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Abstract— In this paper, we explore the benefits, in the sense
of total (sum rate) degrees of freedom (DOF), of cooperation and
cognitive message sharing for a two-user multiple-input-multiple-
output (MIMO) Gaussian interference channel with M1, M2 an-
tennas at transmitters and N1, N2 antennas at receivers. For the
case of cooperation (including cooperation at transmitters only,
at receivers only, and at transmitters as well as receivers), the
DOF is min{M1 + M2, N1 + N2, max(M1, N2), max(M2, N1)},
which is the same as the DOF of the channel without cooperation.
For the case of cognitive message sharing, the DOF is min{M1 +
M2, N1+N2, (1−1T2)((1−1R2)max(M1, N2)+1R2(M1+N2))+
1T2(M1 + M2), (1 − 1T1)((1 − 1R1)max(M2, N1) + 1R1(M2 +
N1)) + 1T1(M1 + M2)} where 1Ti = 1 (0) when transmitter
i is (is not) a cognitive transmitter and 1Ri is defined in the
same fashion. Our results show that while both techniques may
increase the sum rate capacity of the MIMO interference channel,
only cognitive message sharing can increase the DOF. We also
find that it may be more beneficial for a user to have a cognitive
transmitter than to have a cognitive receiver.

I. INTRODUCTION

Multiple-input-multiple-output (MIMO) systems have been
proven to be very powerful in point-to-point communication.
Following their success in the point-to-point case, MIMO
techniques have been widely applied to various multiuser
communication scenarios. Since the capacity region for most
network communication scenarios has been an open ques-
tion for many years, capacity approximations are needed
to provide an evaluation of the system performance. The
number of degrees of freedom (DOF), which is also known
as capacity pre-log or multiplexing gain, provides a capacity
approximation CΣ(ρΣ) = η

2 log(ρΣ) + o(log(ρΣ)) where η
is the number of degrees of freedom, CΣ(ρΣ) is the sum
rate capacity, and ρΣ is the signal-to-noise ratio (the total
transmit power of all nodes divided by the local noise power).
The approximation error is within o(log(ρΣ)) for any ρΣ

and the accuracy of the approximation approaches 100% as
ρΣ increases. The DOF of some multiuser systems have
been found. Please see [9] and the references therein for the
definition of DOF and the DOF of multiple access channel
and broadcast channel. The DOF of the two-user MIMO
interference channel with M1, M2 antennas at transmitters
and N1, N2 antennas at receivers, which will be referred to as
(M1,M2, N1, N2) interference channel later in this paper, is
min{M1 + M2, N1 + N2,max(M1, N2),max(M2, N1)} [1].
Cooperation and cognition have been proven to be able to
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Fig. 1. Channel models for MIMO interference channels with and without
cooperation.

enlarge the capacity region of the interference channel, and
the DOF of the interference channel with cooperation and
cognition have been found in single antenna setting [2], [3],
[5]–[8]. To generalize the idea from single antenna setting to
multiple antenna setting, we will explore the benefits, in the
sense of DOF, of these techniques for the two-user MIMO
Gaussian interference channel in this paper.

A. Cooperation

The basic idea for cooperation is that several nodes co-
operate with each other and act as a large virtual antenna
array. Nodes can cooperate to form a transmit antenna array or
receive antenna array. Cooperation is made possible by allow-
ing noisy links between distributed transmitters or distributed
receivers. A two-user interference channel with single antenna
at all nodes is considered by Host-Madsen and Nosratinia in
[2], [3]. They show that the number of DOF is equal to one
when cooperation takes place at transmitters only, at receivers
only, or both at transmitters as well as receivers. However,
the DOF for the two-user MIMO interference channel with
cooperation remains unknown. One of the goals that we pursue
in this paper is to answer this question. We find an upper bound
for the DOF of the two-user MIMO Gaussian interference
channel with cooperation. The upper bound coincides with the
DOF of the channel without cooperation. Thus, we obtain the
negative result that cooperation can not increase the DOF of
the two-user MIMO interference channel, a generalized result
from the single antenna case.



