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Abstract— We provide tight inner and outerbounds to
characterize the degrees of freedom region of the K user
wireless interference channel where the channel coefficients
take distinct values across frequency slots but are fixed
in time1. We show that this interference channel almost
surely has K/2 spatial degrees of freedom per orthogonal
time and frequency dimension without any cooperation
in the form of data sharing between transmitters or
between receivers. Inspite of the interference, each user is
simultaneously able to achieve (1/2−ε) degrees of freedom,
for any ε > 0. The conventional wisdom prior to this work
has been that wireless interference networks have only
one degree of freedom. The results of this work indicate
that the capacity of wireless networks has been grossly
underestimated. For example, we find that at high SNR the
capacity of the K user interference channel is 50%, 900%
and 4900% higher than prior belief for K = 3, 20 and 100
users, respectively. We also show that the linear schemes
of interference alignment and zero forcing with single user
decoding suffice to achieve all the degrees of freedom of
wireless interference networks.

I. INTRODUCTION

The capacity of ad-hoc wireless networks is the
much sought afer “holy-grail” of network information
theory [1]. While capacity characterizations have been
found for centralized networks (Gaussian multiple ac-
cess and broadcast networks with multiple antennas),
similar capacity characterizations for most distributed
communication scenarios (e.g. interference networks)
remain long standing open problems. In the absence
of precise capacity characterizations, researchers have
pursued asymptotic and/or approximate capacity char-
acterizations. Recent work has found the asymptotic
scaling laws of network capacity as the number of nodes
increases in a large network [2], [3]. However, very
little is known about the capacity region of smaller
(finite) decentralized networks. An important step in this
direction is the recent approximate characterization of
the capacity region of the 2 user interference channel that
is accurate within one bit of the true capacity region [4].
Approximate characterizations of capacity regions would

1All the results in this work are equally applicable to time-varying
channels with only one frequency slot.

also be invaluable for most open problems in network
information theory and may be the key to improving
our understanding of wireless networks.

It can be argued that the most preliminary form of
capacity characterization for a network is to characterize
its degrees of freedom [5]–[11]. The degrees of freedom
represent the rate of growth of network capacity with
the log of the signal to noise ratio (SNR). In most
cases, the spatial degrees of freedom turn out to be the
number of non-intefering paths that can be created in a
wireless network through signal processing at the trans-
mitters and receivers. While time, frequency and space
all offer degrees of freedom in the form of orthogonal
dimensions over which communication can take place,
spatial degrees of freedom are especially interesting in
a distributed network. Potentially a wireless network
may have as many spatial dimensions as the number of
transmitting and receiving antennas. However, the ability
to access and resolve spatial dimensions is limited by
the distributed nature of the network. Therefore, charac-
terizing the degrees of freedom for distributed wireless
networks is by itself a non-trivial problem. For example,
consider an interference network with K single-antenna
transmitters and K single-antenna receivers where each
transmitter has a message for its corresponding receiver.
For K = 2 it is known that this interference network has
only 1 degree of freedom [6], [8]. There are no known
results to show that more than 1 degrees of freedom are
achievable on the interference channel with any number
of users. Some of the fundamental early results on the
degrees of freedom of wireless interference networks
were obtained by Host-Madsen and Nosratinia in [9]. It
is conjectured in [9] that the K user interference channel
with constant channel coefficients (i.e. when channel
coefficients do not change with time or frequency slot)
has only 1 degree of freedom2. Yet, the best known
outerbound for the number of degrees of freedom with
K interfering nodes is K/2, also presented in [9].

2We refer to this conjecture as the Host-Madsen-Nosratinia conjec-
ture in this paper.



The unresolved gap between the inner and outerbounds
highlights our lack of understanding of the capacity of
wireless networks because even the number of degrees
of freedom, which is the most basic characterization of
the network capacity, remains an open problem. It is this
open problem that we pursue in this paper.

A. Overview of Results

The main result of this work may be summarized in
general terms as follows:

“Regardless of how many speakers and listeners are
located within earshot of each other, each speaker can
speak half the time and be heard without any interference
by its intended listener”

This result may seem impossible at first. For example,
how can a total duration of 1 hour be shared by 100
speakers such that each speaker speaks for 30 minutes
and is heard interference free by its intended listener
when all systems are located within earshot of each
other? And yet, this seemingly impossible result is made
possible by the concept of interference alignment as
explained through a toy example in Section I-B where
we assume the speakers and listeners can choose their
locations as needed.

