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Abstract—We provide the characterization of the degrees of
freedom (DOF) region for a 2-user fading MIMO broadcast chan-
nel when perfect channel knowledge is available to the receivers
and no channel knowledge is available to the transmitters. The
results are applied to find the DOF region for some special cases
of a 2-user MIMO interference channel. We also extend the
outerbound of the DOF region to find the capacity region for
a specific 2-user MIMO broadcast channel.

I. INTRODUCTIONS

Multiple-input-multiple-output (MIMO) systems are capa-
ble of significantly higher capacity compared to traditional
single-input-single-output systems. One of the key features of
MIMO systems is the possibility of multiplexing signals in
space. The ability of multiplexing signals in space is measured
by spatial multiplexing gain [1], which is called capacity
prelog or degrees of freedom (DOF). For the point-to-point
MIMO communication systems, it has been shown that the
availability of the channel state information at the transmitter
(CSIT) does not affect the spacial multiplexing gain [2].
Unlike the point-to-point case, in a network with distributed

processing units, it is well known [3], [4] that in the absence
of channel knowledge, spatial multiplexing gain is lost. For
example, the DOF of the fading multiple-input-single-output
broadcast channel with M antennas at the transmitter and 1
antenna at all M receivers is M when perfect channel state
information is available at the transmitter (perfect CSIT) [5],
[6], [7]. However, the DOF of the same system is only 1 when
channel state information is not available at the transmitter
(no CSIT) [3]. Further understanding about the availability of
channel knowledge and its effect on the degrees freedom of the
networks can provide insights into the design and optimization
of the wireless networks. A natural goal is to extend the results
in the previous example to a more general MIMO broadcast
channel with arbitrary number of users and antennas. In this
paper, we make progress on this problem by studying the
DOF region of a 2-user MIMO broadcast channel where the
transmitter is equipped with M antennas and receivers 1, 2
are equipped with N1, N2 antennas, respectively, under the
assumption of perfect channel state information at the receivers
(perfect CSIR) and no CSIT. An exact characterization of the
DOF region of the channel is given, and our result shows
that a simple time division between the two users is DOF-
region optimal. We then use the result of the MIMO broadcast
channel to find the DOF region for some special cases of a 2-

user MIMO interference channel under the same channel state
information setting. We also extend the outerbound of the DOF
region to find the capacity region for a specific 2-user MIMO
broadcast channel.

II. SYSTEM MODEL

Consider the 2-user Gaussian MIMO broadcast channel
where the transmitter is equipped with M antennas and
receivers 1, 2 are equipped with N1, N2 antennas, respectively.
The channel is described by the input-output relationship:

Y[1](t) = H[1](t)X(t) + Z[1](t) (1)
Y[2](t) = H[2](t)X(t) + Z[2](t) (2)

where at the tth channel use, Y[i](t), Z[i](t) are the Ni × 1
vectors representing the channel output and additive white
Gaussian noise at receiver i, H[i](t) is the Ni ×M channel
matrix corresponding to receiver i, i ∈ {1, 2}, and X(t) is
the M × 1 input vector. The elements of H[i](t) and Z[i](t),
i = 1, 2, are independent identically distributed circularly
symmetric complex Gaussian random variables with zero
mean and unit variance. We assume perfect CSIR, i.e., each
receiver has perfect knowledge of all channel matrices at each
instant, and no CSIT, i.e., the transmitter has no knowledge of
the instantaneous values taken by the channel coefficients. To
avoid cumbersome notation, we will henceforth suppress the
channel use index t where it does not cause ambiguity.
The transmit power constraint is expressed as:

E[||X||2] ≤ P. (3)

There are two independent messages W1,W2, associated with
rates R1, R2, to be communicated from the transmitter to
receivers 1, 2, respectively. The capacity region C(P ) is the
set of all rate pairs (R1, R2) for which the probability of
error can be driven arbitrarily close to zero by using suitably
long codewords. The degrees of freedom region is defined as
follows:

D !
{
(d1, d2) ∈ R+

2 : ∃(R1(P ), R2(P )) ∈ C(P ) s.t.

di = lim
P→∞

Ri(P )

log(P )
, i = 1, 2.}. (4)



III. DEGREES OF FREEDOM OF MIMO BC WITH NO CSIT
Theorem 1: The degrees of freedom region of the MIMO

BC with no CSIT, as defined in Section II is the following:

D =
{

(d1, d2) ∈ R+
2 :

d1

min(M,N1)
+

d2

min(M,N2)
≤ 1

}
.

