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Abstract— We classify relay forwarding schemes on the basis
of soft and hard information. While soft information is highly
beneficial, it may also incur additional expenditure of network
resources such as power and bandwidth. The relay functionality
optimization problem is therefore related to optimizing soft
information. With SNR as a metric, we show that the optimal
soft information relay mechanism for uncoded communication is
the estimate and forward (EF) policy. We demonstrate that EF
is well suited to both parallel and serial relay networks due to its
optimized soft information content. We also provide an example
of a hybrid network where the performance gain from EF is
significant.

I. INTRODUCTION

Network coding that promises enormous performance im-
provement over routing based networks, allows packets to
mix across the network and arrive at the destination through
a number of routes [1]. In wireless relay networks with
multiple relays, simple schemes such as amplify and forward
outperform sophisticated schemes like decode and forward
[2]. The performance advantage is due to soft information
relaying. If the intermediate nodes instead of decoding the
message try to provide partial or soft information about the
source transmitted message, the destination can exploit route
diversity inherent in the network.

The concept of hard and soft information is illustrated
through the following example. Consider an uncoded system
with the source employing BPSK modulation. Any collabo-
rating node in the network will receive a noisy version of the
transmitted signal.

r=x-+n

The collaborating node has to forward a symbol based on
the received symbol subject to its power constraint. There
are numerous ways of forwarding the received signal to the
final destination; the most common strategies are amplify and
forward (AF) and demodulate and forward (DF). An AF relay
simply forwards a scaled version of the received signal  where
the scaling factor satisfies its power constraint. The AF relay
function can be written as

P
far() =57 (1)

where P and Ppr are the source and relay power respectively.
In DF schemes, demodulation of the received symbol at the
relay is followed by modulation with its own power constraint

AF: Power Inefficient

2F DF: No Soft Information .~ R
.~ EF: Power Efficient

EF: Soft Information

Relay Output f(r)

e —— Ampliity
3 — Estimate
- — - Demodulate
4 . . . . . . . . .
-5 -4 -3 -2 -1 o] 1 2 3 4 5
Relay Input r
Fig. 1. Relay functions of common forwarding schemes (P=1).

Pr. The DF relay function for BPSK modulation is given by,
fpr(r) =/ Prsgn(r), 2

where sgn(r) outputs the sign of r. The relay functions are
shown in Fig. 1. It can be seen that the magnitude of the
received symbol remains irrelevant during the demodulation
process although it contains reliability or soft information.
Due to demodulation, the relay transmitted signal carries no
information about the degree of uncertainty in the relay’s
choice of the optimal demodulated symbol. Demodulation at
the relays can lead to severe performance degradation in some
scenarios. For example, consider a three-relay parallel network
with the received symbol at the relays being [0.001 0.001 —1].
Demodulation at the relays will result in transmission of
[11 —1] for Pr = 1. As all the relay transmissions have equal
weights, it clearly results in a suboptimal performance. This
explains the reason behind DF not achieving full diversity [3].
Evidently with AF, the relay tries to provide soft information
to the destination. The relay in addition to the hard decision
also indicates the reliability of its decision. Here, the sign
of the relay transmitted symbol represents the hard decision;
the magnitude provides the reliability information. While the
reliability information is greatly beneficial in the uncertainty
region, it may not be desirable when |r| is high as significant
power is expended. Especially since the relay has an overall
power constraint, reliability information for a large |r| reduces
the effectiveness of the reliability information at low |r|.
From the relay functions of AF and DF, one can argue
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Fig. 2. Elementary Relay Channel

that an optimal relay function should provide soft information
when there is an uncertainty in the received symbol. However,
at the same time it should conserve power when the cost of
power outweighs the value of soft information. The natural
question therefore is: when is soft information required and
to what degree? In other words, the problem is simply to
determine the optimal relay functionality.

