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Abstract—In this paper, we consider a distributed storage
system where a file of size M is stored in n distributed storage
nodes using an (n, k) systematic maximum distance separable
(MDS) code. The (n, k) MDS code can protect the storage system
from data loss in in case of failure (erasure) of storage nodes,
as long as the number of failures is smaller than or equal to
(n− k), because of the MDS property of the code. The problem
of interest of this paper is to repair failed nodes in the storage
system, by replacing them by their replicas (exact repair), as
efficiently as possible, i.e., by downloading the minimum possible
amount of data from the surviving nodes. Recently, the problem,
termed as the exact repair bandwidth problem, has been solved
for the special case of r = 1 failure using the asymptotic
interference alignment scheme developed by Cadambe and Jafar
in the context of the wireless interference channel. In this paper,
we extend this result to find the minimum repair bandwidth for
the more general case of r > 1 failures, as long as the number
of failures r is smaller than (n− k) - the maximum number of
failures that can be tolerated by the system.

I. INTRODUCTION

Recently, there is an increased interest in applications of
network codes for distributed storage systems. The motivation
of application of network codes for distributed storage comes
from the idea that they offer efficient repair strategies for
failure of storage nodes in the system [1]. In this paper, we
apply interference alignment based techniques to solve an open
problem in this regard. Specifically, we apply the asymptotic
interference alignment solution of Cadambe and Jafar [2] to
construct a class of structured random network codes which
efficiently repair failed nodes in distributed storage systems.
Consider a set up where there is file of size M to be stored
in n distributed storage nodes. The file is split into k equal
parts of size M/k and stored in the first k storage nodes, also
known as systematic nodes. The remaining (n − k) nodes,
known as parity nodes or non-systematic nodes, store data
of the same size, i.e. M/k, for redundancy to protect from
failure of storage nodes. The parity nodes are designed so
that the original file can be completely recovered by a new
node using any subset of k nodes of the original n nodes,
i.e., so that a failure of up to (n − k) storage nodes can be
tolerated. Clearly, for this problem, storing the data using a
(n, k) maximum distance separable (MDS) code suffices to
achieve the required reconstruction criterion, since a MDS
code protects the data from (n−k) erasures. Thus, in general,
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a new node can download data of total size M by downloading
the data stored in any of the k nodes to reconstruct the file and
repair up to n−k failed nodes. Now, consider the case where
only r < k nodes fail, and a repair center is to replace to the
failed nodes. The amount of data to be downloaded by the
repair center to repair r < k failed nodes will be henceforth
referred to as the repair bandwidth. Clearly, a repair bandwidth
of M suffices to repair the failed nodes since the repair center
can download data of size M from any k of the remaining n−r
healthy nodes to reconstruct the node exactly. However, note
the inherent inefficiency in the solution - to replace data of size
rM/k, the repair center downloads data of size M , i.e. k/r
times the size of the data to be repaired. In the extreme case
of r = 1, this factor if inefficiency is equal to k. A question of
interest is whether this inefficiency is fundamental, or whether
the node can be repaired with the new comer downloading
data of size less than M . More specifically, the question of
interest of this paper is what is the minimum repair bandwidth
required to repair r < k failed nodes?

This question of minimum repair bandwidth (See Figure 1)
has been studied previously, for the special case of r = 1 failed
node, from two perspectives [1], [3], [4], [5], [6]. The first is
called functional regeneration [1], [3] and the second is called
exact (or systematic) regeneration [4], [5], [6]. In functional
regeneration, the requirement is to replace failed nodes by
functions of the original data, so that the new repaired nodes
combined with the surviving nodes form an MDS code. In
other words, the repaired nodes are information equivalent to
the failed nodes. In contrast, the exact repair problem requires
the failed nodes to be replaced by replicas. In other words,
the new nodes have to be identical, and not just information
equivalent, to the original nodes. Recent results have shown
that, for the case of r = 1 failed node, surprisingly, exact repair
is asymptotically as efficient as functional repair in terms
of repair bandwidth. Note that the equivalence is surprising
because the constraints of exact regeneration are stricter than
functional regeneration and one may expect the former to be
more inefficient as compared to the latter owing to the extra
constraints. The equivalence of exact and functional repair
were shown for the special case of k ≤ n/2 in references
[6], [5] by drawing parallels between the repair problem
and the wireless interference channel. The parallels enabled
the authors to use interference alignment - an interference
management tool - to construct random and even explicit
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Fig. 1. Pictorial Representation of Problem Definition for n = 4, k = 2, r = 1

