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Abstract—The degrees of freedom (DoF) of K-user MIMO
interference networks with constant channel coefficients are
not known in general. Determining the feasibility of a linear
interference alignment is a key step toward solving this open
problem. Our approach in this paper is to view the alignment
problem for interference networks as a multivariate polynomial
system and determine its solvability by comparing the number
of equations and the number of variables. Consequently, we
divide the interference networks into two classes - proper and
improper, where interference alignment is and is not achievable,
respectively. An interference network is called proper if the
cardinality of every subset of equations in the corresponding
polynomial system is less than or equal to the number of
variables involved in that subset of equations. Otherwise, it is
called improper. Our intuition in this paper is that for general
channel matrices, proper systems are almost surely feasible and
improper systems are almost surely infeasible. We prove the
direct link between proper (improper) and feasible (infeasible)
systems for some important cases, thus significantly strengthening
our intuition. Numerical simulation results also support our
intuition.

I. INTRODUCTION

The degrees of freedom (DoF) of wireless interference
networks represent the number of interference-free signaling-
dimensions in the network. In a network with K transmitters
and K receivers and non-degenerate channel conditions, it is
well known that K non-interfering spatial signaling dimen-
sions can be created if the transmitters or the receivers are able
to jointly process their signals. Cadambe and Jafar [1] recently
introduced the idea of interference alignment for K-user
wireless interference network with time-varying/frequency-
selective channel coefficients, and showed that K/2 spatial
signaling dimensions are available in spite of the distributed
nature of network, which precludes joint processing of signals
at transmitters or receivers. While a number of interference
alignment solutions have appeared since [1] for different
channel settings, many fundamental questions remain unan-
swered. One such problem is to determine the feasibility of
linear interference alignment for K-user MIMO interference
networks with constant channel coefficients. It is this open
problem that we address in this paper.
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II. OVERVIEW OF MAIN RESULTS

The main contribution of this work is that we provide an
analytical criteria for determining the feasibility of interference
alignment for K-user MIMO interference networks. First, we
present some examples to demonstrate the questions that we
answer in this paper.

A. Symmetric Systems

Let (M × N, d)K denote the K-user MIMO interference
network, where every transmitter has M antennas, every
receiver has N antennas and each user wishes to achieve d
DoF. We call such a system a symmetric system. Consider the
following examples.

• (2 × 2, 1)3 - It is shown in [1] that for the 3-user inter-
ference network with 2 antennas at each node, each user
can achieve 1 DoF by presenting a closed form solution.
However, is there a way to analytically determine the
feasibility of this system without finding a closed form
solution?

• (5 × 5, 2)4 - Consider the 4-user interference network
with 5 antennas at each user and we wish to achieve 2
DoF per user for a total of 8 DoF. A theoretical solution
to this problem is not known but numerical evidence in
[2] clearly indicates that a linear interference alignment
solution exists. Numerical algorithms are one way to
determine the feasibility of linear interference alignment.
However, is there a way to theoretically determine the
feasibility of alignment without running the numerical
simulation?

• Now, consider the three distinct systems -(6 × 4, 2)4,
(7 × 3, 2)4, and (8 × 2, 2)4. Are these systems feasi-
ble? Clearly, the last one (8 × 2, 2)4 is feasible be-
cause simple transmit zero-forcing is enough to eliminate
the interference at every receiver. Is the feasibility of
(8 × 2, 2)4 system related to the feasibility of other sys-
tems? We will show that these three systems and the sys-
tems (5 × 5, 2)4, (4 × 6, 2)4, (3 × 7, 2)4, and (2 × 8, 2)4

all belong to the same group, where any sys-
tem in the group can be obtained by succes-
sively transferring an antenna between transmitters
and receivers. In more general terms, we will
show that the group (K × 1, 1)K ,

(

(K − 1) × 2, 1
)K

,



· · · ,
(

2 × (K − 1), 1
)K

, (1 × K, 1)K is a proper group.
The first and last members of a group are easily seen to
be proper (because a simple zero-forcing solution exists),
thereby also determining the status of the rest of group
members. Same argument is valid for grouping improper
systems as well.

