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‘ Introduction |

e Single user MIMO channel capacity with partial
CSIT and perfect CSIR studied extensively.

— Visotsky & Madhow ISIT’00 - Optimal input
distributions for MISO.

— Jafar & Goldsmith ICC’01 - Optimal input
distributions for MIMO, beamforming etc.

o MIMO MAC system capacity with partial CSIT and
perfect CSIR unexplored.

CSIT/CSIR : Channel State Information at Transmitter/Receiver.
MIMO/MISO:Multiple Input Multiple/Single Output.
MAC: Multiple Access Channel.
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‘ System Modell

MIMO MAC system:

Covariance Feedback:

e Fach user’s channel H; known at each instant to the

comimon receiver.

e All spatial correlations known to each transmitter.
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‘ Channel Fade Correlations |

Across users channel fades are uncorrelated.

For each user, channel fades associated with different

antennas decorrelate as
e separation between antennas increases.
e density of scatterers in the vicinity increases.

Typically, mobile is surrounded by more scatterers but

also has a more stringent size constraint than the BS.

BS : Base Station.
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‘MIMO Fading Modelsl

e Model 1: 1.i.d. columns and correlated rows.

Hil-c] ~ N(0,%;).
Correlated receive antennas at the BS and

uncorrelated transmit antennas at mobile.

e Model 2: 1.i.d. rows and correlated columns.
H;[r-] ~ N(0,%;).

Uncorrelated receive antennas at the BS and

correlated transmit antennas at mobile.

e Special Case: l.i.d. rows & columns. >; =1
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‘Gaussian MAC Capacity Regionl

e Optimal input distribution for each user is zero

e Capacity region can be derived as
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‘ Objectives I

We need to determine
e optimal successive decoding order
e shape of capacity region

e optimal input covariance matrix for each user
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‘ Decoding order for Boundary points I

e Boundary points of the capacity region obtained by

maximizing pu.R.

e The associated successive decoding order depends
only on the ordering of u
— for all p such that u; < ps -+ < ug, decoding

order: user 1— user 2 — --- — user K.

— independent of fade correlations
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‘ Decoding Order : Sketch of Proofl

e Consider 2 users, 1 < po and pu.R maximized with

Qla Q2-
e With Perfect CSIT and CSIR and fixed Q)¢, ()>.

— Capacity region is a pentagon for each channel

state.

— Optimal decoding order 1 — 2 is independent of

channel state.

e Covariance Feedback: Decoding order 1—2 achieves
the same R, Ry. Can’t do better than perfect CSIT.
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‘MAC Capacity Regionsl

(a) (b) ©)
Ro i Ro j Ro \
R1 R1 R1

(a) Fading scalar MAC with no CSIT and perfect CSIR.
Also non-fading scalar MAC.

(b) Fading scalar MAC with perfect CSIT and perfect
CSIR.

(c) Non fading vector (MIMO) MAC channel.
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‘Fading MIMO MAC Capacity Regionl

e What is the general shape of the MIMO MAC

capacity region with covariance feedback 7

e What is the shape for some specific fade correlation

models?
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‘ Results : Shape of Capacity Region I

Ro B

e Boundary traced by p > 0 is not strictly convex.

— Sum rate maximizing point is not unique.
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‘ Sum Rate Maximizing Points : Proof I

Proof by contradiction

e Suppose sum rate point is unique, with optimum

transmit covariance matrices ()1, (Js.

&ﬁ 2)

\(2*1) Must have R{(1 — 2) = R{(2 — 1).

Ry Leads to a contradiction.
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‘ Region Vertices I

Sharp Vertex
12 : 1 > po

|

R2 A

/B

Blunt Vertex

Ity < peo

R

e Sharp Vertex : All p such that pu; > ps lead to the

same unique boundary point C.

e Otherwise : Blunt Vertex.
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‘ Shape of Vertices : Sharp or Bluntl

e For 2 users, and 1 > us >, u.R becomes

e In general optimal @); depend on p (Blunt vertices).

[+ HiQHI

|+

I + H1Q1HI + H2Q2Hg

|

(Sharp vertices).

It each term is maximized by same ();, then opti-

mal (); is independent of p and the decoding order

16



Wireless Systems Lab Stanford University

‘ Key Lemmas I

Consider f(Q) = Eg log|A + HQH'|, where
trace(Q) < P and A is any positive semidefinite matrix.

e If the columns of H are i.i.d., (H[-¢|
then f(Q) is maximized when Q =

%

Shlav

I
e If the rows of H are i.i.d., (H|[r:] ~ N(0,Xg)), then

f(Q) is maximized when Q has the same

eigenvectors as Xiy.
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‘ Optimal (); and Shape of Capacity Regionl

o If ' user’s channel H; consists of i.i.d. fades, his

optimal (); = %I for all p and for all correlations of

the rest of the users’ channels.

o If all users see i.i.d. fades, capacity region is a

polytope.

e If H; has i.i.d columns (uncorrelated transmit
antennas), (Q; = %I for all ;o and for all correlations

of the rest of the users.

e If all channels have i.i.d. columns, capacity region is

a polytope.
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Optimal (); and Shape of Capacity Regionl

e If H; has i.i.d rows (uncorrelated receive antennas),
then for all p and for all correlations of the rest of
the users ();, 2; have the same eigenvectors.

e General Correlated Channels

— Capacity region has blunt vertices in general.

— In special cases, it can be a polytope, but cannot

be strictly convex.
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‘ Disparate-Modes Channels I

Disparate-modes channels: Channels for which single

user capacity may be achieved with a unit rank

transmit covariance matrix . (ISIT’01).

e If user ¢ in vector MAC has a disparate-modes
channel, then optimal (); has unit rank for all g and

all correlation matrices of other users.

e If every user in vector MAC has disparate

modes-channel, capacity region is a polytope.
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‘ Conclusions I

For the MIMO MAC channel with covariance feedback,

e the optimum decoding order for capacity region
boundary points inverse of g ordering.

e general shape of capacity region defined by

non-unique rate sum point and shape of vertices.
e (Capacity region vertices blunt for general channels.

e For independent fades on mobile antennas, can
completely characterize optimal input distribution
and the capacity region vertices are sharp.

e For independent fades on BS antennas, can partially
characterize optimal input distribution.
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