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— We provide an information theoretic perspective on the

problem of throughput maximization in a block flat fading wireless data
system with codeword lengths restricted to be less than the fade block du-
ration. We assume no channel state information at the transmitter (CSIT)
and perfect channel state information at the receiver (CSIR). We explore
the tradeoffs between using a single codebook vs multiple codebooks (rate-
splitting) on Single Input Single Output (SISO) channels, and scalar cod-
ing vs vector coding for diagonal Multiple Input Multiple Output (MIMO)
channels. For all log-concave scalar channel fade distributions, we show
that using multiple codebooks increases the average throughput of the sys-
tem when the multiple codewords are transmitted simultaneously in time,
frequency and space over the same channel. Splitting the channel orthogo-
nally in time, frequency, or among the inputs of a MIMO system and then
transmitting different codewords on each orthogonal sub-channel signifi-
cantly reduces the achievable average throughput.

I. INTRODUCTION

We consider the problem of average throughput maximiza-
tion for wireless data communications. For a typical data com-
munication system transmitting packets at rate 
 with retrans-
missions and at a packet error rate ��� , the average throughput
defined as ����
������������ achievable while fulfilling a cer-
tain delay requirement is a good performance measure. [1] and
[2] use this metric to optimize the link adaptation thresholds
for EDGE. These works, and the references therein, deal with
the throughput maximization problem from a very practical per-
spective. From a fundamental information theoretic perspec-
tive, not much is known about the maximum achievable average
throughput with packet errors and retransmissions. This is in
part due to the fact that the usual notion of capacity corresponds
to a zero error capacity and entails unbounded decoding delay.
A more relevant and a relatively new notion to estimate aver-
age throughput is outage capacity [3]. Outage probability of a
channel is known to be a good approximation to the probability
of codeword error for practical coding schemes. In this work
we use the notion of outage capacity to provide an information
theoretic perspective on the problem of average throughput max-
imization with block fading.

As explained in greater detail in Section II, in the absence of
CSIT, if the transmitter uses a single codebook at a rate 
 with
codeword duration � smaller than the fade block duration, the
average throughput can be expressed as ����
 Prob(channel ca-
pacity � 
 ). Choosing a higher rate codebook would decrease
the probability that the channel block supports that rate. Thus
the rate 
 needs to be optimized to maximize average through-
put. However, if the transmitter splits the flat fading channel
block orthogonally in time or frequency or in some cases among
the inputs of a multiple input channel, then it can use multiple
codebooks, possibly at different rates, over these subchannels.
multiple codebooks can also be transmitted simultaneously in
time, frequency and space so that the codewords interfere with
each other, with successive decoding at the receiver.

The use of multiple codebooks leads to the notion of partial
outages as the channel realization decides which codewords can
be decoded and which cannot. It also leads to several interesting

questions. For example, between single and multiple codebooks
which one is better to maximize average throughput? Which one
allows easier coding and decoding? And what are the other ad-
vantages and disadvantages that one scheme has over the other?
These are the questions that we answer in this paper. We find
that the answers depend on the channel distribution in general.
However, by using the notion of log-concavity of distributions
we are able to provide results applicable to a broad range of
channel fade distributions commonly encountered in wireless
communications.

II. SYSTEM MODEL

We assume a block flat-fading channel model with the input
output relationship for the !#"%$ symbol in the &'"%$ fading block
given by

(*) �+!,����- )/.�) �+!0�2143 ) �+!0�'5 (1)

where ( 5/-65 . 5 and 3 are the output symbol, channel gain, input
symbol and zero mean additive white Gaussian noise, respec-
tively. - ) is fixed over a block, and the sequence of channel
realizations -8795/-;:�5�<�<9< is i.i.d. The receiver knows the channel
- ) perfectly. The transmitter knows only the statistics of the
channel and therefore cannot adapt its transmit rate or power to
the channel realization from one block to another. For simplic-
ity, we drop the block and symbol indices. We define

=�>@?A? - ?B? : 5 C $ �D�E�
>�FBG*H ���I1 = �E� (2)

and J $ � . � as the distribution of the random variable
=

. We nor-
malize

=
and 3 so that E[

=
]=1 and E[

? 3 ? : ]=1. Note that C $ �D�E�
is the capacity of the constant channel with transmit power � .