(5)
Proof: Without loss of generality, let us assume N1 ≤

N2. The case where M ≤ N1 ≤ N2 is trivial, because in this
case the degrees of freedom region, even with perfect CSIT,
is given by:

D = {(d1, d2) ∈ R+
2 : d1 + d2 ≤ M} (6)

which is clearly achievable even without CSIT, by simple time-
division between the two users.
For the remainder of this section, we consider M ≥ N1.
Since the MIMO BC with no CSIT, as defined above, falls in

the class of degraded broadcast channels [8], [9], its capacity
region C(P ) is the set of rate pairs (R1, R2) given by:

R1 ≤ I(U ;Y[1]|H[1],H[2]) (7)
= I(X;Y[1]|H[1],H[2])− I(X;Y[1]|H[1],H[2], U)(8)

R2 ≤ I(X;Y[2]|H[1],H[2], U) (9)

where U → X → (Y[1],Y[2]) forms a Markov chain. Since
the channel between the transmitter and receiver 1 cannot have
more than min(M,N1) = N1 degrees of freedom, we have:

I(X;Y[1]|H[1],H[2]) ≤ N1 log(P ) + o(log(P )). (10)

Let us define r as the degrees of freedom for the term
I(X;Y[1]|H[1],H[2], U), i.e.,

I(X;Y[1]|H[1],H[2], U) = r log(P ) + o(log(P )). (11)

From (11) we obtain the following useful inequality:

I(X;Y[1]|H[1],H[2], U)

=
N1∑

i=1

I(X;Y[1]
i |H[1],H[2], U,Y[1]

(i+1:N1)
)

≥ N1I(X;Y[1]
1 |H[1],H[2], U,Y[1]

(2:N1)
). (12)

Equation (12) implies that
r

N1
log(P ) + o(log(P )) ≥ I(X;Y[1]

1 |H[1],H[2], U,Y[1]
(2:N1)

).
(13)

Now we can write the upperbound (9) for R2 as:

R2

≤ I(X;Y[2]|H[1],H[2], U)
= I(X;Y[2]

(1:min(M,N2))
|H[1],H[2], U)

+I(X;Y[2]
(min(M,N2)+1:N2)

|H[1],H[2], U,Y[2]
(1:min(M,N2))

)

= I(X;Y[2]
(1:min(M,N2))

|H[1],H[2], U) + o(log(P ))

= I(X;Y[2]
(1:N1)

|H[1],H[2], U) + o(log(P ))

+I(X;Y[2]
(N1+1:min(M,N2))

|H[1],H[2], U,Y[2]
(1:N1)

)

= I(X;Y[1]|H[1],H[2], U) + o(log(P ))

+
min(M,N2)∑

i=N1+1

I(X;Y[2]
i |H[1],H[2], U,Y[1],Y[2]

(N1+1:i−1))

≤ r log(P ) + o(log(P ))

+
min(M,N2)∑

i=N1+1

I(X;Y[2]
i |H[1],H[2], U,Y[1]

(2:N1)
)

= r log(P ) + o(log(P ))
+(min(M,N2)−N1)I(X;Y[1]

1 |H[1],H[2], U,Y[1]
(2:N1)

)

≤ r log(P ) + (min(M,N2)−N1)
r

N1
log(P ) + o(log(P ))

=
min(M,N2)

N1
r log(P ) + o(log(P )) (14)

Thus, for 0 ≤ r ≤ N1, an outerbound on the boundary of the
degrees of freedom region is characterized as follows.