B. Cognitive Message Sharing

Cognitive message sharing refers to genie-aided cooperation
in the manner of cognitive radio. In the cognitive radio model,
some messages are made available to some nodes (other
than the intended nodes) non-causally, noiselessly, and for
free [4]. The nodes that get the shared messages are called
either cognitive transmitters or cognitive receivers depending
on their roles in the channel. Cooperation among users for the
interference channel with single antenna at all nodes has been
studied in [5]–[8] in the context of cognitive radio channel.
The DOF for a (M,M,M,M) interference channel with
cognitive message sharing has been studied in [9]. They find
that cognitive message sharing can increase the DOF of the
channel for some cognitive scenarios. They also find that there
is no difference, in the sense of DOF, for a user to have a
cognitive transmitter or to have a cognitive receiver. However,
the corresponding DOF result and the difference between
having a cognitive transmitter and a cognitive receiver for a
more general (M1,M2, N1, N2) interference channel remain
unknown. The second goal of this paper is to find the DOF
along with the DOF region of a (M1,M2, N1, N2) interference
channel with various cognitive message sharing scenarios. We
find that the total number of DOF of a (M1,M2, N1, N2)
interference channel is given by

η1T1,1T2,1R1,1R2 = min
M1+M2,

N1+N2,

(1−1T2){(1−1R2) max(M1,N2)+1R2(M1+N2)}+1T2(M1+M2),

(1−1T1){(1−1R1) max(M2,N1)+1R1(M2+N1)}+1T1(M1+M2)


(1)

where 1Ti = 1 if transmitter i is a cognitive transmitter and
1Ti = 0 if transmitter i is not a cognitive transmitter and 1Ri is
defined in the same fashion. Our results show that in general,
it may be more beneficial, in the sense of DOF, for a user to
have a cognitive transmitter than to have cognitive receiver.

We use the following notational conventions. The convex
hull of the set A is denoted by co(A). The function max(x, 0)
is denoted by (x)+. Rn

+ and Zn
+ represent the sets of n-tuples

of non-negative real numbers and integers respectively.

II. SYSTEM MODEL

A two-user Gaussian MIMO interference channel (MIMO-
IC) is defined by

Y[3] = H[31]X[1] + H[32]X[2] + N[3] (2)
Y[4] = H[41]X[1] + H[42]X[2] + N[4] (3)

where Y[3] is the N1 × 1 output vector at the node 3, Y[4] is
the N2 × 1 output vector at node 4, X[1] is the M1 × 1 input
vector at node 1, X[2] is the M2 × 1 input vector at node 2,
N[3] is the N1 × 1 additive white Gaussian noise (AWGN)
vector at node 3, N[4] is the N2 × 1 additive white Gaussian
noise (AWGN) vector at node 4, and H[ji] is the channel
matrix from node i to j. All vectors and matrices are real.
We assume that all channel matrices are fixed and known to
all transmitters and receivers. We also assume that all channel
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Fig. 2. Channel models for MIMO interference channels with cognition.
Two scenarios are shown in which [1T1, 1T2, 1R1, 1R2] = [0, 1, 0, 0] and
[1T1, 1T2, 1R1, 1R2] = [0, 1, 1, 0] separately.

coefficient values are drawn from a continuous distribution.
This assumption ensures that all channel matrices are full rank
with probability one. Furthermore, the transmitters are subject
to an average transmit power ρ.

There are two independent messages in the channel: W1

and W2 where Wi is the intended message from node i to
node i + 2, i = 1, 2. The message sets are assumed to be
functions of ρ, and we indicate the size of the message set
by |Wi(ρ)|. For codewords spanning n channel uses,the rate
Ri(ρ) = log |Wi(ρ)|

n is achievable if the probability of error
for Wi can be made arbitrarily small. The capacity region
C(ρ) of the channel is defined as the set of all simultaneously
achievable rate tuples R(ρ) = (R1(ρ), R2(ρ)). Similar to the
definition of the degrees of freedom region in [9], we define
the degrees of freedom region D of the Gaussian MIMO-IC
as

D ,


(d1, d2) ∈ R2

+ : ∀(w1, w2) ∈ R2
+

w1d1 + w2d2

≤ lim supρ→∞

(
supR(ρ)∈C(ρ)

w1R1(ρ)+w2R2(ρ)
1
2 log(ρ)

)
 .