codes for the distributed storage problem for k ≤ n/2 in
[5], [6], [7], [8]. More recently, references [9], [10], [11]
extended the equivalence, albeit in an asymptotic sense, for
all (n, k), including the previously open case of k > n/2.
Thus, the conclusion of [9], [10], [11] implied that, in the
limit of large file sizes, exact regeneration is asymptotically as
efficient as functional regeneration for the case of r = 1 failed
node. The references showed this equivalence by adopting into
the context of exact repair, the asymptotic alignment scheme
developed for obtaining the degrees of freedom of the K-user
interference channel in [2]. However, as far as we are aware,
the repair efficiency problem for more than 1 failed node
has not been studied in MDS code based distributed storage
systems. In the main result of this paper, we show that the
equivalence is maintained even for the case of r > 1, r ≤ n−k
failed nodes. Our main result is stated as follows.

Theorem 1: Consider any tuple (n, k) such that n > k. For
a file of size M stored in n distributed storage nodes as a
part of a (n, k) systematic MDS code, the minimum repair
bandwidth B for exact repair of any set of r failed nodes
where r < min(k, n− k) satisfies

lim
M→∞

B

rM/k
=
n− r
n− k

.

Equivalently, we can write

B =
Mr(n− r)
k(n− k)

+ o(M)

Further, functional repair of r failed nodes in the system
requires a minimum repair bandwidth Bf of

Bf
rM/k

=
n− r
n− k

In this paper, we focus on the achievability of the above bound
for the exact repair problem. The lower bound on the repair
bandwidth is obtained in a manner similar to the r = 1 case,
and is described in the extended version of this paper [12].

Remark 1: Note that we need r < (n − k) since the code
can tolerate upto n−k failures. If r ≥ k, then the naive strategy
of downloading the entire data stored in any k surviving nodes
to reconstruct the original data, and then replace the failed
nodes is trivially optimal. Therefore, ther regime of interest
for the above result is r < min(k, n− k).

Remark 2: We note that the factor of inefficiency, i.e., the
ratio of the repair bandwidth to the amount of data repaired
is B

rM/k is equal to n−r
n−k . Note that this ratio is always bigger

than 1 and smaller than k/r for r < min(k, n− k). The fact
that this factor is smaller than k/r implies that our solution is
always more efficient than the trivial solution of downloading
the entire data of size M from any k surviving nodes. The
ratio being smaller than 1 implies that there is, always, a cost
of inefficiency to be paid for using MDS codes during repair,
i.e., the amount of data downloaded is always greater than
the amount of data repaired. Finally, since n−r

n−k approaches
1 as n becomes large for a fixed k, the inefficiency becomes
vanishingly small as n becomes large.

II. PROOF OF ACHIEVABILITY OF THEOREM 1

We only provide an intuitive understanding of the achievable
scheme here. The complete proof with all the technical details
can be found in the extended version of the paper [12].
Consider a distributed storage system storing a total data of
M using an (n, k) MDS code. The total data is represented by
the M/k×k dimensional matrix [x1 x2 . . . xk], where xi
is an M/k × 1 dimensional vector stored by systematic node
i ∈ {1, 2, . . . , k}. Node j, where j ∈ {k + 1, k + 2, . . . , n}
being a parity node stores the M/k × 1 vector Aj,1x1 +
Aj,2x2 + . . .+ Aj,kxk, where Aj,i is a M/k ×M/k square
matrix for i ∈ {1, 2, . . . , k}. Henceforth, we assume that for
j ≤ k,