(d1, d2) =
(

N1 − r,
min(M,N2)

N1
r

)
, (15)

which implies that

D ⊂
{

(d1, d2) ∈ R+
2 :

d1

N1
+

d2

min(M,N2)
≤ 1

}
. (16)

Achievability of this outerbound follows trivially by time
division between the two users, and the proof of Theorem
1 is complete.
IV. DEGREES OF FREEDOM OF THE MIMO INTERFERENCE

CHANNEL WITH NO CSIT
A. System Model
Consider the 2-user Gaussian MIMO interference channel

where transmitters 1, 2 are equipped with M1,M2 antennas,
respectively, and receivers 1, 2 are equipped with N1, N2

antennas, respectively. The channel is described by the input-
output relationship:

Y[1](t) = H[11](t)X[1](t) + H[12](t)X[2](t) + Z[1](t) (17)
Y[2](t) = H[21](t)X[1](t) + H[22](t)X[2](t) + Z[2](t) (18)

where at the tth channel use, Y[j](t), Z[j](t) are the Nj ×
1 vectors representing the channel output and additive white
Gaussian noise at receiver j, H[ji](t) is the Nj ×Mi channel
matrix corresponding to receiver j, and X[i](t) is the Mi ×
1 input vector, i, j ∈ {1, 2}. The following assumptions are
similar to those in Section II. The elements of H[ji](t) and
Z[j](t), i, j ∈ {1, 2}, are independent identically distributed
circularly symmetric complex Gaussian random variables with
zero mean and unit variance. We assume perfect CSIR and no
CSIT.
The transmit power constraint is expressed as:

E[||X[i]||2] ≤ P, i = 1, 2. (19)

There are two independent messages W1,W2, associated with
rates R1, R2, to be communicated from the transmitter 1 to
receiver 1 and from the transmitter 2 to receiver 2, respectively.
The standard definitions of the capacity region and the DOF
region are the same with those in Section II.



B. Main Results
Theorem 2: If M1 ≤ N2 and M2 ≤ N1, the degrees of

freedom region of the MIMO interference channel with no
CSIT is the following:

D =




(d1, d2) ∈ R+
2 :

d1 ≤ min(M1, N1),
d2 ≤ min(M2, N2),
d1 + d2 ≤ min(N1, N2)




 (20)

Proof: Let a genie provide the transmitters with perfect
channel state information. Since giving CSIT does not hurt,
the converse argument is still valid. Then, the outerbound
follows directly from the results of [10]. Achievability of this
outerbound follows trivially by receiver zeroforcing.
Theorem 3: If M1 ≥ N1 and M2 ≥ N2, the degrees of

freedom region of the MIMO interference channel with no
CSIT is the following:

D =
{

(d1, d2) ∈ R+
2 :

d1

N1
+

d2

N2
≤ 1

}
(21)

Proof: Let a genie provide transmitter 1 with W2 and
transmitter 2 withW1. Since the resulting channel is equivalent
to a broadcast channel, the outerbound follows directly from
Theorem 1. Achievability of this outerbound follows trivially
by time division between the two users, and the proof is
complete.

V. CAPACITY REGION OF A CLASS OF BROADCAST
CHANNELS WITH NO CSIT

A. Models
Consider the 2-user Gaussian MIMO broadcast channel

where the transmitter is equipped with M antennas and
receivers 1, 2 are equipped with N1, N2 antennas, respectively.
M, N1, and N2 are assumed to satisfy

N1 ≤ M (22)
N2 ≤ M. (23)

The channel is described by the input-output relationship:

Y[1](t) = H[1]Q(t)X(t) + Z[1](t) (24)
Y[2](t) = H[2]Q(t)X(t) + Z[2](t) (25)

where the notation usage for X[i](t) and Y[i](t), the assump-
tion for the noise term Z[i](t), and the assumption that the
channel is equipped with perfect CSIR and no CSIT are the
same with those in Section II. However, different from the
previous assumption, H[i] is assumed to be a time-invariant
Ni×M channel matrix with Ni orthonormal rows, i ∈ {1, 2}.
Note that this is possible only when N1 ≤ M and N2 ≤ M .Q
is an M ×M isotropically random unitary matrix, normalized
so that

E[QQ†] = MI, (26)

where I is a M × M identity matrix. The transmit power
constraint and the standard definition of the capacity region
are the same with those in Section II and we omit them for
brevity.

