Vector MAC Capacity Region with Covariance Feedback

Syed Ali Jafar, Sriram Vishwanath, Andrea Goldsmith
Wireless Systems Lab
Stanford University

Outline

- Introduction
- System model
- MIMO channel fade correlation models
- Gaussian MAC capacity region
- Optimal successive decoding order
- Shape of capacity region
- Optimal transmit covariance matrices
- Conclusions

Introduction

- Single user MIMO channel capacity with partial CSIT and perfect CSIR studied extensively.
 - Visotsky & Madhow ISIT'00 Optimal input distributions for MISO.
 - Jafar & Goldsmith ICC'01 Optimal input distributions for MIMO, beamforming etc.
- MIMO MAC system capacity with partial CSIT and perfect CSIR unexplored.

CSIT/CSIR: Channel State Information at Transmitter/Receiver.

MIMO/MISO:Multiple Input Multiple/Single Output.

MAC: Multiple Access Channel.

System Model

MIMO MAC system:

$$\mathbf{y}(k) = \sum_{i=1}^{K} \mathbf{H}_i(k) \mathbf{x}_i(k) + \mathbf{n}(k)$$

Covariance Feedback:

- Each user's channel \mathbf{H}_i known at each instant to the common receiver.
- All spatial correlations known to each transmitter.

Channel Fade Correlations

Across users channel fades are uncorrelated.

For each user, channel fades associated with different antennas decorrelate as

- separation between antennas increases.
- density of scatterers in the vicinity increases.

Typically, mobile is surrounded by more scatterers but also has a more stringent size constraint than the BS.

BS: Base Station.

MIMO Fading Models

• Model 1: I.i.d. columns and correlated rows.

$$H_i[\cdot c] \sim N(\mathbf{0}, \Sigma_i).$$

Correlated receive antennas at the BS and uncorrelated transmit antennas at mobile.

• Model 2: I.i.d. rows and correlated columns.

$$H_i[r\cdot] \sim N(\mathbf{0}, \Sigma_i).$$

Uncorrelated receive antennas at the BS and correlated transmit antennas at mobile.

• Special Case: I.i.d. rows & columns. $\Sigma_i = \mathbf{I}$.

Gaussian MAC Capacity Region

- Optimal input distribution for each user is zero mean, vector Gaussian.
- Capacity region can be derived as

$$CO_{\mathcal{Q}}\left\{\mathbf{R}: \sum_{i \in S} R_{i} \leq E_{\mathbf{H}} \left[\frac{1}{2} \log \left| \sum_{i \in S} \mathbf{H}_{i} \mathbf{Q}_{i} \mathbf{H}_{i}^{\dagger} + \mathbf{I} \right| \right]\right\}$$

$$\forall S \subset \{1, 2, \dots, K\}$$

Objectives

We need to determine

- optimal successive decoding order
- shape of capacity region
- optimal input covariance matrix for each user

Decoding order for Boundary points

- Boundary points of the capacity region obtained by maximizing μ .**R**.
- ullet The associated successive decoding order depends only on the ordering of μ
 - for all μ such that $\mu_1 < \mu_2 \cdots < \mu_K$, decoding order: user $1 \rightarrow$ user $2 \rightarrow \cdots \rightarrow$ user K.
 - independent of fade correlations

Decoding Order: Sketch of Proof

- Consider 2 users, $\mu_1 < \mu_2$ and $\boldsymbol{\mu}.\mathbf{R}$ maximized with Q_1, Q_2 .
- With **Perfect** CSIT and CSIR and **fixed** Q_1, Q_2 .
 - Capacity region is a pentagon for each channel state.
 - Optimal decoding order $1 \rightarrow 2$ is independent of channel state.
- Covariance Feedback: Decoding order $1\rightarrow 2$ achieves the same R_1, R_2 . Can't do better than perfect CSIT.

MAC Capacity Regions

- (a) Fading scalar MAC with no CSIT and perfect CSIR. Also non-fading scalar MAC.
- (b) Fading scalar MAC with perfect CSIT and perfect CSIR.
- (c) Non fading vector (MIMO) MAC channel.