We show that the K user interference channel with
single antennas at all nodes has (almost surely) a total
of K/2 degrees of freedom per orthogonal time and
frequency dimension when the channels are drawn ran-
domly from a continuous distribution. The implications
of this result for our understanding of the capacity of
wireless networks are quite profound. While we do not
settle the Host-Madsen-Nosratinia conjecture (because
we assume frequency selective channels) we do show
that this conjecture is not representative of the capacity
of wireless networks where the channel fading is typi-
cally time and/or frequency selective. Moreover, since
conventional wisdom for wireless networks has been
consistent with the Host-Madsen-Nosratinia conjecture,
it is clear that the capacity of wireless networks has been
grossly underestimated. For example, our result in this
paper shows that at high SNR the true capacity is higher
by 50%, 900%, and 4900% than previously believed for
K = 3, 20, and 100 interfering users, respectively.

Interference is one of the principal challenges faced by
wireless networks. However, we show that with perfect
channel knowledge the frequency selective interference
channel is not interference limited. In fact, after the first
two users, additional users do not compete for degrees
of freedom and each additional user is able to achieve
1/2 degree of freedom without reducing the degrees of
freedom available to previously existing users.

It is worthwhile to place our result in perspective with
the well known result of [3]. In [3], Ozgur, Leveque

and Tse show that the capacity of wireless interference
networks increases linearly in the number of users. While
the linear dependence on the number of users may
suggest a close relationship with our result, the two
results address completely different regimes. First, [3]
is asymptotic in the number of users K → ∞ but
deals with finite SNR. Our result on the other hand
deals with a finite number of users (e.g. K = 3) but
is asymptotic in SNR. Thus, [3] does not address the
capacity of a relatively small wireless network and our
result does not describe the low SNR capacity of an in-
terference network. Second, the result of [3] is based on
a hierarchical cooperative scheme where transmitters and
receivers are able to achieve MIMO behavior by sharing
message information among themselves. On the other
hand, our model does not rely on any cooperation in
the form of sharing of messages because of the assump-
tion that the transmitters never receive signals and the
receivers never transmit. The fact that we achieve K/2
degrees of freedom without message sharing between
transmitters and receivers is quite remarkable. Note that
it has been shown previously for the 2 user interference
channel that unidirectional message sharing (e.g. from
transmitter 1 to transmitter 2) does not allow higher
degrees of freedom [10], [12] and even bi-directional
message sharing (through full duplex noisy channels
between the transmitters and full duplex noisy channels
between the receivers) will not increase the degrees of
freedom if the cost of message sharing is considered
[9], [13]. Therefore it is quite surprising that the K user
interference channel has K/2 degrees of freedom even
without any message sharing.

B. Interference Alignment

Interference alignment is a powerful scheme that has
emerged out of recent work in [12], [14]–[18]. Inter-
ference alignment refers to the simple idea that signal
vectors can be aligned in such a manner that they
cast overlapping shadows at the receivers where they
constitute interference while they continue to be distinct
at the receivers where they are desired. Interference
alignment was first discovered in the context of the
MIMO X channel. In their seminal work [14], [15] on the
MIMO X channel Maddah-Ali, Motahari and Khandani
propose an elegant coding scheme (the MMK scheme)
based on dirty paper coding and successive decoding
that takes advantage of the multiple access and broadcast
channels contained in the X channel. Interference is
implicitly aligned in the MMK scheme by iteratively
optimizing the transmit precoding and receive combining
vectors. The first explicit interference alignment scheme
was presented in [16]. [16] also showed that interference



alignment is optimal for degrees of freedom, i.e., dirty
paper coding or successive decoding are not needed.
Interference alignment was subsequently used in [12],
[17] to show achievability of all points within the degrees
of freedom region of the MIMO X channel. Interference
alignment was also independently discovered in the
context of the compound broadcast channel in [18].

We introduce interference alignment through the fol-
lowing toy example. In order to create the simplest
example possible, we deviate a little from our system
model to allow propagation delays in the toy example.
The rest of the paper assumes no propagation delays
which is the more conventional information theoretic
model of the interference channel.