B. Asymmetric Systems

Let
(

M [1] × N [1], d[1]
)

· · · (M [K] × N [K], d[K]) denote the
K-user MIMO interference network, where the kth transmitter
and receiver have M [k] and N [k] antennas, respectively and
the kth user demands d[k] DoF. We call such a system an
asymmetric system. Consider the following examples.

• Consider the simple system (2 × 1, 1)2, which is clearly
feasible. However, now consider the (2 × 1, 1)(1 × 2, 1)
system, where the same total number of DoF is desired.
Although these systems have the same number of total
antennas, is the latter system still achievable?

• Consider a feasible system (2 × 3, 1)(3× 2, 1) [3], where
a total of 2 DoF is desired. Now, consider the same
scheme with increased number of users; that is, the 4-
user interference network (2× 3, 1)2(3× 2, 1)2, where a
total of 4 DoF is desired. Is this system still achievable,
where DoF is doubled by simply going from two users
to four users?

In this paper, we address all these questions. The basic
approach is to consider the linear interference alignment
problem as a solvability of multivariate polynomial system. We
determine the correct way to count the number of variables and
equations for a general MIMO interference alignment problem.
Then, based on the number of variables and equations, we
classify the system as either proper (the cardinality of every
subset of equations is less than or equal to the number of
variables involved in that subset of equations) or improper
with the intuitive understanding that proper systems are al-
most surely feasible and improper systems are almost surely
infeasible. For the cases where each user demands only 1 DoF,
we show that the precise feasibility condition is given by a
specialized version of Bernshtein’s theorem [4] in terms of the
mixed volume of the Newton polytopes of the support sets of
a multivariate polynomial system. For the cases (2×3, 1)4 and
(2×3, 1)2(3×2, 1)2

(

(2×2, 1)3(3×5, 1)1
)

, we obtain nonzero
(zero) mixed volumes and therefore, we show the direct link
between proper (improper) and feasible (infeasible) systems
for these important cases. We omit the proofs for other cases,
where each user wishes to achieve 1 DoF since mixed volume
computation is #P-complete [4]. On the other hand, for any
case, where at least one user wishes to achieve more than 1
DoF an innovative approach in algebraic geometry is needed
to prove the solvability of corresponding polynomial system.
Our intuition is also supported by numerical results for a wide
variety of cases including the specific examples listed above.

III. SYSTEM MODEL

We consider the same K-user MIMO interference network
as considered in [2]. The received signal at the nth channel

use can be written as follows:

Y
[k](n) =

K
∑

l=1

H
[kl](n)X[l](n) + Z

[k](n),

∀k ∈ K , {1, 2, ..., K}. Here, Y
[k](n) and Z

[k](n) are
the N [k] × 1 received signal vector and the zero mean unit
variance circularly symmetric additive white Gaussian noise
vector (AWGN) at the kth receiver, respectively. X

[l](n) is
the M [l] × 1 signal vector transmitted from the lth trans-
mitter and H

[kl](n) is the N [k] × M [l] matrix of channel
coefficients between the lth transmitter and the kth receiver.
E[||X[l](n)||2] = P [l] is the transmit power of the lth trans-
mitter. Hereafter, we omit the channel use index n for the sake
of simplicity. The DoF for the kth user’s message is denoted
by d[k] ≤ min(M [k], N [k]).

As defined earlier, (M × N, d)K denotes the K-user sym-
metric MIMO interference network, where each transmit-
ter and receiver has M and N antennas, respectively and
each user demands d DoF and therefore, the total DoF
demand is Kd. In general, let ΠK

k=1

(

M [k] × N [k], d[k]
)

=
(

M [1] × N [1], d[1]
)

· · · (M [K]×N [K], d[K]) denote the K-user
MIMO interference network, where the kth transmitter and
receiver have M [k] and N [k] antennas, respectively and the
kth user demands d[k] DoF.