The constraints on the decoding delay and complexity at the
receiver translate to a constraint on the maximum codeword
length � , so that a codeword does not span more than one block.
Thus we cannot code across blocks and the ergodic capacity
with no CSIT and perfect CSIR is not a relevant measure of
the average throughput. Even the delay limited capacity, where
one aims to keep the instantaneous mutual information constant
at all times, does not apply to this system because of the ab-
sence of CSIT. The relevant quantity in our case is the outage
probability.

In the absence of CSIT, if the transmitter transmits a code at
a rate 
 , the decoded codeword at the receiver will be in error
with probability close to one if the capacity corresponding to the
actual channel realization in that block is smaller than 
 (strong
converse to channel coding theorem). We call this an outage.
On the other hand, if the channel capacity for the actual channel
realization is larger than 
 the probability of error is negligible.
Note that the actual probability of error in this case is bounded
away from zero since the code duration is limited to less than a
block. However, we make the assumption that the fade block du-
ration is long enough so that the probability of error can be made
negligibly small compared to one. This assumption is reason-
able because, unlike the time-varying channel where the coding
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delay is needed to average out over the channel variations which
may happen on a much larger time scale, in the time-invariant
Gaussian channel, the coding delay is only needed to average
out the Gaussian noise to get small error probabilities, and is
typically quite short.

Under our assumptions, the maximum achievable average
throughput of the system when the transmitter uses one code-
book at a rate 
 can be represented as

�
� 7������� �D� " ���	��

�� 
 Prob � C $ �D� " � � 
 �'5 (3)

where
=

is the constant channel fade experienced by a codeword,
and C $ is the Shannon capacity for the constant channel

=
with

transmit power � " . Note that since
=

is drawn randomly accord-
ing to the distribution J $ � . � , C $ is also a random variable, and

hence the probability. The superscript ���0� in �
��� ������ is used to in-

dicate that � different codebooks are being used. Its significance
will be obvious later when we discuss multiple codewords and
partial outages. Note that since the receiver knows the channel
perfectly, it knows when an outage happens and therefore does
not attempt to decode the codeword when the capacity supported
by the channel is smaller than the code rate. When this happens,
we assume that as in a typical packet transmission system there
exists a feedback channel through which the receiver requests
the transmitter to retransmit that packet (codeword). Note that
even if a fade block is in outage, i.e. C $�� 
 , the receiver can
save the received information in that block and possibly use it to
aid in the decoding process when the corresponding codewords
are retransmitted. However, for simplicity and to model practi-
cal systems better, we assume that the receiver simply discards
the information received in a fade block during an outage.

Our goal is to achieve the highest possible average through-
put over all transmit strategies. Equation (3) represents the av-
erage throughput corresponding to just one possible transmit
strategy. However it is not the only possible transmit strategy.
For instance, what if the transmitter used more than one code-
word? The transmitter could perform time-sharing between two
codewords, at possibly different rates 
 7 and 
 : and different
powers �I7 and � : while maintaining the same average transmit
power. Or it could divide the frequency band into two parts and
transmit codewords at different rates and powers on these two
sub-channels. For a MIMO system, it could transmit different
codewords on different channel inputs. Or it could simply trans-
mit both codewords simultaneously over time, frequency and
channel inputs, so that the receiver can recover the data through
successive decoding. Thus, the transmitter can transmit multiple
codewords at different rates. It is possible then that in a block
one of the codewords is in outage while the other is not. We re-
fer to this as a partial outage. Thus, while transmitting only one
codeword allows the receiver to recover either the full transmit
rate or nothing over a block, partial outage allows the receiver
to recover a fraction of the total transmit rate.

Our main results contained in Sections IV and V use some no-
tation and results from reliability theory. In particular we use the
notions of the reliability function, the failure rate function and
log-concavity of the density function J $ � . � . The next section
presents a summary of these topics.

III. LOG-CONCAVITY AND THE FAILURE RATE

One of the main objectives in this paper is to find out if using
multiple codebooks increases the achievable average through-
put. However, we find that the answer depends on the channel
fade distribution. For example, with time sharing between code-
books, we find in Section V-A that for some channel distribu-
tions, multiple codebooks strictly decrease the average through-
put, while for some other channel distributions multiple code-
books lead to higher average throughput than possible with a
single codebook. This makes it impossible to come up with
general results that apply to any arbitrary fade distribution. For-
tunately, we also find that most commonly encountered distri-
butions lead to the same results. The common property of these
distributions that makes this happen turns out to be their log-
concavity. This allows us to obtain fairly general results that
hold for all log-concave distributions without having to consider
each specific distribution separately.