Aj,i =

{
0 j 6= i
I j = i

,∀i ∈ {1, 2, . . . , k}. (1)



The above assumption implies that the data stored in node
j ∈ {1, 2, . . . , n} is the M/k × 1 vector

Dj =

k∑

i=1

Aj,ixi. (2)

Note that Aj,i for j = k+ 1, k+ 2, . . . , n are a design choice
that define the code; these matrices will henceforth be referred
to as the coding matrices. We need to choose these matrices
so that the code is an MDS code, i.e., using any subset of k
nodes, the entire M×1 vector of data must be reconstructable.
Thus, we need to ensure that

rank







Aj1,1 Aj1,2 . . . Aj1,k

Aj2,1 Aj2,2 . . . Aj2,k

...
...

. . .
...

Ajk,1 Ajk,2 . . . Ajk,k





 = M (3)

for any distinct j1, j2, . . . , jk ∈ {1, 2, . . . , n}.
Now, when r, r ≤ min(k, n − k) nodes fail, the repair

center collects a β × 1 vector from each of the remaining
(n − r) healthy nodes where β = B

n−r , so that the total
repair bandwidth is B. Our goal is to find the coding matrices
Aj,i, (j, i) ∈ {k+ 1, k+ 2, . . . , n}× {1, 2, . . . , k} and design
the β × 1 vector to be downloaded by the repair center so
as to meet the required bound (presented in the statement of
the theorem). We now describe our solution assuming that r
systematic nodes fail. The extended version of the paper [12]
describes how the solution can be adapted to repair failures of
parity nodes. Without loss of generality, let us assume that the
first r nodes fail. We provide a linear solution to this problem,
so that the β×1 vector downloaded by the repair center from
node j > r to repair nodes 1, . . . , r is VT

j Dj , where Vj

is a M/k × β matrix. The matrices Vj will be henceforth
referred to as the repair vectors. The repair center now has to
regenerate the r M/k×1 vectors x1,x2, . . . ,xr, using (n−r)
vectors of the form VT

j Dj , j = r + 1, r + 2, . . . , n, each of
dimension β×1. Notice that the (k−r) vectors (of dimension
β × 1) downloaded using the (k − r) systematic nodes do
not contain any information about the desired vector x1 and
can be interpreted as interference. Therefore, the repair center
has, apart from the interference, (n− k) vectors of dimension
β×1 containing linear combinations of the desired data. Thus,
the vectors available at the repair center can be described as
follows.
• (k − r) vectors of the form VT

j xj , r < j ≤ k -
these vectors are downloaded from the (k − r) healthy
systematic nodes. They contain no information about the
desired data, and will be used to cancel interference.

• (n−k) vectors of the VT
j

∑k
i=1 Aj,ixi, k < j ≤ n - these

vectors contain both the desired signal and components
of the interference.

The goal of our solution will be to completely cancel
the interference from the latter (n − k) vectors using the
former (k − r) vectors listed above, and then to regenerate
x1,x2, . . . ,xr using the latter (n − k) vectors. In order to
completely cancel the interference related to xi using VT

i xi

by linear techniques, we will need, ∀j = k + 1, k + 2, . . . , n,
i = r + 1, r + 2, . . . , k, and for some β × β matrix Λj ,

VT
j Aj,ixi = ΛjV

T
i xi (4)

⇒ rowspan(VT
j Aj,i) ⊆ rowspan(VT

i ), (5)

⇒ colspan(AT
j,iVj) ⊆ colspan(Vi), (6)

where (5) follows from the fact that the matrices Aj,i and Vi

are picked independent of the data xi, and therefore need to
satisfy (4) for any data vector xi.