IV. LINEAR INTERFERENCE ALIGNMENT SCHEME

In interference alignment precoding, the transmitted signal
from the kth user is X

[k] = V
[k]

X̃
[k], where X̃

[k] is a d[k]×1
vector that denotes the d[k] independently encoded streams
transmitted from the kth user. The M [k]×d[k] precoding filters
V

[k] are designed to maximize the overlap of interference
signal subspaces at each receiver while ensuring that the
desired signal vectors at each receiver are linearly independent
of the interference subspace. Therefore, each receiver can zero-
force all the interference signals without zero-forcing any of
the desired signals. The zero-forcing filters at the receiver
are denoted by U

[k]. In [2], it is shown that an interference
alignment solution requires the simultaneous satisfiability of
the following conditions:

U
[k]†

H
[kj]

V
[j] = 0, ∀j 6= k and (1)

rank
(

U
[k]†

H
[kk]

V
[k]

)

= d[k], ∀k ∈ {1, 2, ..., K}, (2)

where † denotes the conjugate transpose operator.
Very importantly, [2] explains how the condition
(2) is automatically satisfied almost surely if the
channel matrices do not have any special structure,
rank(U[k]) = rank(V[k]) = d[k] ≤ min(M [k], N [k]) and
U

[k],V[k] are designed to satisfy (1), which is independent
of all direct channels H

[kk].
For the cases, where it is difficult to theoretically determine

the feasibility of interference alignment, it can be numerically
determined by using an iterative algorithm proposed in [2]. In
this paper, we develop an analytical criteria to determine the
feasibility of interference alignment. Our approach is to count
the number of equations and variables in (1).



V. PROPER SYSTEM

While the formal definition appears later, put simply that the
ΠK

k=1

(

M [k] × N [k], d[k]
)

system is proper if and only if the
cardinality of every subset of equations in the corresponding
polynomial system obtained from (1) is less than or equal to
the number of variables involved in that subset of equations.
Otherwise, the system is improper. The reason for this classi-
fication is the following intuition that forms the basis of our
approach in this paper:

Key Insight: The interference alignment is almost surely
feasible for proper systems and almost surely infeasible for
improper systems.

The insight is supported by extensive simulations (some of
which are presented in this paper). Next, we explicitly define
the condition for proper systems. Let us start with the total
number of equations Ne and the total number of variables Nv

in the polynomial system (1).

A. Counting the Number of Equations Ne and Variables Nv

To obtain Ne and Nv, we rewrite the condition in (1) as
follows:

u
[k]†
m H

[kj]
v

[j]
n = 0, j 6= k, j, k ∈ {1, 2, ..., K} (3)

∀n ∈ {1, 2, ..., d[j]} and ∀m ∈ {1, 2, ..., d[k]}

where v
[j]
n and u

[k]
m are the transmit and receive beamforming

vectors (columns of precoding and interference suppression
filters, respectively).

Ne is directly obtained from (3) as follows:

Ne =
∑

k,j∈K
k 6=j

d[k]d[j].

However, calculating the number of variables Nv is less
straightforward. In particular, we have to be careful not to
count any superfluous variables that do not help with interfer-
ence alignment.

At the kth transmitter, the number of M [k] × 1
transmit beamforming vectors to be designed is d[k]
(

v
[k]
n , ∀n ∈ {1, 2, ..., d[k]}

)

. Therefore, at first sight, it may

seem that the precoding filter of the kth transmitter, V
[k],

has d[k]M [k] variables. However, as we argue next, we can
eliminate (d[k])2 of these variables without loss of generality.

The d[k] linearly independent columns of transmit precoding
matrix V

[k] span the transmitted signal space

T [k] = span(V[k])

= {v : ∃a ∈ C
d[k]×1, v = V

[k]
a}.