The soft information concept also applies for coded trans-
mission. Decode and forward is an example of hard informa-
tion as the relay tries to hard-decide the source transmitted
code. In compress and forward [4], the relay quantizes the
received signal using Wyner-Ziv compression, with the level
of quantization decided by the channel capacity of the relay
destination link. Higher the capacity, the greater is the soft
information.

As soft information usually comes at the cost of network
resources such as power and bandwidth, it is important to
optimize soft information content in the relay forwarding
scheme for the network resource constraints. In the next
section, we consider the problem of optimizing the relay
functionality for a single relay network for the case of uncoded
transmission.

II. SOFT INFORMATION OPTIMIZATION

Consider an elemental relay channel model as shown in Fig.
2, in which the relay R assists the communication between
the source S and the destination D. Both S-R and R-D links
are assumed to be non-fading. Without loss of generality,
channel gains for the source-relay and the relay-destination
link can be incorporated into the model by modifying the
source and relay power appropriately. The source and relay
power constraints are P and Ppr respectively. At both the
relay and the destination, the received symbol is corrupted
by real additive white Gaussian noise of unit power. Relay R
observes 7, a noisy version of the transmitted symbol . Based
on the observation r, the relay transmits a symbol f(r) which
is received at the destination along with its noise ns.

T =

y =

T+ ny
f(r) +ne 3)

The relay function f satisfies the average power constraint, i.e.
E-[If(r)[?] = Pr. We seek to determine the relay function
f(.) that contains the optimal degree of soft information. We
employ SNR as an end to end metric to solve the optimization
problem. We will later see how SNR is closely related to soft
information.

A. Definition of SNR

The conventional SNR definition cannot be applied directly
as the destination received signal y may have an arbitrary

nonlinear and probabilistic dependence (contains some soft
information about z) on the desired signal x [5]. Any signal
y that contains or correlated with = can be expressed in the
form,

Elz"y]
y= (T +ew)- “)
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Rearranging (4),
P
Elzry]
It is easy to verify that e, is uncorrelated to x. The scaling
Elz*y]

factor in (4) is common to both the signal and error

Ellz[?]
terms. TLus SNR is defined as follows:
El|=]?]
SNR = . (6)
Ellewl?]

The advantage of the generalized definition lies in its ap-
plicability to both linear and nonlinear relay functions. The
generalized SNR is an indication of what fraction of the signal
power contains soft information about the source transmitted
signal.

B. Optimal Relay Function

Theorem 1: For a network with a single relay that has a
power constraint Pgr, the relay function that maximizes SNR
at the destination is

Pgr
& (|r)]

regardless of the input and noise distributions.

fr) = Elalr],

Proof Outline: First, it can be shown that maximizing
SNR at the output of the relay amounts to maximizing SNR
at the destination. From the SNR definition in (6), it is clear
that SNR maximization is equivalent to minimizing the power
of the uncorrelated error associated with the relay function.
Interestingly, the estimate that minimizes the mean squared
uncorrelated error(MSUE) is a scaled MMSE with a unique
scaling factor.

5 P
X(r)=————
") = Eenn
As the scaling factor does not affect SNR, any scaled version

of MMSE estimator is SNR optimal. For the relay power of
Pr, the SNR maximizing relay function is given by

& [xlr]

Pr
2
Er[lE(z|r)]]
The detailed proof is available in [5]. [ |

Fig. 1 shows the the EF relay function for BPSK modula-
tion. It can be seen that the relay function fgp is linear for
small values of |r|. Its slope reduces gradually and ultimately
becomes flat similar to fpg. It is intuitively appealing as it
eliminates the disadvantages associated with DF and AF.

fr) = Elxlr].



III. COMPARATIVE ANALYSIS

For any relay function, SNR at the destination can be
obtained from its MSUE. Therefore calculation of MSUE of
DF and AF allows a direct comparison of these schemes with
the SNR optimal EF. To determine the MSUE estimate from
any relay function, we only need to obtain the scaling factor
that allows the relay function to be expressed as in (4). In this
section, we compare the schemes for BPSK modulation.