(4)
The (total) degrees of freedom η of the Gaussian MIMO-IC
is defined as

η , max
D

(d1 + d2). (5)

III. DEGREES OF FREEDOM OF THE MIMO
INTERFERENCE CHANNEL WITH COGNITION

In this section, we find the DOF along with the DOF region
of a (M1,M2, N1, N2) interference channel with various cog-
nitive message sharing scenarios. We use the term ”cognitive
message sharing” to refer to the message sharing in the manner
of cognitive radio. We let 1Ti = 1 (0) to indicate that
transmitter i is (is not) a cognitive transmitter. 1Ri is defined
in the same fashion. There are total 16 possible combinations
of cognitive message sharing scenarios. Figure 2 gives some
examples of the possible combinations. Note that in our model,
node 1 is transmitter 1, node 2 is transmitter 2, node 3 is
receiver 1, and node 4 is receiver 2. A specific cognitive
message sharing scenario is labeled by [1T1, 1T2, 1R1, 1R2].
We use η1T1,1T2,1R1,1R2 and D1T1,1T2,1R1,1R2 to denote the
DOF and the DOF region of scenario [1T1, 1T2, 1R1, 1R2]. We
start from an achievable scheme.

Definition 1: Define A1T1,1T2,1R1,1R2 to be the set of all



(d1, d2) ∈ Z2
+ satisfying

1T1M1 + M2 ≥ 1T1d1 + d2 (6)
M1 + 1T2M2 ≥ d1 + 1T2d2 (7)
N1 ≥ (1− 1R1)(d2 − (1T1M1 + M2 −N1)+)+ + d1 (8)
N2 ≥ (1− 1R2)(d1 − (M1 + 1T2M2 −N2)+)+ + d2. (9)

The following theorem provides an inner bound for
D1T1,1T2,1R1,1R2 .

Theorem 1:

Din
1T1,1T2,1R1,1R2

, co(A1T1,1T2,1R1,1R2) ⊆ D1T1,1T2,1R1,1R2 .

Proof: First, we show that any (d1, d2) ∈
A1T1,1T2,1R1,1R2 is achievable. Instead of providing a
proof for general scenario [1T1, 1T2, 1R1, 1R2], we prove the
achievability for the scenario [0, 1, 0, 1] to illustrate the key
ideas and avoid the tediousness and complexity of dividing
cases in the general scenario. Let

r1 = (M1 + 1T2M2 −N2)+ = (M1 + M2 −N2)+

r2 = (1T1M1 + M2 −N1)+ = (M2 −N1)+.

Choose v[31]
1 , . . . ,v[31]

r1 ∈ RM1 and v[32]
1 , . . . ,v[32]

r1 ∈ RM2

such that[
H[41] H[42]

] [ v[31]
1 . . . v[31]

r1

v[32]
1 . . . v[32]

r1

]
=
[

0 . . . 0
]

(10)
When d1 ≤ r1, only v[31]

1 , . . . ,v[31]
d1

and v[32]
1 , . . . ,v[32]

d1
are

needed. When d1 > r1, choose the remaining v[31]
r1+1, . . . ,v[31]

d1

and v[32]
r1+1, . . . ,v[32]

d1
according to an isotropic distribution so

that the set

S1 =

{[
v[31]
1

v[32]
1

]
, . . . ,

[
v[31]
d1

v[32]
d1

]}
(11)

is linearly independent with probability one. Choose
v[42]
1 , . . . ,v[42]

r2 ∈ RM2 such that

H[32]
[

v[42]
1 . . . v[42]

r2

]
=
[

0 . . . 0
]
. (12)

When d2 ≤ r2, we only need v[42]
1 , . . . ,v[42]

d2
. When d2 >

r2 choose the remaining v[42]
r2+1, . . . ,v[42]

d2
according to an

isotropic distribution so that the set

S2 =
{
v[42]
1 , . . . ,v[42]

d2

}
(13)

is linearly independent with probability one. Note that since
all v[31]

i , v[32]
j , and v[42]

k are chosen separately and we require
(implicitly or explicitly) d1 + d2 ≤M1 + M2, the set

S = S1

⋃{[
0

v[42]
1

]
(M1+M2)×1

, . . . ,

[
0

v[42]
d2

]
(M1+M2)×1

}
is linearly independent with probability one. After choosing
all transmit vectors, let

X[1] =
d1∑

i=1

v[31]
i x

[1]
i (14)

X[2] =
d1∑

i=1

v[32]
i x

[1]
i +

d2∑
i=1

v[42]
i x

[2]
i (15)

where x
[j]
i represents the ith input used to transmit the

codeword for message Wj .