The distribution J $ � . � is said to be log-concave if
FAG H J $ � . �

is a concave function of . . The assumption of log-concavity
is much used since most commonly encountered distributions
are log-concave. For example, the Nakagami- � fading distribu-
tion[4], which can model Rayleigh and Ricean distributions as
well as more general ones, is log-concave. A list of distributions
that always have log-concave density functions is provided in
[5].

The mathematical implication of log-concavity that is the key
to our results is presented in Theorem 1. To state the theorem we
introduce some nomenclature. We define the reliability function�
$ � . � and the failure rate � $ � . � as

�
$ � . �

>
Prob � = � . � and � $ � . �

> J $ � . ��
$ � . ���

(4)

Note that the reliability function
�
$ � . � is the probability that

a random channel realization will support a given rate 
 �FAG H ���I1 � . � . The probability that the channel fails to support a
rate 
41���
 � FBG H ��� 1 � . 1�� . � �E� , given that it supports a rate

 � FAG H ��� 1 � . � , is given by � $ � . ��� . . Hence the name failure
rate.

The following theorem relates the log-concavity of J $ � . � to
the failure rate.
Theorem 1: If the density function J $ � . � is log-concave on
��� 5'&�� , then the failure rate is non-decreasing on ��� 5 & � .
Proof: This is Corollary 2 to Theorem 2 in [5].
Theorem 1 is central to the proofs of the results in the next two
sections.

IV. CHARACTERIZING �
� 7������� �D�E�

We begin this section with an alternate representation for

�
� 7������� �D�E� as

�
� 7������� �D�E���	��

�� �

FAG H ���I1!� 7 �E� � $ ��� 7 � (5)

This is easy to see as the rate 
 � FBG*H ��� 1"��7'�E� is achievable
whenever C $ �D�E� �

FBG H ��� 1 = �E� � 
 , i.e.
= �#� 7 . Further,

let us define the function $ �D�E� as the optimal channel threshold

that achieves �
� 7������� �D�E� . Mathematically,

$ �D�E� > 

% H ��

��
FAG H ��� 1!� �E� � $ ���0� (6)
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Theorem 2 shows that if the channel fade distribution is log-
concave, then there is only one unique channel threshold � that
maximizes average throughput for a transmit power � . Thus
$ �D�E� is unambiguously defined by (6).

To build some intuition, we need to characterize the behav-

ior of the maximum average throughput �
� 7������� �D�E� , the opti-

mal channel threshold $ �D�E� and the optimal code rate
FAG H ��� 1

� $ �D�E�/� as functions of transmit power � . For example, note
that it is not obvious if the optimal rate should increase or de-
crease with � or if the maximum average throughput is a con-
cave function of � or not. In fact, while Theorem 2 shows that

the optimal rate is an increasing function of � and �
� 7 �� � � �D�E� is

an increasing concave function of � for log-concave fade dis-
tributions, one can indeed find distributions for which neither of
these statements is true.

The following theorem characterizes �
� 7������� �D�E� for log-

concave fade distributions.
Theorem 2: For all log-concave channel fade distributions
J $ � . � such that J $ � . � �

� 5�� .�� � � 5�� � , the following state-
ments are true:
2.1: The optimal channel threshold $ �D�E� is unique. i.e., If

�
� 7������� �D�E� � FAG H ��� 1 � 7'�E� � $ ��� 7 � �

FBG*H ���E1 �0:��E� � $ ��� : � ,
then � 7 � � : � $ �D�E� .
2.2: The optimal channel threshold $ �D�E� is a strictly decreas-

ing function of � .
2.3: The optimal outage probability, 1-

�
$ ��$ �D�E�/� is a strictly

decreasing function of � .
2.4: The optimal rate

FBG*H ��� 1 � $ �D�E�/� is a strictly increasing
function of � .
2.5: $ �D�E� � $ ��$ �D�E�/��� � and � $ ��$ �D�E�/� �
		�� $ �D�E��1 � � �for all � � � � 5�� � � This is needed to prove the next statement.

2.6: Most importantly, �
� 7������� �D�E� is an increasing concave

function of � .
Proof: See [6].

V. AVERAGE THROUGHPUTMAXIMIZATION

A. Time or Frequency Sharing

Our main result in this section is contained in the following
theorem.
Theorem 3: Time or frequency sharing between multiple code-
books does not increase the average throughput if and only if

�
� 7������� �D�E� is a concave function of � for the channel fade distri-

bution.
Proof: See [6].