1) Motivating example - Can everyone speak half
the time with no interference?: Consider the K user
interference channel where there is a propagation delay
from each transmitter to each receiver. Let T ij repre-
sent the signal propagation delay from transmitter i to
receiver j. Suppose the locations of the transmitters
and receivers can be configured such that the delay
Tii from each transmitter to its intended receiver is
an even multiple of a basic symbol duration Ts, while
the signal propagation delays Tij , (i �= j) from each
transmitter to all unintended receivers are odd multiples
of the symbol duration. The communication strategy is
the following. All transmissions occur simultaneously at
even symbol durations. Note that with this policy, each
receiver sees its own transmitter’s signal interference-
free over even time periods, while it sees all interfering
signals simultaneously over odd time periods. Thus each
speaker is able to talk half the time and be heard
interference-free by its desired audience.

While interference alignment on the 2 user X channel
is quite natural, it becomes increasingly non-intuitive as
the number of users increases in a wireless interference
network. While the number of signal vectors to be
designed is proportional to the number of users K ,
at each receiver we need the signal vectors from the
K −1 undesired transmitters to align. Since there are K
receivers, the number of constraints is of the order of K 2.
The problem appears to be overly constrained, which
would typically preclude the existence of a solution.
Indeed we can show that exact interference alignment
is not possible for even K = 3 single antenna users
(see full paper [19] for the context and details of this
argument). Given the infeasibility of perfect interference
alignment, it is clear that interference alignment on the
interference network is not a simple extension of the
2 user X channel result. In this paper we circumvent
this problem by adopting a novel approach of partial
interference alignment where we do not seek to exactly

align all interference terms but allow partial overlaps
with the goal of restricting the dimensionality of the
space spanned by interference terms to be as small as
possible. It turns out that while this imperfect alignment
cannot exactly achieve K/2 degrees of freedom, it is
capable of achieving arbitrarily close to K/2 degrees of
freedom. With the degrees of freedom defined as a limit
superior we say that the network has K/2 degrees of
freedom.

II. SYSTEM MODEL

Consider the K user interference channel, comprised
of K transmitters and K receivers. We assume coding
may occur over multiple orthogonal frequency and time
dimensions and the rates as well as the degrees of
freedom are normalized by the number of orthogonal
time and frequency dimensions. Each node is equipped
with only one antenna. The channel output at the k th

receiver over the f th frequency slot and the tth time
slot is described as follows:

Y [k](f,t)=H[k1](f)X[1](f,t)+···+H[kK](f)X[K](f,t)+Z[k](f,t)

where, k ∈ {1, 2, · · · , K} is the user index, f ∈ N

is the frequency slot index, t ∈ N is the time slot
index, Y [k](f, t) is the output signal of the kth receiver,
X [k](f, t) is the input signal of the kth transmitter,
H [kj](f) is the channel fade coefficient from transmitter
j to receiver k over the f th frequency slot and Z [k](f, t)
is the additive white Gaussian noise (AWGN) term at
the kth receiver. The channel coefficients vary across
frequency slots but are assumed constant in time. We
assume all noise terms are i.i.d. (independent identi-
cally distributed) zero mean complex Gaussian with unit
variance. We assume all channel coefficients H [kj](f)
are known a-priori to all transmitters and receivers. To
avoid degenerate channel conditions (e.g. all channel
coefficients are equal or channel coefficients are equal
to either zero or infinity) we assume that the channel
coefficient values are drawn i.i.d. from a continuous
distribution and the absolute value of all the channel
coefficients is bounded between a non-zero minimum
value and a finite maximum value. Since the channel
values are assumed constant in time, the time index t is
sometimes suppressed for compact notation.

We assume that transmitters 1, 2, · · · , K have inde-
pendent messages W1, W2, · · · , WK intended for re-
ceivers 1, 2, · · · , K , respectively. The total power across
all transmitters is assumed to be equal to ρ per or-
thogonal time and frequency dimension. We indicate
the size of the message set by |Wi(ρ)|. For codewords
spanning f0 × t0 channel uses (i.e. using f0 frequency
slots and t0 time slots), the rates Ri(ρ) = log |Wi(ρ)|

f0t0
are



achievable if the probability of error for all messages can
be simultaneously made arbitrarily small by choosing an
appropriately large f0t0.

The capacity region C(ρ) of the three user interference
channel is the set of all achievable rate tuples R(ρ) =
(R1(ρ), R2(ρ), · · · , RK(ρ)).