While the above condition ensures that the entire inter-
ference can be cancelled, we also need to ensure that, on
interference cancellation, the (n − k) vectors of dimension
β × 1 are sufficient to reconstruct x1,x2, . . . ,xr. Note that
after interference cancellation, we get (n−k)β equations in the
rM/k variables formed by the components of x1,x2, . . . ,xr.
All we need to ensure is that these equations have a rank of
rM/k, i.e.,

colspan







AT
k+1,1Vk+1 AT

k+2,1Vk+2 . . . AT
n,1Vn

AT
k+1,2Vk+1 AT

k+2,2Vk+2 . . . AT
n,2Vn

...
...

. . .
...

AT
k+1,rVk+1 AT

k+2,rVk+2 . . . AT
n,rVn







=
r.M

k
(7)

Therefore, our goal is to design Aj,i and Vl for j ∈ {k +
1, k + 2, . . . , n}, i ∈ {1, 2, . . . , k}, l = r + 1, r + 2, . . . , n so
that
• The code is a (n, k) MDS code.
• The interference is aligned appropriately so that it can be

completely canceled.
• The desired signals x1,x2, . . . ,xr can be regenerated at

the repair center.
Thus, essentially we need to pick Aj,i and Vl for j ∈ {k +
1, k+ 2, . . . , n}, i ∈ {1, 2, . . . , k}, l ∈ {r+ 1, r+ 2, . . . , n} so
that (3), (6) and (7) are satisfied. Further, as noted in Remark
1, the field size q and M are also design choices (for large
file sizes) that we can use to satisfy these conditions.

A. The solution : Choosing Aj,i,Vl,M and q
For k ≤ max(3, n/2), r = 1, the solutions of [5], [6]

design these matrices using Cauchy matrices to satisfy these
conditions. Here, note that the conditions (6), (7) are similar
to the interference alignment conditions in the interference
channel [2]. Specifically, (6) is analogous to the condition
that all the interference must align in the K-user interference
channel, and (7) is similar to the condition that the desired
signal must be linearly independent for linear decoding in the
interference channel [2]. These parallels will enable us to build
a solution based on the asymptotically perfect interference
alignment scheme of the same reference.

On noting that there are Γ = (n − k)(k − r) alignment
equations in (6), like in [2], we choose M = k(n−k)∆Γ and
β = (∆ + 1)Γ, where ∆ ≥ 1 can be any integer1. For any

1The intuition for these choices of M and β will hopefully become clear
later in this section for a reader unfamiliar with [2].



value of ∆, we show the existence of a field size q, matrices
Aj,i, i ∈ {1, 2, . . . , k}, j ∈ {k + 1, k + 2, . . . , n} and Vl, l ∈
{r + 1, r + 2, . . . , n} so that (3), (6), (7) are satisfied and
the failed nodes can be repaired. Before we proceed to give a
random coding based construction of the coding matrices and
repair vectors, we will evaluate the repair bandwidth achieved
by our scheme. Noting that our construction is applicable for
any value of ∆, we can make ∆, a design parameter, arbitrarily
large. As ∆→∞, we have M →∞ and

lim
M→∞

B

M
= lim

∆→∞

r(n− r)(∆ + 1)Γ

k(n− k)∆Γ
=
r(n− r)
k(n− k)

.
We now proceed to explain our construction of coding

matrices and repair vectors satisfying the constraints of repair
(3), (6), (7). Our solution, unlike those in references [5], [6], is
a random coding solution. Specifically, we choose the coding
matrices Aj,i, i ∈ {1, 2, . . . , k}, j ∈ {k + 1, k + 2, . . . , n}
randomly. We then provide an expression for Vl, l ∈ {r +
1, r + 2, . . . , n} as a (random) function of Aj,i so that (6)
is satisfied. Then we show for large field size q, that (3) and
(7) are satisfied with a non-zero probability. This implies that
there exists at least one choice of coding matrices Aj,i so that
all the desired conditions, i.e., (3), (6), (7) are satisfied.