B. Simultaneous Multiple Codes

Consider a system where the transmitter transmits 3 code-
words simultaneously in time and frequency. Such a system is
characterized by the code rates for each codebook, the transmit
power in each codeword, the decoding order at the receiver, and
channel thresholds corresponding to partial outages. For sim-
plicity we first consider two simultaneous codewords at rates 
�7
and 
 : and with powers �I7 and ��: . Also suppose that codeword
1 is decoded before codeword 2, i.e. codeword 2 is treated as
noise while codeword 1 is being decoded. The channel thresh-

olds � 7 and �0: ( � 7
�"�0: ) are defined such that


E7 � FAG H�� �I1 �I7 � 7
�I1 � : � 7�� and 
 : � FAG H ��� 1 � :��0:9� �

Thus when
= � � � 5 � 7 � the receiver cannot decode either code-

word, when
= ��� ��7�5 � : � the receiver can only decode codeword

1 and therefore can only recover a rate 
 7 (partial outage), and
when

= ��� �0:�5�� � the receiver can decode both codewords to
recover rate 
E7 1 
 : .

The maximum average throughput with two simultaneous
codewords can therefore be expressed as

�
� : ������ �D�E��� ��

�� ��� ��� � � ��� � ����� ��� ����� ��! FBG H ���I1 � 7 �I7

�I1!� 7 � : �
�
$ ��� 7 �

1 FAG H ���I1!� :�� :9� � $ ���0:9� (7)

Similarly, with 3 simultaneous codewords, let the rates be given
by the vector "
 �$#

 795'
 :�5�<9<�< 5 
&%(' , powers given by the vec-
tor "� �$#
� 795 � :�5�<9<�< 5 �)%(' , and the channel thresholds given by
the vector "� �$# � 795 �0:
59<�<�< 5 ��%(' such that ��7
�"�0:*��<�<�<+�"��% .
So the codewords are decoded at the receiver in ascending order,
i.e. codeword 1 is decoded first and codeword 3 decoded last.
Then we have the following relationships:


-, � FBG*H/. �I1 ��, �),
�I1!��,10 %� � , � 7 � �32 554 � �*5�6#59<�<9< 5 3 � �


-% � FBG*H ��� 1!��%,�7% � (8)

The receiver recovers a rate 
 7�1 
 :I1�<9<�<*1 
&, if the channel= ��� ��,�5 ��, � 7 � . Define ��% � 7�� 18� . The maximum average
throughput with 3 simultaneous codewords can therefore be ex-
pressed as

�
� % ������ �D�E��� FAG H ��� 1!��% �)% � � $ ����% �/1

��

�9� � 9� �(:<;=?> � � = � � !
%A@27B , � 7 FBG*H . �I1 ��, �),

�I1!��,10 %� � , � 7 � �32 �
$ ����, �

Next we present the main result of this section.
Theorem 4: The maximum average throughput achievable by

transmitting 3 codes simultaneously, �
� % �� � � �D�E� is a strictly in-

creasing function of the number of codes 3 for any log-concave
channel fade distribution.
Proof: See [6].

In summary, the results of this section and the previous sec-
tion imply that for log-concave densities, using different rate
codebooks on different orthogonal (non-interfering) channels
obtained by splitting the flat block fading channel into non-
overlapping multiple channels in time or frequency does not im-
prove the average throughput. However, using multiple code-
books simultaneously over the same time and frequency yields
maximum achievable average throughputs that are strictly in-
creasing in the number of codebooks.

We considered only SISO channels so far. The next two sec-
tions show how the results extend to Single Input Multiple Out-
put (SIMO), Multiple Input Single Output (MISO), and diagonal
MIMO systems.
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C. Extension to SIMO and MISO systems

First, consider a SIMO system. So the channel - , the output( and the noise 3 in equation (1) are vectors. The input . is still a
scalar. However note that nothing else changes. The definitions

of
=

, C $ �D�E� and �
� % ������ �D�E� are still the same. Thus the results

of the previous sections hold for SIMO systems with no change.
Next, we consider MISO systems. So the channel - and the

input . are vectors while the output ( and the noise 3 are still
scalars. We assume that each component of - is i.i.d. Now,
since there are multiple transmit antennas available to the trans-
mitter, it can map multiple codebooks to multiple antennas in
different ways. The maximum achievable average throughput
with multiple codebooks and optimal mapping of codebooks to
antennas are interesting questions that remain unsolved. How-
ever, if we consider simultaneous transmission of codebooks
over space, time and frequency, i.e. if the input covariance ma-
trix of each codebook is a multiple of an 3 ��� 3 � identity ma-
trix - a reasonable assumption in the absence of CSIT - then
once again the derivation of previous sections holds with a minor

change in the definition of C $ �D�E� to C
�����	�
$

>�FAG H�
 �I1 = �%	�
� ,

where 3 � is the number of inputs in the MISO system. Thus the
results of the previous sections apply to MISO systems where all
codebooks are used simultaneously over all inputs if we divide
all codebook powers by 3 � .