A. Degrees of Freedom

Similar to the degrees of freedom region definition for
the MIMO X channel in [12] we define the degrees of
freedom region D for the K user interference channel
as follows:

D =
{

(d1, · · · , dK) ∈ R
K
+ : ∀(w1, · · · , wK) ∈ R

K
+

w1d1 + w2d2 + · · · + wKdK ≤ (1)

lim sup
ρ→∞

[
sup

R(ρ)∈C(ρ)

[w1R1(ρ) + · · · + wKRK(ρ)]
log(ρ)

]}

III. DEGREES OF FREEDOM FOR THE K USER

INTERFERENCE CHANNEL

The following theorem presents our main result.
Theorem 1: The number of degrees of freedom for

the K user interference channel with single antennas at
all nodes is K/2.

max
d∈D

d1 + d2 + · · · + dK = K/2 (2)

The converse argument for the theorem follows di-
rectly from the outerbound for the K user interference
channel presented in [9]. The achievability proof is
presented next. For simplicity of exposition, we present
here the constructive proof for K = 3. The proof for
general K ≥ 3 is provided in the full paper [19].

A. Achievability Proof for Theorem 1 with K = 3

We show that (d1, d2, d3) = ( n+1
2n+1 , n

2n+1 , n
2n+1 ) lies

in the degrees of freedom region ∀n ∈ N. Since the
degrees of freedom region is closed, this automatically
implies that

max
(d1,d2,d3)∈D

d1 + d2 + d3 ≥ sup
n

3n + 1
2n + 1

=
3
2

This result, in conjunction with the converse argument
proves the theorem3.

To show that ( n+1
2n+1 , n

2n+1 , n
2n+1 ) lies in D, we con-

struct an interference alignment scheme using only 2n+1
frequency slots. We collectively denote the 2n + 1
symbols transmitted over the first 2n+1 frequency slots
at each time instant as a supersymbol. We call this the
(2n + 1) symbol extension of the channel. With the

3Note that for any ε > 0 we can choose an appropriately large n so
that each user is able to achieve more than 1/2−ε degrees of freedom.

extended channel, the signal vector at the k th user’s
receiver can be expressed as

Ȳ[k] = H̄[k1]X̄[1]+H̄[k2]X̄[2]+H̄[k3]X̄[3]+Z̄[k], k = 1, 2, 3.

where X̄[k] is a (2n+1)×1 column vector representing
the 2n + 1 symbol extension of the transmitted symbol
X [k], i.e

X̄[k](t)
�
=

⎡
⎢⎢⎢⎣

X [k](1, t)
X [k](2, t)

...
X [k](2n + 1, t)

⎤
⎥⎥⎥⎦

Similarly Ȳ[k] and Z̄[k] represent 2n + 1 symbol ex-
tensions of the Y [k] and Z [k] respectively. H̄[kj] is a
diagonal (2n + 1) × (2n + 1) matrix representing the
2n + 1 symbol extension of the channel i.e

H̄[kj] �
=

⎡
⎢⎢⎢⎣

H [kj](1) 0 . . . 0
0 H [kj](2) . . . 0
... · · · . . .

...
0 0 · · · H [kj](2n + 1)

⎤
⎥⎥⎥⎦

Recall that we assume that the channel coefficient values
for each frequency slot are chosen independently from a
continuous distribution. Thus, all the diagonal channel
matrices H̄[kj] are comprised of all distinct diagonal
elements with probability 1.

We show that (d1, d2, d3) = (n + 1, n, n) is
achievable on this extended channel implying that
( n+1
2n+1 , n

2n+1 , n
2n+1 ) lies in the degrees of freedom region

of the original channel.
In the extended channel, message W1 is encoded at

transmitter 1 into n+1 independent streams x
[1]
m (t), m =

1, 2, . . . , (n + 1) sent along vectors v[1]
m so that X̄[1](t)

is

X̄[1](t) =
n+1∑
m=1

x[1]
m (t)v[1]

m = V̄[1]X[1](t)

where X[1](t) is a (n+1)×1 column vector and V̄[1] is
a (2n + 1)× (n + 1) dimensional matrix. Similarly W2

and W3 are each encoded into n independent streams by
transmitters 2 and 3 as X[2](t) and X[3](t) respectively.