Y[3] =
d1∑

i=1

x
[1]
i

(
H[31]v[31]

i + H[32]v[32]
i

)
︸ ︷︷ ︸

range space dimension = d1

+
r2∑

i=1

x
[2]
i H[32]v[42]

i︸ ︷︷ ︸
=0

+
d2∑

i=r2+1

x
[2]
i H[32]v[42]

i︸ ︷︷ ︸
range space dimension = (d2 − r2)+

+N[3] (16)

In order to provide enough dimensions to separate the
intended signals and the interference, the achievable scheme
requires that

N1 ≥ d1 + (d2 − (M2 −N1)+)+. (17)

Note that among all N1 dimensions at node 3, there are d1

dimensions for the intended signals and (d2−r2)+ dimensions
for the interference. By discarding the dimensions that contain
the interference, there are d1 degrees of freedom for W1. We
want to point out that the dimensions of the intersection of the
signal space and the interference space is zero with probability
one.

Since node 4 is a cognitive receiver, it can subtract all the
signals that caries W1. So we only need N2 ≥ d2 to obtain
d2 degrees of freedom for W2. Thus, (d1, d2) is achievable.
By time sharing, co(A0,1,0,1) is achievable.

We need the following lemma for the converse.
Lemma 2: For any (d1, d2) ∈ D1T1,1T2,1R1,1R2 , the follow-

ing statements are true.

L1 : d1 + d2 ≤ min(M1 + M2, N1 + N2)
L2 : d1 ≤ N1

L3 : d2 ≤ N2

L4 : If 1T2 = 0, then d1 ≤M1

L5 : If 1T1 = 0, then d2 ≤M2

L6 : If 1T21R2 = 0, then d1 + d2 ≤ max(M1, N2)
L7 : If 1T11R1 = 0, then d1 + d2 ≤ max(M2, N1)
Proof: L1 is trivial. L2 and L4 (L3 and L5) are obtained

by letting W2 (W1) be a dummy message that is known priori
for all nodes. We refer L6 and L7 to Theorem 1 and Corollary
1 in [1]. Note that in the proof of Theorem 1 in [1], the
message is provided by a genie to a receiver. But the result is
actually stronger in the sense that even the message is given
to both the transmitter and the receiver of the same user, all
arguments in the proof still hold.

Corollary 3: Define Dout
1T1,1T2,1R1,1R2

as the set of all
(d1, d2) ∈ R2

+ that satisfy L1 to L7 in Lemma 2. Then

D1T1,1T2,1R1,1R2 ⊆ Dout
1T1,1T2,1R1,1R2

. (18)



Theorem 4:

Din
1T1,1T2,1R1,1R2

= D1T1,1T2,1R1,1R2 = Dout
1T1,1T2,1R1,1R2

.
Proof: Again, we provide the proof for scenario [0, 1,

0, 1] to illustrate the key ideas. Using the fact that d1 ≤ N1

and d2 ≤ N2 ensure that d1 + d2 ≤ N1 + N2, we can remove
the constraint d1 + d2 ≤ N1 + N2 in Dout

0,1,0,1. Reorganizing
the constraints in Dout

0,1,0,1, we have the following

Dout
0,1,0,1 =

{
(d1, d2) ∈ R2

+ : d1 ≤ N1, d2 ≤ min(M2, N2),
d1 + d2 ≤ min(M1 + M2,max(M2, N1))

}
(19)

Using Lemma 5 bellow, the constraint N1 ≥ d1+(d2−(M2−
N1)+)+ in A0,1,0,1 is equivalent to d1 ≤ N1 and d1 + d2 ≤
max(M2, N1). Reorganizing the constraints in A0,1,0,1, we
find that A0,1,0,1 = Dout

0,1,0,1 ∩ Z2
+. Observing the constraints

in A0,1,0,1 (or Dout
0,1,0,1), we can find that all intersections of

the boundaries take place at points where x-coordinate and y-
coordinate are both nonnegative integers. Therefore, we have

Din
0,1,0,1 = co(A0,1,0,1) = Dout

0,1,0,1. (20)

Following the similar procedure, one can prove that the
theorem holds for all scenarios.