Thus, the columns of V
[k] are the basis for the transmitted

signal space. However, the basis representation is not unique
for a given subspace. In particular, consider any full rank d[k]×
d[k] matrix B. Then, continuing from the last step of the above
equations,

T [k] = {v : ∃a ∈ C
d[k]×1, v = V

[k]
B

−1
Ba}

= span(V[k]
B

−1).

Thus, post-multiplication of the transmit precoding matrix
with any invertible matrix on the right does not change the
transmitted signal subspace. Suppose that we choose B to be
the d[k] × d[k] matrix that is obtained by deleting the bottom
M [k] − d[k] rows of V

[k]. Then, we have V
[k]

B
−1 = Ṽ

[k],
which is a M [k] × d[k] matrix with the following structure:

Ṽ
[k] =

[

Id[k]

v̄
[k]
1 v̄

[k]
2 v̄

[k]
3 · · · v̄

[k]

d[k]

]

where Id[k] is the d[k] × d[k] identity matrix and
v̄

[k]
n , ∀n ∈ {1, 2, ..., d[k]} are

(

M [k] − d[k]
)

× 1 vectors. It is
easy to argue that there is no other basis representation for the
transmitted signal space with fewer variables.

Therefore, by eliminating all superfluous variables for the
interference alignment problem, the number of variables to be
designed for the precoding filter of the kth transmitter, Ṽ

[k],
is d[k]

(

M [k] − d[k]
)

. Likewise, the actual number of variables
to be designed for the interference suppression filter of the
kth receiver, Ũ

[k], is d[k]
(

N [k] − d[k]
)

. As a result, the total
number of variables in the network to be designed is:

Nv =

K
∑

k=1

d[k]
(

M [k] + N [k] − 2d[k]
)

.

B. Proper System Characterization

To formalize the definition of a proper system, we first
introduce some notation. We use the notation Ekj

mn to represent
the equation

u
[k]†
m H

[kj]
v

[j]
n = 0.

The set of variables involved in an equation E is indicated by
the function var(E). Clearly

|var(Ekj
mn)| = (M [j] − d[j]) + (N [k] − d[k]),

where | · | is the cardinality of a set.
Using this notation, we denote the set of Ne equations as

follows:

E = {Ekj
mn| j, k ∈ K, k 6= j,

m ∈ {1, · · · , d[k]}, n ∈ {1, · · · , d[j]}}.

This leads us to the formal definition of a proper system.

Definition 1. A ΠK
k=1(M

[k] × N [k], d[k]) system is proper if
and only if

∀S ⊂ E , |S| ≤

∣

∣

∣

∣

∣

⋃

E∈S

var(E)

∣

∣

∣

∣

∣

. (4)

In other words, for all subsets of equations, the number of
variables involved must be at least as large as the number of
equations in that subset.

Note that the above definition can be computationally cum-
bersome because we have to test all subsets of equations.
Luckily, in most cases, the system can be easily checked
whether it is proper or improper by using simple inequalities
for both symmetric and asymmetric systems. We first start with
symmetric systems.



C. Symmetric Systems (M × N, d)K

For symmetric systems, simply comparing the total number
of equations and the total number of variables suffices to
determine whether the system is proper or improper.

Theorem 1. A symmetric system (M × N, d)K is proper if
and only if

Nv ≥ Ne ⇒ M + N − (K + 1)d ≥ 0.

Proof: Because of the symmetry, each equation involves
the same number of variables and any deficiency in the number
of variables shows up in the comparison of the total number
of variables versus the total number of equations. Plugging in
the values of Nv and Ne computed earlier, we have the result
of Theorem 1.

Example 1. Consider the (2 × 3, 1)
4 system. For this system,

M + N − (K + 1)d = 2 + 3 − (5) = 0 so that this system is
proper.

Example 2. Consider the (5 × 5, 2)
4 system. For this system,

M + N − (K + 1)d = 5 + 5 − 10 = 0 so that this system is
proper.