X̄[2](t) =
n∑

m=1

x[2]
m (t)v[2]

m = V̄[2]X[2](t)

X̄[3](t) =
n∑

m=1

x[3]
m (t)v[3]

m = V̄[3]X[3](t)

The received signal at the ith receiver is

Ȳ[i](t)=H̄[i1]V̄[1]X[1](t)+H̄[i2]V̄[2]X[2](t)+H̄[i3]V̄[3]X[3](t)+Z̄[i](t)



In this achievable scheme, receiver i eliminates inter-
ference by zero-forcing all V̄[j], j �= i to decode Wi.
At receiver 1, n + 1 desired streams are decoded after
zero-forcing the interference to achieve n+1 degrees of
freedom. To obtain n + 1 interference free dimensions
from a 2n+1 dimensional received signal vector Ȳ[1](t),
the dimension of the interference should be not more
than n. This can be ensured by perfectly aligning the
interference from transmitters 2 and 3 as follows.

H̄[12]V̄[2] = H̄[13]V̄[3] (3)

At the same time, receiver 2 zero-forces the interference
from X̄[1] and X̄[3]. To extract n interference-free dimen-
sions from a 2n + 1 dimensional vector, the dimension
of the interference has to be not more than n + 1. i.e.

rank
([

H̄[21]V̄[1] H̄[23]V̄[3]
])

≤ n + 1

This can be achieved by choosing V̄[3] and V̄[1] so that

H̄[23]V̄[3] ≺ H̄[21]V̄[1] (4)

where P ≺ Q, means that the set of column vectors
of matrix P is a subset of the set of column vectors of
matrix Q. Similarly, to decode W3 at receiver 3, we wish
to choose V̄[2] and V̄[1] so that

H̄[32]V̄[2] ≺ H̄[31]V̄[1] (5)

Thus, we wish to pick vectors V̄[1], V̄[2] and V̄[3] so that
equations (3), (4), (5) are satisfied. Note that the channel
matrices H̄[ij] have a full rank of 2n + 1 almost surely.
Since multiplying by a full rank matrix (or its inverse)
does not affect the conditions represented by equations
(3), (4) and (5), they can be equivalently expressed as

B = TC (6)

B ≺ A (7)

C ≺ A (8)

where

A = V̄[1] (9)

B = (H̄[21])−1H̄[23]V̄[3] (10)

C = (H̄[31])−1H̄[32]V̄[2] (11)

T = H̄[12](H̄[21])−1H̄[23](H̄[32])−1H̄[31](H̄[13])−1(12)

Note that A is a (2n + 1) × (n + 1) matrix. B and C
are (2n+1)×n matrices. Since all channel matrices are
invertible, we can choose A, B and C so that they satisfy
equations (6)-(8) and then use equations (9)-(12) to find
V̄[1],V̄[2] and V̄[3]. A, B, C are picked as follows. Let

w be the (2n + 1) × 1 column vector

w =

⎡
⎢⎢⎢⎣

1
1
...
1

⎤
⎥⎥⎥⎦

We now choose A, B and C as:

A = [w Tw T2w . . . Tnw]
B = [Tw T2w . . . Tnw]
C = [w Tw . . . Tn−1w]

It can be easily verified that A, B and C satisfy the
three equations (6)-(8). Therefore, V̄[1], V̄[2] and V̄[3]

satisfy the interference alignment equations in (3), (4)
and (5).

Now, consider the received signal vectors at Receiver
1. The desired signal arrives along the n + 1 vectors
H̄[11]V̄[1] while the interference arrives along the n vec-
tors H̄[12]V̄[2] and the n vectors H̄[13]V̄[3]. As enforced
by equation (3) the interference vectors are perfectly
aligned. Therefore, in order to prove that there are n+1
interference free dimensions it suffices to show that the
columns of the square, (2n+ 1)× (2n+ 1) dimensional
matrix [

H̄[11]V̄[1] H̄[12]V̄[2]
]

(13)

are linearly independent almost surely. Multiplying by
the full rank matrix (H̄[11])−1 and substituting the values
of V̄[1], V̄[2], equivalently we need to show that almost
surely

S
�
=

[
w Tw . . . Tnw Dw DTw . . . DTn−1w

]
has linearly independent column vectors where D =
(H̄[11])−1H̄[12] is a diagonal matrix. In other words, we
need to show det(S) �= 0 with probability 1. The proof
is obtained by contradiction. If possible, let S be singular
with non-zero probability. i.e, Pr(|S| = 0) > 0. Further,
let the diagonal entries of T be λ1, λ2, . . . λ2n+1 and
the diagonal entries of D be κ1, κ2 . . . κ2n+1. Then the
following equation is true with non-zero probability.

|S| = 0.