D. Diagonal MIMO systems

For a general � � � MIMO channel - with i.i.d. elements,
and no CSIT, it is reasonable to assume that the input covariance
matrix is a multiple of the � � � identity matrix. With such
an input covariance matrix, the maximum rate supported by the
channel over a fade block is

C��E�D�E��� FBG H����� � 1 �� - -�� ���� (9)

Note that the diagonal covariance matrix alone does not
uniquely determine the coding strategy. The same capacity can
be achieved by scalar coding or vector coding. With scalar cod-
ing � scalar codes are transmitted simultaneously on the �
inputs. By scalar code we mean that the code symbol at each
instant is a scalar. Vector coding on the other hand uses just one
codebook and the code symbol at each instant is an � dimen-
sional vector. The � components of this symbol are transmitted
on different inputs. While the Shannon capacity with either of
these schemes and an input covariance matrix that is a multiple
of the � � � identity matrix is the same, the schemes are not
equivalent in terms of maximum achievable average through-
put. As before, while transmitting multiple scalar codes allows
partial outages, transmitting one vector code only allows the
receiver to either recover the full transmitted rate or nothing.
A comparison of vector coding vs scalar coding for maximiz-
ing average throughput with no CSIT is therefore an interesting
problem, but hard to solve in the general case.

We compare scalar coding vs vector coding for the sim-
pler case of diagonal MIMO channels. So - is a diago-
nal matrix over each fading block with i.i.d. diagonal ele-
ments drawn according to the distribution J $ � . � . Notationally
- =diag # -87 795/-;: :�5�<�<9< 5 - ��� ' and

= , > ? -<, , ? : . Note that the
channels do not interfere with each other. This model corre-
sponds to the situation when the transmitter uses multiple flat

block fading frequency slots that are separated far enough so
that the fade level in each is independent of the others.

To transmit at a total rate 
 , with scalar coding, and for code
duration � , the transmitter has � codebooks, each with 6�����
codewords with power �� . � codewords are transmitted over
every � symbol durations, such that each codeword sees one
fixed scalar channel. The receiver decodes each of these sep-
arately as they are sent on non-interfering channels. The fade
value on each channel decides whether the corresponding code-
word can be decoded. Note that if one of the channels is bad
the corresponding codeword cannot be decoded even if all the
other channels are strong. However if a channel is good the
corresponding codeword can be decoded even if all the other
channels are bad.

With vector coding at a rate 
 and for code duration � , the
transmitter has one codebook with 6	� � codewords with power
� . The codewords are � � � matrices and over � symbol dura-
tions one of these matrices is transmitted, at the rate of 1 column
per symbol period. The elements in the columns are mapped to
different inputs of the MIMO diagonal channel. To contrast this
case with the scalar coding case, note that with vector coding if
one of the channels is bad, it is still possible to decode the full
rate 
 if the other channels are good enough. On the other hand
if one channel is good, the codeword cannot be decoded if the
other channels are bad.

To summarize the difference, and to strike an analogy with
gambling, vector coding bets the entire rate on the ’average’ (in
some sense) channel and either gets it all or nothing. Scalar
coding, on the other hand, bets equally on all the components
of the channel and gets a rate proportional to the number of
’good’ channels. While one would expect a smaller variance
in the rate over each block with scalar coding, it is not obvious
which scheme would do better in terms of average throughput.

With our assumptions, the maximum average throughput with
scalar codes is given by

�������� � ��

��
�B , � 7 
� Prob

� FBG H�� �I1 �� = ,! � 
� �
� ��

�� � 
 Prob

� FAG H�� �I1 �� = 7" � 
 � 5
and the maximum average throughput with vector coding is
given by

��#����� � ��

�� 
 Prob
� FBG H$���� � 1 �� - - � ���� � 
 �

� ��

�� � 
 Prob
. 0 �, � 7 FAG H&% � 1 �� = ,!'� � 
 2 �

Using Markov’s inequality we find that both � ������ and � #�����
can be upper-bounded by

� ����� �(� E
� FBG*H � �I1 �� = 7 �  � (10)

Note that Markov’s inequality is a very loose bound for most
common distributions. However, at least for large � , applying
the law of large numbers we find that � #����� comes close to the
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bound in (10). Thus we conclude that, asymptotically for large� , vector coding (single codebook) yields higher throughputs
than scalar coding (multiple codebooks). Numerical results in-
cluded in the next section indicate that for Rayleigh fading, vec-
tor coding always outperforms scalar coding.

