whereX(2)new = V(2)X(2).
To save space we allow some notation abuse as we use

generalized inverse and ignore the terms that correspond to
zero diagonal channel gains inΛ(2). Note that these channels
are useless forR2. Also, we use the same symbol for rotated
versions of noise that are statistically equivalent.
Step 5:Next, we show thatR1 can obtain a stronger channel
to X(2)new so that if R2 can decode it, so canR1. To this
end, letR1 use ZF to obtain:

Y(1)new = X(2)new+ V(2)
(
Z(1)†Z(1)

)−1

Z(1)†N(1)′ ,

= X(2)new+ αN(2)

Now both R1 and R2 have a diagonal channel with input
X(2)new and uncorrelated additive white noise components
on each diagonal channel. Moreover, the strongest channel for
R2 has noise 1

σ2
max(H(2))

. However the noise on any channel
for R1 is only α which is smaller. Thus, we argue once again
that R1 can locally generate noise and add it to its received
signal to create a statistically equivalent noise signal as seen
by R2. In other words,R1 has a less noisy channel toT2

and therefore can decode any signal thatR2 can. SinceR1

can decodeT1’s message by assumption, we have the MAC
outerbound.

The previous theorem leads directly to the following corol-
lary:

Corollary 1: For the (M1, N1), (M2, N2) interference
channel the number of spatial degrees of freedomη(INT) ≤
max(M2, N1).

Proof: If M2 ≤ N1 the sum capacity of the interference
channel is upperbounded by the multiple access channel with
N1 receive antennas. Therefore, forM2 ≤ N1 we must
have η(INT) ≤ N1. Now, if M2 > N1, then let us add
more antennas to receiver1 so that it has a total ofM2

receive antennas. Additional receive antennas cannot hurt, so
the converse argument is not violated. However, withM2

receive antennas at receiver1, once again the multiple access
upperbound applies to the new interference channel. The
number of degrees of freedom is therefore upperbounded as
η(INT) ≤ M2 whenM2 > N1. Combining the two cases, we
have the result of the corollaryη(INT) ≤ max(M2, N1).
Simply by switching the arguments to user 2 instead of
user 1, Corollary 1 leads to another upperbound:η(INT) ≤
max(M1, N2) that holds for allM1,M2, N1, N2. Combining
the two upperbounds of the Corollary and the trivial PTP
upperbounds we have the converse result.

Finally we show that the achievable innerbound and the
converse outerbound are always tight. The following theorem
presents the main result of the paper.

Theorem 2: For the (M1, N1), (M2, N2) interference



channel the number of spatial degrees of freedom

η(INT) = min(M1, N1)
+ min(M2 −N1, N2)+ 1(M1 > N1)
+ min(M2, N2 −M1)+ 1(M1 < N1)
= min{M1+M2,N1+N2,max(M1,N2),max(M2,N1)}

Proof: The proof is found by verifying directly that the
number of degrees of freedom obtained from the inner and
outerbounds always match. The resulting numberD from the
η(INT) inner and outerbounds is listed for all cases in the
following figure.

Thus we have the exact number of degrees of freedom for
all possibleM1,M2, N1, N2. Some examples are provided in
the following table.

(M1, N1) (M2, N2) η(INT )
(1, 1) (1, 1) 1
(1, 2) (1, 2) 2
(2, 1) (2, 1) 2
(1, 2) (2, 1) 1
(3, 2) (2, 3) 2
(2, 3) (2, 3) 3
(2, 3) (1, 3) 3
(2, 2) (3, 2) 2
(n, m) (m,n) min(m,n)
(m,n) (m,n) min(2m,n)(n ≥ m)

A couple of observations can be made about the spatial degrees
of freedom. First, there is a reciprocity in thatη(INT ) is
unaffected if M1 and M2 are switched withN1 and N2

respectively. In other words, the degrees of freedom are
unaffected if the directions of the messages are reversed.
However, notice thatη(INT ) may change if onlyM1 and
N1 are switched whileM2 andN2 are not switched. Finally
from the constructive achievability proof one can see that the
available degrees of freedom can be divided among the two
users in all possible ways so that the sum isη(INT ) and the
individual degree of freedom allocations are within the indi-
vidual maxima ofmax(M1, N1) for user 1 andmax(M2, N2)
for user 2.

IV. EFFECT OF TRANSMIT COOPERATION ON THE NUMBER

OF DEGREES OF FREEDOM

Comparing the interference channel and the BC channel
obtained by full cooperation between the transmitters, it is

clear that the available DoF are severely limited by the lack
of transmitter cooperation in the interference channel. As an
example, consider the interference channel with(M1, N1) =
(n, 1) and(M2, N2) = (1, n). From the preceding section we
know there is only one available degree of freedom in this
channel. However, if full cooperation between the transmitters
is possible the resulting BC channel has(M,N1, N2) =
(n + 1, 1, n). The number of DoF is nown + 1. Therefore,
transmitter cooperation would seem highly desirable. Rather
surprisingly, it has been shown recently [7] that for the
(1, 1), (1, 1) interference channel, allowing the transmitters to
cooperate through a wireless link between them (even with
full duplex operation), does not increase DoF. For MIMO
interference channels, as suggested by the example above, the
potential benefits of cooperation are even stronger and it is
not known if transmitter cooperation can increase DoF. The
capacity results of [7] do not seem to allow direct extensions
to MIMO interference channels.