Remark 1. Theorem 1 implies that for every user to achieve d
DoF in a K-user symmetric network, it suffices to have a total
of M + N ≥ (K + 1)d antennas between the transmitter and
receiver of a user. The antennas can be distributed among the
transmitter and receiver arbitrarily as long as the symmetric
nature of the system is preserved. In particular, to achieve K
DoF in a K-user symmetric network (1 DoF per user, d[i] = 1),
we only need a total of K+1 antennas between the transmitter
and receiver of a user.

Example 3. Consider a 4-user symmetric network, where we
wish to achieve 4 DoF. Then, 5 antennas between the trans-
mitter and receiver of a user would suffice, e.g., (2 × 3, 1)4.

The following corollary shows the limitations of linear
interference alignment over constant MIMO channels (with
no symbol extensions).

Corollary 1. The DoF of a proper (M × N, d)K system,
which is normalized by a single user’s DoF in the absence
of interference, is upper bounded by:

dK

min(M, N)
≤ 1 +

max(M, N)

min(M, N)
−

d

min(M, N)
.

Proof: The proof is straightforward from the condition of
Theorem 1.

Remark 2. For the case M = N , note that the DoF of a
proper system is no more than twice the DoF achieved by
each user in the absence of interference. Note that for diagonal
(time-varying) channels, it is shown in [1] that the DoF of a
K-user network is K/2 times the number of DoF achieved by
each user in the absence of interference. This result shows that
the diagonal structure of the channel matrix is very helpful.
Going from the case of no structure (general MIMO channels)

to diagonal structure, the ratio of total DoF to the single user
DoF increases from a maximum value of 2 to K/2.

The following corollary identifies the groups of symmetric
systems, which are either all proper or all improper.

Corollary 2. If (M × N, d)K system is proper (improper)
then so is the

(

(M + 1) × (N − 1), d
)K

system as long as
d ≤ min(M, N − 1). Similarly, if the (M ×N, d)K system is
proper (improper) then so is the

(

(M − 1) × (N + 1), d
)K

system as long as d ≤ min(M − 1, N).

Proof: Since the condition in Theorem 1 depends only on
M + N , it is clear that we can transfer transmit and receive
antennas without affecting the proper (or improper) status of
the system.

Example 4. Consider the (2×8, 2)4 symmetric system. Again,
the DoF of this interference network can be trivially obtained
by zero-forcing at each receiver. By successively transferring
an antenna from each receiver to transmitter, an equivalent
(5 × 5, 2)4 symmetric system seen in Example 2 is obtained,
which is also proper. Thus, the systems (8×2, 2)4, (7×3, 2)4,
(6 × 4, 2)4, (5 × 5, 2)4, (4 × 6, 2)4, (3 × 7, 2)4, and (2×8, 2)4

are in the same group and are all proper.

D. Asymmetric Systems ΠK
k=1

(

M [k] × N [k], d[k]
)

For asymmetric systems, if the system is improper, simply
comparing the total number of equations and the total number
of variables may suffice.

Theorem 2. An asymmetric system ΠK
k=1(M

[k] × N [k], d[k])
is improper if

Nv < Ne ⇔

K
∑

k=1

d[k]
(

M [k] + N [k] − 2d[k]
)

<

K
∑

k,j∈K
k 6=j

d[k]d[j].

(5)

Example 5. Consider the (5× 5, 3)(5× 5, 2)3 system. There
are 60 equations in total and therefore, there are 260−1 subsets
of equations. Testing each of them could be very challenging.
However, since the total number of variables Nv = 48 is less
than the number of equations, the system is easily seen to be
improper.

Note that we can sometimes identify the bottleneck equa-
tions in the system by checking the equations with the fewest
number of variables, i.e., the equations involving the fewest
number of transmitter and receiver antennas.