A. BPSK Modulation

We express the relay function of a demodulating relay for
BPSK as

for(z +n) = /Pgsign(z + n) = E(m +d).

where d is the Euclidean distance between the input symbol x
and the demodulated symbol. The distribution of d conditioned
on x is given by

0 1—c¢
{2, g

where ¢ = @ (\/TD>, the probability of symbol error. As
seen from the error distribution, the demodulation error d is
correlated with x. The correlation between the input and the

error is given by
E(xzd) = —2Pe. (®)

The uncorrelated error can be calculated from (4). The mean
squared uncorrelated error is given by
4Pe(1 —¢)

(1—2¢)2 "
At low source transmit power, the mean squared uncorrelated
error can be approximated as

MSUEpp = )

1 P
MSUEpr =27(-——].
SUEpFr 71'(4 27?)

As P — 0, the uncorrelated error power shoots up to 3. It
should be noted that the noise variance at the relay is 1 and
hence DF operation increases the error power.

As the relay function of an AF relay is a scaled version
of the received signal 7, it is simple to determine the MSUE

associated with the relay function. From (4), we have
P

Tl far@+ )
The MSUE of AF is therefore the same as the noise vari-
ance, MSUE 4 = 1, interestingly independent of the source
transmit power. Fig. 3 plots the MSUE as a function of
transmit power for all the three schemes. Several interesting
observations can be made. It can be seen that AF is close to
optimum (EF) at low P while DF is near optimal at high P. In
the intermediate range, both AF and DF are far from optimal.
It is well known that AF suffers from noise amplification at
low SNR [6], which is in contrast to the results here. When we
view the relay operation as an estimation, it is only natural that
the estimation error is large at low P, which results in noise

(10)

far(x+n)—z=n.
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Fig. 3. MSUE vs transmit power for BPSK modulation
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Fig. 4. Relay Functions for 4-PAM modulation

amplification. In fact AF is very close to optimum among all
memoryless relay functions at low P. Rather it is DF that
suffers the most from noise/error amplification. However, AF
is inefficient at high P as MSUE4r = 1 does not decrease
with P, while uncorrelated error in DF and EF vanishes at
high P.

B. Higher Order Constellations

For fixed input power P, increasing the number of con-
stellation points A will result in an increased MSUE for EF.
As the constellation size increases, the uncertainty about the
transmitted symbol increases, thereby reducing the effective-
ness of soft information. Fig. 4 shows the relay functions for
4-PAM constellation set. Interestingly, the relay functions of
the schemes become more and more similar with increase in
constellation points.

For Gaussian inputs, the unconstrained MMSE estimate and
the linear MMSE estimate are equivalent.

P
& ==
[$|T] P + 1 r
Thus AF and EF strategies are the same for a Gaussian source.

In this context, it can also be shown that DF and AF are
equivalent for Gaussian inputs. The notion of demodulation
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Fig. 5. Parallel Relay Network

of symbols from a Gaussian source is explained through the
following. A Gaussian distribution is quantized into a number
of states with the probability of the i*" state given by,

2
exp dx.
V2rP /(z 1)Azx (2P)

Suppose the source transmits symbols x; according to the
probability distribution above, then the MAP detection rule
at the relay is given by

Pr(z;) =

X(r) = arg max Pr(z|r)

In the limit Az — 0,  and r become jointly Gaussian. It is
well known that the conditional mean £(z|r) maximizes the
joint probability. Therefore £(x|r) which is also the MMSE
estimate is the output of the ML detector. Thus for Gaussian
inputs AF, EF and DF are identical, and the relay function is
linear.

IV. MULTIPLE RELAY NETWORK

The design of relay functionalities assume more significance
in networks with multiple relays as they offer enormous
performance potential. Therefore it is important to develop
insights into the optimal relay forwarding strategy for a general
relay network. The network topology greatly determines the
relay functionalities. For example, simple schemes like AF
outperform decode and forward strategies in a parallel relay
network [2]. However, decode and forward is the optimal
strategy in a serial relay network. In this section we consider
parallel and serial relay networks for uncoded source trans-
mission. We also give an example of a hybrid network that
consists of both parallel and serial subnetworks.