To gain insights into the cost and benefits of cooperation in
a MIMO interference channel, we consider a specific scheme
where transmitters first share their information in a full duplex
mode as a MIMO channel (step 1) and subsequently transmit
together as BC channel. We will refer to this scheme as the
share-and-transmit scheme.

A. Degrees of Freedom with Share-and-Transmit

Consider an(M,N), (M,N) interference channel (M ≤
N ). Also assume that each transmitter is sending information
with rate R. Note that while we make the preceding simpli-
fying assumptions for simplicity of exposition, the following
analysis and the main result extend directly to the general case
of unequal number of antennas and unequal rates.

From (8), we know that the number of DoF for this interefer-
nce channel with no transmitter cooperation ismin(M,N) +
min(M,N −M)+ = M + min(M,N −M)+. For the share-
and-transmit scheme, we compute DoF as follows. We first
find the capacity of the sharing linkCs and the capacity of
transmissionCt. Then, we find the total capacity of the system
C by evaluating the total amount of data transmitted divided
by the total time it requires to transmit this data, i.e.

C =
2R

R
Cs

+ 2R
Ct

. (9)

Dividing by log(SNR) where SNR is large, we obtain the total
number of DoF as

lim
SNR→∞

C

log SNR
=

2
1

DOF (sharing) + 2
DOF (transmit)

.

(10)
The number of DoF for the sharing link is that of MIMO
PTP channel withM transmit and receive antennas=
min(M,M) = M . After transmitters share their informa-
tion, they can fully cooperate as a(2M,N,N) BC channel.
The number of DoF for this channel ismin(2M, 2N) =
2 min(M,N). Therefore (10), which gives the total num-
ber of DoF for the share-and-transmit scheme, becomes
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2M min(M,N)
M+min(M,N) = M . Note that,

M + min(M,N −M)+ ≥ M. (11)

Therefore, we conclude that (for this specific scheme) trans-
mitter cooperation in the high SNR regime does not provide
any advantage to the number of DoF in the MIMO interference
channel.

V. SIMULATION RESULTS

In this section, we verify the result discussed in the previous
section, and discuss the effect of transmitter cooperation when
the sharing links between the transmitters are stronger than the
transmission links. For simplicity, we consider a(4, 1), (4, 1)
interference channel, and plot the rate versus the logarithm
of the transmit power. Note that we assume the noise to be
0-mean unit-variance Gaussian additive noise.

The share-and-transmit scheme is implemented as explained
in section IV-A. For the no cooperation scheme,T1 has a
message forR1 only and dedicates its available power to its
link with R1. The same is true forT2 andR2. Note that since
the transmit signal space is much larger than the receive signal
space,T1 can decompose its channel withR1 as well as its
channel withR2 to create one non-interfering link toR1 and
another toR2. T2 is able to achieve this as well, and each
receiver can then decode its message without interference.

In fig. 3, we fix the distance between each transmitter and
receiver to be equal to that betweenT1 andT2. In this case, the
transmitters allocate the same resources to their sharing link as
to their transmission links. Fig. 3 indicates that the share-and-
transmit scheme always has a lower rate for the same transmit
power than the no cooperation scheme, which agrees with our
result in section IV.

In fig. 4, the distance between each transmitter and receiver
is 5× that betweenT1 and T2. Note that in this case, the
sharing link is stronger than the transmission links since it
does not suffer any path loss whereas the transmission links
do. Fig. 4 shows that share-and-transmit scheme outperforms
the no cooperation scheme. As expected, when the sharing link
is stronger, cooperation between transmit nodes results in per-
formance improvement over the no cooperation scheme. Note
that while our simulations are for the interference channel,
similar results have been obtained for the MAC in [15].

VI. CONCLUSIONS

We investigate the DoF for the MIMO interference channel.
The distributed nature of the antennas significantly limits DoF.
For an interference channel with a total ofN transmit antennas
and a total ofN receive antennas, the available number of
DoF can vary fromN to 1 based on how the antennas are
distributed among the two transmitters and receivers. Through
an example of a share-and-transmit scheme, we show how
the gains of transmitter cooperation are entirely offset by the
cost of enabling that cooperation so that the available DoF
are not increased. Our result is in a sense a negative result,
because similar to [8] it shows that on the MIMO interference
channel there is nothing beyond zero forcing as far as spatial
multiplexing is concerned.

An exception to this pessimistic inference is recently shown
by Maddah-Ali, Motahari and Khandani in [1] for the two
user MIMO X channel with three antennas at all nodes.
The MIMO X channel is physically identical to the MIMO
interference channel. However, in the interference channel
there are only two messages (M11 from transmitter1 to
receiver1 andM22 from transmitter2 to receiver2) whereas
in the X channel there are two additional messages,M21

from transmitter1 to receiver2 and M12 from transmitter2
to receiver1. Maddah-Ali, Motahari and Khandani propose a
novel scheme, that we refer to as the MMK scheme. The MMK
scheme combines zero forcing with dirty paper encoding and
successive decoding and is shown to provide4 degrees of
freedom with only3 antennas at all nodes. The result of [1]
can be further strengthened to achieve4 degrees of freedom on
the (2, 3, 2, 3) MIMO X channel as well as on the(3, 2, 3, 2)
MIMO X channels as well. The interesting conclusion is that
while we prove that zero forcing is optimal in terms of degrees
of freedom on the interference channel, it is not optimal on
the two user MIMOX channel where additional degrees of
freedom can be obtained by a combination of zero forcing
with dirty paper coding and successive decoding [1].
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