Design of Coding Matrices, Aj,i: The alignment con-
straints, (6), are similar to the alignment constraints for the
interference channel (See equation (50) in [2]). Note that
the matrices Aj,i play a role analogous to channel matrices
in wireless interference channels [2]. Drawing inspiration
from [2], we choose the M/k ×M/k dimensional matrices
Aj,i∀j = k+ 1, k+ 2, . . . , n to be random diagonal matrices
with each diagonal entry of each matrix chosen independently
and uniformly distributed over the non-zero elements of the
field Fq . In other words, we choose

Ai,j =




a1
i,j 0 . . . 0
0 a2

i,j . . . 0
...

...
. . .

...

0 0 . . . a
M
k
i,j




(8)

with all the diagonal entries chosen independent of each other
and independent of all the diagonal entries of all other coding
matrices, i.e., with ami,j chosen independent of am̃

ĩ,j̃
from the

non-zero elements of the field, for all i 6= ĩ or j 6= j̃ or
m 6= m̃, where i, ĩ ∈ {1, 2, . . . , k}, j, j̃ ∈ {k+1, k+2, . . . , n}
and m, m̃ ∈ {1, 2, . . . , Mk }. Note that all the coding matrices
are full rank since all the diagonal elements are non-zero. In
the extended version of this paper [12], we show that that this
code is an MDS code with non-zero probability.

Design of Repair Vectors, Vl: Here, we provide a set of
repair vectors that satisfy (6). We first set the columns of
vectors Vl (which are analogous to beamforming vectors in
interference channels)

Vr+1 = Vr+2 = . . . = Vk = V
′

Vk+1 = Vk+2 = . . . = Vn = V

where, V and V
′

are M/k × β dimensional matrices. Then
the relations (6) can be re-written as

colspan(Aj,iV) ⊆ colspan(V
′
), i = r + 1, r + 2, . . . , k (9)

for j = k+1, k+2, . . . , n. Note that there are (k−r)(n−k) =
Γ conditions contained in (9). We wish to find V,V

′
so that

all these conditions are satisfied.
Intuitive understanding of asymptotic alignment: Before

we provide precise expressions for V,V
′
, we will intu-

itively explain the extent of alignment required to to satisfy
(6), (7). Since our bandwidth is restricted by β, we need
rank(V) ≤ β = (∆ + 1)Γ and rank(V

′
) ≤ (∆ + 1)Γ.

Further, noting that (7) implies
∑n
j=k+1 rank(Vj) ≥ M

k , we
get rank(V) ≥ M

k(n−k) = ∆Γ. Therefore V must have at
least ∆Γ non-zero linearly independent columns. In order to
satisfy (9), the span of the Γ∆Γ non-zero column vectors of
the matrix

[Ak+1,1V Ak+2,1V . . . An,1V Ak+1,2V

Ak+2,2V . . . An,kV]

should align in the space spanned by the (∆ + 1)Γ column
vectors of V

′
. For large values of ∆, since ∆Γ

(∆+1)Γ → 1,
and all the coding matrices have a full rank of M/k, we have
rank(Aj,iV)

rank(V′ )
→ 1 for any j ∈ {k+1, . . . , n}, i ∈ {1, 2, . . . , k}.

From (9) this implies that colspan(Aj,iV) ≈ colspan(V
′
). In

other words, the alignment between the Γ matrices on the left
hand side of the Γ relations indicated by (9) is asymptotically
perfect for large ∆. Next we return to the mathematical
construction of the alignment scheme.

Following the arguments of [2], we choose the set of non-
zero column vectors of V,V

′
as shown at the top of the next

page2, where the entries of the M/k×1 column vector w are
chosen uniformly over the non-zero elements of the field and
independent of all the coding matrices.