Example 6. Consider the simple system (2× 1, 1)2, which is
clearly feasible (proper) because simple zero-forcing is enough
for achievability. However, now consider the (2×1, 1)(1×2, 1)
system, which also has the same total number of equations
Ne and variables Nv as the (2 × 1, 1)2 system. Thus, only
comparing Nv and Ne would mislead one to believe that this
system is proper. However, suppose that we only check the
subset of equations between the transmitter 2 and receiver;
that is, S = {E12

11} so that |S| = 1 and var(E12
11 ) = 0. Thus,



this system has an equation with zero variables, which makes
the system improper and therefore, infeasible.

Example 7. Several interesting cases emerge from applying
the condition (5). For example, consider the 2-user interference
network (2 × 3, 1)(3 × 2, 1), where a total of 2 DoF is
desired. It is easily checked that this system is proper and the
achievable scheme is described in [3]. Now, consider the 4-
user interference network, which consists of two sets of these
networks, all interfering with each other (2×3, 1)2(3×2, 1)2,
where a total of 4 DoF is desired. By using (5), it is easily
verified that this is a proper system. Surprisingly, by simply
going from two users to four users, DoF is doubled in this
case.

VI. NUMERICAL RESULTS

We tested numerous interference alignment problems, both
symmetric and asymmetric, and especially including each of
the examples presented in this paper by using the numerical
algorithm in [2]. In every case so far, we have found the results
to be consistent with the guiding intuition of this work; that
is, proper systems are almost surely feasible and improper
systems are not.

In this section, we provide numerical results for a few
interesting and representative cases. The results are in terms
of the interference percentage, which is defined in [2]. i.e.,
the fraction of the interference power that is existent in the
dimensions reserved for the desired signal.

In Fig. 1, the interference percentages versus the total
number of beams are shown. The total number of beams
starts from expected total DoF of each network. Therefore,
after the first point on the x-axis, where excess total DoF
is demanded the interference percentage of each network is
not zero. The nonzero interference percentage indicates that
interference alignment is not possible for the demanded total
DoF.

Therefore, by observing zero interference percentages on the
DoF point in Fig. 1, we show that the numerical results are
consistent with our statements in Section V that these networks
are proper and thus, feasible.

VII. THE DIRECT LINKS BETWEEN PROPER (IMPROPER)
AND FEASIBLE (INFEASIBLE) SYSTEMS

Our approach in this paper is to view the alignment problem
for an interference network as a multivariate polynomial
system (1) and determine its solvability. Our intuition in
this paper is that if the system is proper, the corresponding
polynomial system is almost surely solvable; that is, the system
is feasible. To rigorously prove that a polynomial system
is solvable, specialized versions of Bezout’s (more widely
known) and Bernshtein’s theorems can be used, which are
both interested in the number of solutions of a multivariate
polynomial system. Both theorems provide the exact number
of solutions under specific conditions. For both theorems, the
coefficients must be independent random variables (can also be
called generic choices of coefficients as seen in Mathematics
terminology, which is explained in the journal version of this
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Fig. 1. Interference percentages as a function of the total number of beams
in the networks (DoF: Expected total degrees of freedom. DoF+i (i=1,2,3,4):
Excess total degrees of freedom).

paper [5]). However, for Bezout’s and Bernshtein’s theorems,
the polynomial system must be dense and sparse, respectively,
which we explain next.

Let deg(fi) denote the degree of the polynomial fi. e.g.,

f1 = x3y + xy + y, deg(f1) = 4.

For a dense polynomial system, every polynomial fi in the sys-
tem must have all combinations of monomials up to deg(fi).
e.g.,

f2 = x4 + y4 + x3y + xy3 + x2y2 + · · · + 1, deg(f2) = 4.

Therefore, f1 and f2 are sparse and dense polynomials,
respectively.