Fading MIMO MAC Capacity Region

- What is the general shape of the MIMO MAC capacity region with covariance feedback?
- What is the shape for some specific fade correlation models?

Results: Shape of Capacity Region

- Boundary traced by $\mu > 0$ is not strictly convex.
 - Sum rate maximizing point is not unique.

Sum Rate Maximizing Points: Proof

Proof by contradiction

• Suppose sum rate point is unique, with optimum transmit covariance matrices Q_1, Q_2 .

Region Vertices

- Sharp Vertex : All μ such that $\mu_1 > \mu_2$ lead to the same unique boundary point C.
- Otherwise: Blunt Vertex.

Shape of Vertices : Sharp or Blunt

• For 2 users, and $\mu_1 > \mu_2 >$, μ .R becomes

$$(\mu_1 - \mu_2)$$
 E $\left[\log \left| I + H_1 Q_1 H_1^{\dagger} \right| \right] +$

$$\mu_2$$
 E $\left[\log \left| I + H_1 Q_1 H_1^{\dagger} + H_2 Q_2 H_2^{\dagger} \right| \right]$

• In general optimal Q_i depend on μ (Blunt vertices).

If each term is maximized by same Q_i , then optimal Q_i is independent of μ and the decoding order (Sharp vertices).

Key Lemmas

Consider $f(\mathbf{Q}) = \mathbb{E}_{\mathbf{H}} \log |\mathbf{A} + \mathbf{H}\mathbf{Q}\mathbf{H}^{\dagger}|$, where $\operatorname{trace}(\mathbf{Q}) \leq P$ and \mathbf{A} is any positive semidefinite matrix.

- If the columns of **H** are i.i.d., $(\mathbf{H}[\cdot c] \sim N(\mathbf{0}, \Sigma_{\mathbf{H}}))$ then $f(\mathbf{Q})$ is maximized when $\mathbf{Q} = \frac{P}{n}\mathbf{I}$.
- If the rows of \mathbf{H} are i.i.d., $(\mathbf{H}[r\cdot] \sim N(\mathbf{0}, \Sigma_{\mathbf{H}}))$, then $f(\mathbf{Q})$ is maximized when \mathbf{Q} has the same eigenvectors as $\Sigma_{\mathbf{H}}$.

Optimal Q_i and Shape of Capacity Region

- If i^{th} user's channel \mathbf{H}_i consists of i.i.d. fades, his optimal $Q_i = \frac{P_i}{n}\mathbf{I}$ for all $\boldsymbol{\mu}$ and for all correlations of the rest of the users' channels.
- If all users see i.i.d. fades, capacity region is a polytope.
- If \mathbf{H}_i has i.i.d columns (uncorrelated transmit antennas), $Q_i = \frac{P_i}{n} \mathbf{I}$ for all $\boldsymbol{\mu}$ and for all correlations of the rest of the users.
- If all channels have i.i.d. columns, capacity region is a polytope.

Optimal Q_i and Shape of Capacity Region

- If \mathbf{H}_i has i.i.d rows (uncorrelated receive antennas), then for all $\boldsymbol{\mu}$ and for all correlations of the rest of the users Q_i, Σ_i have the same eigenvectors.
- General Correlated Channels
 - Capacity region has blunt vertices in general.
 - In special cases, it can be a polytope, but cannot be strictly convex.

Disparate-Modes Channels

Disparate-modes channels: Channels for which single user capacity may be achieved with a unit rank transmit covariance matrix Q. (ISIT'01).

- If user i in vector MAC has a disparate-modes channel, then optimal Q_i has unit rank for all μ and all correlation matrices of other users.
- If every user in vector MAC has disparate modes-channel, capacity region is a polytope.

Conclusions

For the MIMO MAC channel with covariance feedback,

- the optimum decoding order for capacity region boundary points inverse of μ ordering.
- general shape of capacity region defined by non-unique rate sum point and shape of vertices.
- Capacity region vertices blunt for general channels.
- For independent fades on mobile antennas, can completely characterize optimal input distribution and the capacity region vertices are sharp.
- For independent fades on BS antennas, can partially characterize optimal input distribution.