A. Parallel Network

A parallel relay network [7] is shown in Fig. 5. In the
first slot, the relays observe {r;}L ;, the noisy version of the
transmitted signal x.

(11)

where g; is the gain of the link between the source and the i‘"
relay. n; denotes an additive white Gaussian noise with unit
power. In the next slot, the destination receives the sum of all

Ty = Gik + N4
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Fig. 6. BER of schemes in a parallel network (L = 2) for BPSK modulation.
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relay transmitted symbols along with its noise.

L
y=> filr)+n
i=1
By viewing relay operation as an estimation we have,
fi(ri) =
where e; is the uncorrelated estimation error at the "

uncorrelated error associated with the i relay function. The
received signal at the destination can be expressed as

L
y= ailz+e)+n
=1

From Theorem 1, we know that estimate and forward min-
imizes MSUE at the output of the relay. However, SNR
optimality of EF cannot be guaranteed due to possible corre-
lation between errors from different relays. Nevertheless, for
most constellation schemes the error correlation is zero (for
MPSK) or negligible (for MQAM) [5]. Fig. 6 displays the
error probability for BPSK modulation for a parallel network
with 2 relays for Pr < P. It can be seen that EF is the best
performing scheme. Although soft information is important in
a parallel network, we see that DF outperforms AF. This is
because at low relay power, soft information gets degraded by
the destination noise. However, if the power at the relays is
high, AF outperforms DF. EF remains the best scheme for all
scenarios.

filgiz +ni) = ai(x + e;),

relay,

a; = = 5[\ei|2], the mean square

(12)

B. Serial Relay Network

A serial relay network with Gaussian noise at all receivers
in shown in Fig. 7. For unit channel gain for all the links, the
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Fig. 8. BER of schemes in a serial network (L = 2) for BPSK modulation.

AF relay function for the k" relay is

fr(ry) = Bry,

where 3> = L. The DF relay function for the k*" relay is

P+
given by
fulre) = fo—1(rp—1) +dp, kE=1...L,

where fo(ro) = = and dj, represents the decision error at the
k'" relay. The relay function for estimate and forward is

Ji(ri) = ap€lz|ry = fom1(re—1) + nl,

where «y, is such that E[|fi(r)|?] = P is satisfied.

Fig. 8 compares the error probability of the forwarding
schemes for two serial relays. In a serial network, soft infor-
mation is not greatly beneficial as there exists only one route.
As expected, there is a huge performance degradation with AF
due to its power inefficiency. At high P, DF performs almost
identically as EF.

C. Hybrid Relay Networks

Although EF is the best scheme among the memoryless
schemes for both parallel and serial relay networks, the
performance gain over the best of AF and DF is limited. This
is because for any scenario either DF or AF is near optimal.
Now, consider a network consisting of both parallel and serial
subnetworks as shown in Fig. 9. Due to the presence of parallel
and serial elements together in the network, the relays need to
provide soft information and also be power efficient. This is
a scenario where EF obtains a large gain over the best of DF
and AF. Fig. 10 compares the error performance of schemes
for the hybrid network. It can be noticed that EF performs
significantly better than the best of DF and AF. We expect the
performance gain to increase for a large network with both
parallel and serial elements.

V. CONCLUSION

In this paper, we addressed the relay functionality opti-
mization problem from the perspective of soft information,
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Fig. 9. Hybrid Relay Network
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Fig. 10. BER of the forwarding schemes for BPSK modulation for the hybrid
network in Fig. 9.

with SNR as a metric. We provided examples of existing
forwarding strategies that provide hard and soft information.
While soft information is always beneficial, it is expensive
in terms of network resources. For a wireless network with
a single relay and for an uncoded source, we determined that
estimate and forward is SNR optimal. As it optimally trades off
cost (power) for the degree of soft information, it is well suited
to many network topologies like parallel and serial networks,
and hybrid forms of these networks.
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