For interference networks, the polynomial systems are
sparse in nature. However, for interference networks, where at
least one user wishes to achieve more than 1 DoF (d[i] > 1),
the coefficients are not generic because the channel matrix
H

[kj] of that user reoccurs more than once in the polynomial
system. In other words, there are dependent random coeffi-
cients in the polynomial system. In this case, Bernshtein’s
theorem provides only an upper bound for the number of
solutions. Therefore, we cannot use Bernshtein’s theorem
for the cases with d[i] > 1 to prove that the polynomial
system is almost surely solvable. On the other hand, for
interference networks, where every user wishes to achieve
1 DoF (d[i] = 1), the coefficients in the polynomial system
are generic. Therefore, we can use Bernshtein’s theorem for
these cases, which states that the mixed volume of the Newton
polytopes of the support sets of a multivariate polynomial
system is exactly equal to the number of solutions of that
system. Bezout’s and Bernshtein’s theorems are explained in
the journal version of this paper.

Next, we show that some proper (improper) systems with
d[i] = 1 do (not) satisfy the feasibility condition (1) almost



surely by using Bernshtein’s theorem. We use the softwares
mentioned in [4] in order to rigorously find the mixed volumes
of some important cases.

Example 8. For the systems (2 × 3, 1)4 and
(2 × 3, 1)2(3 × 2, 1)2, the mixed volumes are 9 and 8,
respectively. In other words, these polynomial systems with
independent random coefficients are solvable almost surely
since each has nonzero mixed volume, which is equal to the
exact number of common solutions.

Example 9. Now, consider the system (2 × 2, 1)3(3 × 5, 1),
which is infeasible according to the simulation result. Since
the subset of equations, which is obtained by shutting down
the fourth receiver has 9 equations and 8 variables, this system
is improper. The mixed volume of this system is 0. In other
words, the corresponding polynomial system with independent
random coefficients is not solvable almost surely.

Note once again that we only provide mixed volumes
of only some cases since mixed volume computation is
#P-complete [4].

For the cases with d[i] > 1, where the system has depen-
dent random coefficients, an innovative approach in algebraic
geometry is required in order to find a Bernshtein’s equivalent
theorem, which would provide the exact number of solutions.
Moreover, the structure of polynomial system is important for
its solvability. As mentioned in Remark 2, for diagonal (time-
varying) channels, the DoF of a K-user network is K/2 times
the number of DoF achieved by each user (d[i] > 1) in the
absence of interference [1]. Note that for the corresponding
polynomial system, Ne > Nv. Although interference networks
with diagonal channels are improper (because Ne > Nv),
the interference alignment is feasible. However, our intuition
is still not violated; that is, for K-user MIMO interference
networks with constant channel coefficients, improper systems
are almost surely infeasible.

VIII. CONCLUSION

We propose an analytical method to determine the feasibility
of linear interference alignment over constant MIMO chan-
nels that have no structure (i.e., no symbol extensions). Our
approach to determine the feasibility of a network is to count
the number of equations and variables in the corresponding
polynomial system. We define a system as proper if the
cardinality of every subset of equations in the corresponding
polynomial system is less than or equal to the number of
variables involved in that subset of equations. Otherwise, we
define the system as improper.

The guiding intuition in this paper is that proper systems
are almost surely feasible while improper systems are almost
surely infeasible. We use Bernshtein’s theorem to prove the
direct link between proper (improper) and feasible (infeasible)
systems for some important cases with 1 DoF per user.

Note that while it is not stated explicitly, the feasibility
conditions for linear alignment (and the definition of proper
systems) also include the general outer bounds on the DoF

that follow from [3], i.e.,
d[i] ≤ min(M [i], N [i]) and

d[i] + d[j] ≤ min
(

M [i] + M [j], N [i] + N [j],

max(M [i], N [j]), max(M [j], N [i])
)

,

for all i, j ∈ K.
While we do not focus on these outer bounds in this paper,
they must always be checked first to determine infeasibility.
This is especially important to keep in mind because these
bounds are not explicitly implied by the definition of a proper
system as stated in this paper.
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