But |S| is a polynomial in λ1, λ2, . . . λ2n+1,
κ1, κ2 . . . κ2n+1 where each variable has a continuous
distribution conditioned on all the rest. For this
polynomial to be identically equal to zero with a
probability greater than zero, all the coefficients must
be equal to zero. It is easily verified that this is not the
case. The details of the proof are provided in [19].

Thus, the n + 1 vectors carrying the desired signal at
receiver 1 are linearly independent of the n interference



vectors which allows the receiver to zero force interfer-
ence and obtain n + 1 interference free dimensions, and
therefore n + 1 degrees of freedom for its message.

At receiver 2 the desired signal arrives along the n
vectors H̄[22]V̄[2] while the interference arrives along
the n+1 vectors H̄[21]V̄[1] and the n vectors H̄[23]V̄[3].
As enforced by equation (4) the interference vectors
H̄[23]V̄[3] are perfectly aligned within the interference
vectors H̄[21]V̄[1]. Therefore, in order to prove that there
are n interference free dimensions at receiver 2 it suffices
to show that the columns of the square, (2n+1)×(2n+1)
dimensional matrix[

H̄[22]V̄[2] H̄[21]V̄[1]
]

(14)

are linearly independent almost surely. This proof is
identical to the proof for receiver 1. Using the same
arguments we can show that both receivers 2 and 3 are
able to zero force the n + 1 interference vectors and
obtain n interference free dimensions for their respective
desired signals so that they each achieve n degrees of
freedom.

Thus we established the achievability of d1+d2+d3 =
3n+1
2n+1 for any n. This scheme, along with the converse
automatically imply that

sup
(d1,d2,d3)∈D

d1 + d2 + d3 =
3
2

B. The Degrees of Freedom Region for the 3 User
Interference Channel

Theorem 2: The degrees of freedom region of the 3
user interference channel is characterized as follows:

D = {(d1, d2, d3) :
d1 + d2 ≤ 1
d2 + d3 ≤ 1
d1 + d3 ≤ 1} (15)

Proof: The converse argument is identical to the
converse argument for Theorem 1 and is therefore omit-
ted. We show achievability as follows. Let D ′

be the
degrees of freedom region of the 3 user interference
channel. We need to prove that D ′

= D. We show that
D ⊂ D′

which along with the converse proves the stated
result.

The points K = (0, 0, 1), L = (0, 1, 0), J = (1, 0, 0)
can be verified to lie in D ′

through trivial achievable
schemes. Also, Theorem 1 implies that N = ( 1

2 , 1
2 , 1

2 )
lies in D′

(Note that this is the only point which
achieves a total of 3

2 degrees of freedom and satisfies the
inequalities in (15). Consider any point (d1, d2, d3) ∈ D
as defined by the statement of the theorem. The point
(d1, d2, d3) can then be shown to lie in a convex region

(0, 0, 1)

d3

(
1
2
, 1

2
, 1

2

)

d1

(0, 1, 0)

(1, 0, 0)

d2

Fig. 1. Degrees of Freedom Region for the 3 user interference channel

whose corner points are (0, 0, 0), J, K, L and N. i.e
(d1, d2, d3) can be expressed as a convex combination of
the end points (see Fig. 1). Since convex combinations
are achievable by time sharing between the end points,
this implies that D ⊂ D′

and the proof is complete.

IV. CONCLUSION

We have shown that with perfect channel knowledge
the K user interference channel has K/2 spatial de-
grees of freedom. Conventional wisdom has so far been
consistent with the Host-Madsen-Nosratinia conjecture
that distributed interfering systems cannot have more
than 1 degree of freedom and therefore the best known
outerbound K/2 has not been considered significant.
This pessimistic outlook has for long invited researchers
to try to prove that more than 1 degree of freedom is not
possible while ignoring the K/2 outerbound. The present
result shifts the focus onto the outerbound by proving
that it is tight for fading channels if perfect and global
channel knowledge is available. Thus, the present result
could guide future research along an optimistic path in
the same manner that MIMO technology has shaped our
view of the capacity of a wireless channel.