Thus, the elements of V contain products of (diagonal) cod-
ing matrices corresponding to interference symbols contained
in the parity nodes, with each matrix raised to an exponent that
is allowed to take integer values from 0 up to ∆−1. Since there
are Γ = (k−r)(n−k) coding matrices and ∆ possible distinct
values for the exponent of each matrix, the total number of
elements, i.e. column vectors, in V is ∆Γ. Similarly, the total
number of column vectors in V

′
is (∆ + 1)Γ. To understand

the notation better, consider, e.g., the case where ∆ = 1. Then,
V = w, i.e., just one column vector, and V

′
contains all the

2Γ vectors of the form

A
αk+1,r+1

k+1,r+1 A
αk+1,r+2

k+1,r+2 . . .A
αk+1,n

k+1,n A
αk+2,r+1

k+2,r+1 . . .A
αn,k

n,k w

where αj,i ∈ {0, 1}. For any general value of ∆, the columns
of V are of the form

A
αk+1,r+1

k+1,r+1 A
αk+1,r+2

k+1,r+2 . . .A
αk+1,n

k+1,n A
αk+2,r+1

k+2,r+1 . . .A
αn,k

n,k w

2For convenience, we ignore the abuse in notation of these equations; the
quantity on the left denotes the matrix, whereas the quantity on the right only
denotes the set of non-zero columns of the matrix.



V =








∏

j=k+1,...,n
i=r+1,...,k

A
αj,i

j,i


w : αk+1,r+1, ..., αn,k ∈ {0, 1, ...,∆− 1}





(10)

V′ =








∏

j=k+1,...,n
i=r+1,...,k

A
αj,i

j,i


w : αk+1,r+1, ..., αn,k ∈ {0, 1, 2, ...,∆}





(11)

where αj,i ∈ {0, 1, . . . ,∆ − 1} and V
′

has columns of the
form

A
αk+1,r+1

k+1,r+1 A
αk+1,r+2

k+1,r+2 . . .A
αk+1,n

k+1,n A
αk+2,r+1

k+2,r+1 . . .A
αn,k

n,k w

where αj,i ∈ {0, 1, . . . ,∆}. Note that the ordering of the
matrices Aj,i in the above notation is irrelevant, since the
coding matrices, being diagonal, commute. This commuting
property is the key to the alignment scheme. Because the
ordering of matrices is irrelevant, it is readily verified that
multiplying any column vector from V by any of the Aj,i

involved, produces a column vector contained in V
′
. This is

because multiplication by Aj,i simply raises the corresponding
exponent of the element in V by one, but the elements of
V

′
already include all such terms. Since the set of columns

of Aj,iV is a sub-set of the columns of V
′

for any j ∈
{k + 1, k + 2, . . . , n}, i ∈ {r + 1, r + 2, . . . , k}, it is evident
that this choice of repair vectors satisfies (9), and equivalently,
(6). Finally, we need to show that (7) is satisfied. Intuitively,
we note that the repair vectors V,V

′
in (10),(11) are chosen

independent of the coding matrices involved in (7). Thus, the
(non-zero) columns of the left hand side of (7) are all linearly
independent with high probability, if the field size is large
enough, since each column entry is a function of a random
entry which is independent of all other entries in the matrix.
Since the number of non-zero columns of the matrix on the
left hand side of (7) is equal to rM/k, the matrix has the
desired rank of rM/k. A rigorous proof of (7) can be found
in [12].

III. CONCLUSION

Recent literature in wireless networks has shown that, in a
network with multiple sources, random network coding does
not suffice, and we need structured codes in general to align
interference. This insight extends to wired networks as well,
where, while random network coding achieves capacity for a
single-source network, we need a more structured approach
to choosing network coding co-efficients in networks with
multiple sources to align interference. Recently, this connec-
tion has been increasingly used to obtain new insights on
multi-source multicast wired networks [13]. Since exact repair
in distributed storage is related to the multi-source multicast
problem, insights from interference alignment are useful in
finding capacity of the associated class of wired networks.
The results of this paper can thus be viewed as an expansion
of the class of networks where asymptotic alignment is useful

to achieve capacity (See extended version [12] for details).
A natural direction of research in this regard is explore the
extent to which the techniques of interference alignment could
reveal insights into the capacity of multi-source multicast
wired networks. From a practical perspective, while the exact
regeneration problem is effectively solved from a perspective
of existence of optimal codes, explicit construction of codes
which achieve efficient repair is an open problem.
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