B. Main Result
Theorem 4: The capacity region of the MIMO BC with no

CSIT, as defined in Section V-A is the following:

C =
{

(R1, R2) ∈ R+
2 :

R1

N1
+

R2

N2
≤ log(1 + P )

}
. (27)

Proof: The proof follows the similar lines in the proof of
Theorem 1 and we omit the parts that are the same with those
given in Section III for brevity. Without loss of generality, let
us assume N1 ≤ N2. Following (7), we have

R1 ≤ I(X;Y[1]|H[1],H[2])−I(X;Y[1]|H[1],H[2], U), (28)

where U → X→ (Y[1],Y[2]) forms a Markov chain. Denote
the capacity of the point-to-point link from the transmitter to
receiver 1 as C1 and let

γ = I(X;Y[1]|H[1],H[2], U). (29)

Following (28), we have

R1 ≤ C1 − γ

= EQ log
∣∣∣I + H[1]Q(

P

M
I)Q†H[1]†

∣∣∣− γ

= log
∣∣∣I +

P

M
H[1]E[QQ†]H[1]†

∣∣∣− γ

= log
∣∣∣I +

P

M
H[1](MI)H[1]†

∣∣∣− γ

= log
∣∣∣I + PH[1]H[1]†

∣∣∣− γ

= N1 log(1 + P )− γ. (30)

Following (12), we have following useful inequality:

1
N1

I(X;Y[1]|H[1],H[2], U) ≥

I(X;Y[1]
1 |H[1],H[2], U,Y[1]

(2:N1)
). (31)

Now, following (9), we can write the upperbound for R2 as
follows.

R2 ≤ I(X;Y[2]|H[1],H[2], U)

= I(X;Y[2]
(1:N1)

|H[1],H[2], U)

+ I(X;Y[2]
(N1+1:N2)

|H[1],H[2], U,Y[2]
(1:N1)

)

= I(X;Y[1]|H[1],H[2], U)

+
N2∑

i=N1+1

I(X;Y[2]
i |H[1],H[2], U,Y[1],Y[2]

(N1+1:i−1))

≤ γ +
N2∑

i=N1+1

I(X;Y[2]
i |H[1],H[2], U,Y[1]

(2:N1)
)

≤ γ +
N2 −N1

N1
γ

≤ N2

N1
γ. (32)

Thus, for 0 ≤ γ ≤ N1 log(1 + P ), an outerbound on the
boundary of the capacity region is characterized as follows.

(R1, R2) =
(

N1 log(1 + P )− γ,
N2

N1
γ

)
, (33)



which implies that

C ⊂
{

(R1, R2) ∈ R+
2 :

d1

N1
+

d2

N2
≤ log(1 + P )

}
. (34)

To provide the achievability of this outerbound, we first prove
that (0, N2 log(1 + P )) is achievable. Denote the capacity of
the point-to-point link between the transmitter and receiver 2
as C2, and we have

C2 = EQ log
∣∣∣I + H[2]Q(

P

M
I)Q†H[2]†

∣∣∣

= log
∣∣∣I +

P

M
H[2]E[QQ†]H[2]†

∣∣∣

= log
∣∣∣I +

P

M
H[2](MI)H[2]†

∣∣∣

= log
∣∣∣I + PH[2]H[2]†

∣∣∣
= N2 log(1 + P ). (35)

Thus, (0, N2 log(1 + P )) is achievable. Using time division
between the two users, and the proof is complete.

VI. CONCLUSIONS
In this paper, we explore the effect of the absence of

channel state information for MIMO networks. Throughout
the paper, we assume perfect CSIR and no CSIT. We provide
the characterization of the DOF region for a 2-user MIMO
broadcast channel. We then find the DOF region for some
special cases of a 2-user MIMO interference channel by
using the broadcast channel outerbound. We also extend the
outerbound of the DOF region to find the capacity region for
a specific 2-user MIMO broadcast channel.
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