Finally, there is increasing evidence that unlike the
random coding based achievability schemes typically
used in single user and many multiuser capacity theo-
rems, structured codes (e.g. lattice codes) and random
codes with a limited amount of structure may be neces-
sary for network theorems in general [20]. Interference
alignment over supersymbols is a clear example of the
utility of structured random codewords for wireless inter-
ference networks. Further exploration of this concept will



be especially useful to settle the Host-Madsen-Nosratinia
conjecture. If structured codes can be designed to appro-
priately align interference in the codeword space (e.g.
through lattice constructions) without the need for signal
vector alignment over time/frequency varying channels
then it may be possible to achieve more than 1 degree of
freedom even over channel coefficients that do not vary
in time or frequency.

REFERENCES

[1] S. Toumpis, “Wireless ad hoc networks,” in IEEE Sarnoff Sym-
posium Princeton NJ, April 2004.

[2] P. Gupta and P. R. Kumar, “Towards an information theory of
large networks: an achievable rate region,” IEEE Transactions
on Information Theory, vol. 49, pp. 1877–1894, August 2003.

[3] A. Ozgur, O. Leveque, and D. Tse, “Hierarchical cooperation
achieves optimal capacity scaling in ad hoc networks,” submitted
to IEEE Transactions on Information Theory, Sep 2006.

[4] R. Etkin, D. Tse, and H. Wang, “Gaussian interference channel
capacity to within one bit,” submitted to IEEE Transactions on
Information Theory, Feb. 2007.

[5] H. Boelcskei, R. Nabar, O. Oyman, and A. Paulraj, “Capacity
scaling laws in mimo relay networks,” Trans. on Wireless Com-
munications, vol. 5, pp. 1433–1444, June 2006.

[6] S. Jafar and M. Fakhereddin, “Degrees of freedom for the MIMO
interference channel,” in Proc. of ISIT, 2006.

[7] S. Borade, L. Zheng, and R. Gallager, “Maximizing degrees of
freedom in wireless networks,” in Proceedings of 40th Annual
Allerton Conference on Communication, Control and Computing,
pp. 561–570, October 2003.

[8] A. Host-Madsen, “Capacity bounds for cooperative diversity,”
IEEE Trans. Inform. Theory, vol. 52, pp. 1522–1544, April 2006.

[9] A. Host-Madsen and A. Nosratinia, “The multiplexing gain of
wireless networks,” in Proc. of ISIT, 2005.

[10] N. Devroye and M. Sharif, “The multiplexing gain of MIMO
X-channels with partial transmit side information,” in IEEE Int.
Symp. on Info. Theory (ISIT), 2007. Preprint available at the
authors’ website.

[11] A. Lapidoth, S. Shamai, and M. Wigger, “A linear interference
network with local side-information,” in IEEE Int. Symp. on Info.
Theory (ISIT), 2007.

[12] S. Jafar and S. Shamai, “Degrees of freedom region for the
MIMO X channel,” in arXiv:cs.IT/0607099v3, May 2007.

[13] A. Host-Madsen and Z. Yang, “Interference and cooperation in
multi-source wireless networks,” in IEEE Communication Theory
Workshop, June 2005.

[14] M. Maddah-Ali, A. Motahari, and A. Khandani, “Signaling over
MIMO multi-base systems - combination of multi-access and
broadcast schemes,” in Proc. of ISIT, pp. 2104–2108, 2006.

[15] M. Maddah-Ali, A. Motahari, and A. Khandani, “Communication
over X channel: Signalling and multiplexing gain,” in Tech.
Report. UW-ECE-2006-12, University of Waterloo, July 2006.

[16] S. Jafar, “Degrees of freedom on the MIMO X channel- op-
timality of the MMK scheme,” Tech. Report, Sep. 2006,
arXiv:cs.IT/0607099v2.

[17] M. Maddah-Ali, A. Motahari, and A. Khandani, “Communication
over X channel: Signaling and performance analysis,” in Tech.
Report. UW-ECE-2006-27, University of Waterloo, December
2006.

[18] H. Weingarten, S. Shamai, and G. Kramer, “On the compound
MIMO broadcast channel,” in Proceedings of Annual Information
Theory and Applications Workshop UCSD, Jan 2007.

[19] V. Cadambe and S. Jafar, “Interference alignment and the degrees
of freedom for the K user interference channel,” 2007. Preprint
available on arXiv at arXiv:0707.0323v2 and on the author’s
website at http://newport.eecs.uci.edu/ syed/papers/intK.pdf.

[20] B. Nazer and M. Gastpar, “The case for structured random codes
in network communication theorems,” IEEE Inform. Theory
Workshop, September 2007. Lake Tahoe, California, USA.