Lemma 5: For all a, b, c, d ∈ Z2
+,{

(a, b) : a + (b− (c− d)+)+ ≤ d
}

=
{

(a, b) :
a ≤ d
a + b ≤ max(c, d)

}
(21)

Theorem 6: η1T1,1T2,1R1,1R2 is given by (1).
Proof: The theorem is proved by solving the linear

programming maxD1T1,1T2,1R1,1R2
(d1 + d2) for each case.

Corollary 7:

D0,0,0,1 ⊆ D0,1,0,0 = D0,1,0,1 ⊆ D0,1,1,0 ⊆ D1,1,0,0 (22)
η0,0,0,1 ≤ η0,1,0,0 = η0,1,0,1 ≤ η0,1,1,0 ≤ η1,1,0,0 (23)

Some interesting observations can be drawn for the corol-
lary. First, it may be more powerful, in the sense of DOF, for
a user to have a cognitive transmitter than to have a cognitive
receiver. Second, for a specific user, after having a cognitive
transmitter, having a cognitive receiver does not increase the
DOF.

IV. DEGREES OF FREEDOM OF THE MIMO INTERFERENCE
CHANNEL WITH COOPERATION

In this section, we find the DOF of a (M1,M2, N1, N2)
interference channel with cooperation among users.

A. System Model

Cooperation among users is made possible by allowing
noisy links between users. In order to provide these noisy
links, the system model for the (M1,M2, N1, N2) MIMO-IC
defined in (2) is generalized to

Y[i](n) =
4∑

j=1

H[ij]X[j](n) + N[i](n) (24)

where n is the index for time slot and the definitions of X[i],
Y[i], H[ij], and N[i] are similar to those in Section II. Note that

in our new model, all nodes are allowed to transmit and receive
in full duplex mode. But there are still only two messages (as
before) - W1 from node 1 to node 3 and W2 from node 2 to
node 4. All nodes are subject to an average transmit power ρ.
We define X[i]n as

X[i]n ,
[

X[i](1) . . . X[i](n)
]t

. (25)

Similar definitions apply to Y[i]n and Z[i]n. The encoding and
decoding functions are

X[i](n) = fi,n

(
Wi,Y[i](n−1)

)
(26)

X[i+2](n) = fi+2,n

(
Y[i+2](n−1)

)
(27)

Ŵi = gi+2

(
Y[i+2]N

)
(28)

where N is the codewords length and for i = 1, 2.

B. Main Results
In order to find the upper bound of the DOF of

the (M1,M2, N1, N2) interference channel with coopera-
tion among users, we define the auxiliary random variables
U[1](n), U[2](n), U[3](n), U[4](n) as

U[i](n) = H[i1]X[1](n) + N[i](n), i = 1, 2, 3, 4 (29)

The following lemma is needed to prove our main theorem.
Lemma 8: These statements are true.

L1 :X[1]n ←W1,W2,U[1]n−1
,U[2]n−1

,U[3]n−1
,U[4]n−1

L2 :X[2]n,X[3]n,X[4]n ←W2,U[1]n−1
,U[2]n−1

,U[3]n−1
,U[4]n−1

L3 :Y[1]n,Y[2]n,Y[3]n,Y[4]n ←W2,U[1]n,U[2]n,U[3]n,U[4]n

where A ← B denotes that A can be completely determined
by B.

Next, we provide a genie-based upper bound for the DOF
of the (M1,M2, N1, N2) MIMO-IC with cooperation where
N2 ≥M1.

Theorem 9: When N2 ≥ M1, the DOF of the
(M1,M2, N1, N2) MIMO-IC with cooperation satisfies

η ≤ N2. (30)
Proof: Suppose that a genie provides node 3 with side

information containing W2, U[1]N , U[2]N , U[3]N , and U[4]N .
According to lemma 8, node 3 can construct Y[i]N , i =
1, 2, 3, 4 using the side information. Using Fano’s inequality,
L3 in Lemma 8, and the chain rule for mutual information,
we have the following

NR1(ρ)

≤ I
(
W1;U[1]N ,U[2]N ,U[3]N ,U[4]N |W2

)
+ NεN (31)

=H
(
U[1]N ,U[2]N ,U[3]N ,U[4]N |W2

)
︸ ︷︷ ︸

T1

−H
(
U[1]N ,U[2]N ,U[3]N ,U[4]N |W1,W2

)
︸ ︷︷ ︸

T2

+NεN

(32)



where T1 can be expressed as
N∑

n=1

H
(
U[4](n) |W2,U[1]n−1

,U[2]n−1
,U[3]n−1

,U[4]n−1
)