In the next section we present a bigger picture of the tradeoffs
between single and multiple codebooks.

VI. NUMERICAL RESULTS AND DISCUSSION

First we address the question of single codebook versus mul-
tiple codebooks. Note that vector and scalar coding as described
in the previous section correspond to using single and multiple
codebooks, respectively. Thus the following discussion applies
to scalar coding versus vector coding as well.

There are several advantages to using multiple codebooks.
Firstly for the same average throughput, partial outages make
sure that the variance of the rates achieved over different blocks
is smaller with multiple codebooks. Further, splitting the same
total rate 
 over multiple codebooks and using successive de-
coding at the receiver reduces the decoding complexity at the
receiver for the same codeword lengths � . For example, with
a single codebook, the receiver needs to compare the received
sequence ( to 6 � � codewords in the codebook to find the clos-
est. However, if we split the rate equally among � codewords
for example, then the receiver needs to compare the received
sequence ( to 6 ���� codewords to decode each codeword. In
all � such comparisons need to be made. The complexity is
still exponentially smaller than that for a single codebook, as� 6 ���� � 6 � � .

There is also a disadvantage associated with multiple code-
books. The number of codebooks used by the transmitter di-
rectly increases the feedback bandwidth required. This is be-
cause for each transmitted codeword the receiver needs to re-
quest a retransmission or to acknowledge successful decoding
to the transmitter.

A numerical comparison between achievable average
throughputs with single and multiple codebooks on a scalar
Rayleigh fading channel is presented in Figure 1. We notice
that at low SNRs there is practically no gain from using mul-
tiple codebooks, and even at reasonably high SNRs the gains
are modest. Also noticeable are the diminishing gains as we
increase the number of codewords from 1 to 2 and then to 3.
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A numerical comparison between scalar and vector coding for
Rayleigh fading diagonal MIMO systems is drawn in Figure 2.
We notice that the gains with vector coding are significant. The
average throughput for 20 inputs at an average transmit SNR of
30 db is about 40% higher for vector coding.

Finally we conclude with a summary of our results in the next
section.

VII. CONCLUSIONS

We use an information theoretic approach to the problem of
average throughput maximization in a block flat fading chan-
nel with codeword lengths restricted to less than the fade block
duration. We begin by characterizing the maximum achievable
average throughput with just one codebook. For log-concave
fade distributions, we show that the maximum achievable aver-
age throughput with just one codebook is a concave increasing
function of the transmit power. As the power increases the av-
erage throughput increases both because the optimal code rate
increases and because the optimal outage probability decreases.
Then we show that using multiple codebooks over orthogonal
channels created by splitting the block fading channel in time
or frequency does not increase the average throughput. This
is essentially a consequence of the concavity of the average
throughput as a function of transmit power. However we find
that simultaneous transmission of multiple codebooks necessar-
ily increases the maximum achievable average throughput as the
number of codebooks is increased. This increase comes at the
cost of an increased feedback rate from the receiver as for each
codewords the receiver needs to send either a retransmit request
or a successful decoding acknowledgment. Numerically, at least
for Rayleigh fading, we find that although the average through-
put increases, the gains are modest. At low SNRs using multiple
codebooks does not increase the average throughput. These re-
sults also hold for SIMO systems and can be extended to MISO
systems under the assumption that all codewords are transmitted
simultaneously over time, frequency, and over all inputs.

For MIMO systems, the optimal mapping of multiple code-
words to multiple inputs is hard to find.So we restrict our dis-
cussion to some simple cases. We compare the throughputs of
scalar coding to vector coding with equal power allocation to all
inputs for a diagonal MIMO channel. We find analytically that,
asymptotically as the number of inputs increases, vector coding
does better. Our numerical results show that for Rayleigh fad-
ing, vector coding always does better than scalar coding and the
gains are significant.

Thus we conclude that multiple codebooks help to increase
the achievable average throughput when they are simultaneously
transmitted over the same channel. However, splitting the chan-
nel orthogonally in time, frequency, or among inputs of a MIMO
channel, and then transmitting different codebooks on each or-
thogonal sub-channel significantly reduces the achievable aver-
age throughput.
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