+
N∑

n=1

H
(
U[1](n),U[2](n),U[3](n) |

W2,U[1]n−1
,U[2]n−1

,U[3]n−1
,U[4]n−1

,U[4](n)
)

Using L1, L2, and L3 in Lemma 8 and the fact that condi-
tioning reduces entropy, we get the following

T1 ≤
N∑

n=1

H
(
Y[4](n) |W2,Y[4]n−1

)
+

N∑
n=1

H
(
U[1](n),U[2](n),U[3](n) | U[4](n)

)
(33)

≤ H
(
Y[4]N |W2,

)
+

N∑
n=1

3∑
i=1

H
(
U[i](n) | U[4](n)

)
.

H
(
U[i](n) | U[4](n)

)
may be bounded above by the follow-

ing method. We choose i = 1 as an example.

H
(
U[1](n) | U[4](n)

)
= H

(
H[11]X[1](n) + N[1](n) | H[41]X[1](n) + N[4](n)

)
≤

M1∑
j=1

H
(
H[11]

j X[1](n) + N
[1]
j (n) | H[41]X[1](n) + N[4](n)

)

≤
M1∑
j=1

H
(
H[11]

j X[1](n) + N
[1]
j (n) | H[41]

j X[1](n) + N
[4]
j (n)

)

≤
M1∑
j=1

(
1
2

log

(
1 +

‖H[11]
j ‖2ρ

1 + ‖H[41]
j ‖2ρ

)
+

1
2

log(2πe)

)
=o(log(ρ))

where H[i1]
j and N

[i]
j denote the channel and noise associated

with the jth antenna at node i. We refer the last inequality
above to lemma 1 in [2]. We would like to mention that
last inequality above holds only when H[41] is full rank and
N2 ≥ M1. Since W1 and W2 are the only messages in the
system, after knowing W1 and W2, the uncertainty in U[1]N ,
U[2]N , U[3]N , and U[4]N is only the uncertainty of Gaussian
noise. The entropy of Gaussian noise does not increase with
ρ. Therefore, we have

T2 = o(log(ρ)). (34)

Combining T1 and T2, we have

R1(ρ) ≤ 1
N

H
(
Y[4]N |W2,

)
+ o(log(ρ)). (35)

Using Fano’s inequality and the property of mutual informa-
tion, R2(ρ) can be bounded above as follow

R2(ρ) ≤ 1
N

H
(
Y[4]N

)
− 1

N
H
(
Y[4]N |W2

)
+ εN (36)

Adding R1(ρ) and R2(ρ) together, we get

R1(ρ) + R2(ρ) ≤ 1
N

H
(
Y[4]N

)
+ o(log(ρ)) (37)

≤ N2

2
log(ρ) + o(log(ρ)) (38)

where the last equality can be obtained from the property of
Gaussian random variable. Thus, we prove that when N2 ≥
M1, the DOF of the system is smaller than equal to N2.

Corollary 10: The DOF of the (M1,M2, N1, N2) MIMO-
IC with cooperation satisfies

η ≤ min {max(M1, N2),max(M2, N1)} . (39)
Proof: If N2 ≥ M1, Theorem 9 can be applied directly

to obtain η ≤ N2. If M1 > N2, let us add more antennas to
node 4 so that node 4 has M1 antennas too. Adding antennas
does not hurt, so the converse argument remains. We then
apply Theorem 9 to the new MIMO-IC to obtain η ≤ M1.
Thus, we have η ≤ max(M1, N2) for all possible cases. η ≤
max(M2, N1) can be obtained by switching indices 1 to 2 and
2 to 1.

Corollary 10 along with Theorem 2 in [1], which gives
the DOF of the MIMO-IC without cooperation, lead to the
following corollary.

Corollary 11: The DOF of the (M1,M2, N1, N2) MIMO-
IC with cooperation satisfies

η = min {M1 + M2, N1 + N2,max(M1, N2),max(M2, N1)} .
Our result shows that cooperation can’t increase the DOF of

the MIMO-IC. This result can be thought of as a generalization
of the single antenna case in [2].

V. CONCLUSIONS

We investigate the DOF of the MIMO-IC with coopera-
tion and cognition. Directions for future work include the
generalization from two user case to more user case and the
exploration of benefits of having feedback in the setting.
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