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Abstract

We explore the degrees of freedom ofM ×N user wirelessX networks, i.e. networks ofM transmitters andN

receivers where every transmitter has an independent message for every receiver. We derive a general outerbound on

the degrees of freedomregion of these networks. When all nodes have a single antenna and all channel coefficients

vary in time or frequency, we show that thetotal number of degrees of freedom of theX network is equal to MN

M+N−1

per orthogonal time and frequency dimension. Achievability is proved by constructing interference alignment schemes

for X networks that can come arbitrarily close to the outerbound on degrees of freedom. For the case where either

M = 2 or N = 2 we find that the degrees of freedom characterization also provides a capacity approximation that

is accurate to withinO(1). For these cases the degrees of freedom outerbound is exactly achievable.
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I. INTRODUCTION

There is increasing interest in approximate capacity characterizations of wireless networks as a means to under-

standing their performance limits. In particular, the highSNR regime - where the local additive white Gaussian

noise (AWGN) at each node is de-emphasized relative to signal and interference powers - offers fundamental

insights into optimal interference management schemes. The degrees-of-freedom approach provides a capacity

approximation whose accuracy approaches100% in the high signal-to-noise ratio (SNR) regime. A network has d

degrees of freedom if and only if the sum capacity of the network can be expressed asd log(SNR))+o(log(SNR)).

Since each orthogonal (non-interfering) signalling dimension contributes a rate oflog(SNR) + o(log(SNR)), the

degrees of freedom of a network may be interpreted as the number of resolvable signal space dimensions. The

capacity characterizations obtained through this approach are equivalently described by various researchers as the

multiplexing gain, the pre-log term or the degrees of freedom characterization. Starting with the point to point MIMO

channel [1], [2], the degrees of freedom have been characterized for MIMO multiple access channel (MAC) [3],

MIMO broadcast channel (BC) [4]–[6], 2 user MIMO interference channel [7], various distributed relay networks

[8]–[10], 2 user MIMO X channel [11]–[15], and most recently theK user interference channel [16]. For the

purpose of this paper, relevant ideas from these prior worksare summarized as follows.

Consider a two user Gaussian interference channel where each node is equipped with a single antenna. Trans-

mitters T1 and T2 have independent messagesW11 and W22 for receiversR1 and R2, respectively. It is known

that if transmittersT1 and T2 are combined into one compound transmitter with2 transmit antennas and (or)

the receiversR1 and R2 are combined into one compound receiver with2 receive antennas, then the resulting

point to point MIMO channel (or the resulting vector MAC/BC)has2 degrees of freedom, i.e. the sum capacity

of the resulting channel is expressed as2 log(SNR) + o(log(SNR)) [3]–[6]. However, the interference channel

with distributed transmitters anddistributed receivers has only1 degree of freedom, i.e., its sum capacity is only

log(SNR) + o(log(SNR)) [7], [17]. This loss of degrees of freedom is evidently due tothe inability of the

transmitters/receivers to jointly process the transmitted/received signals.

Consider again the same two user network with distributed transmitters and receivers, but suppose there are

four independent messagesW11,W12,W21,W22 such that messageWij originates at transmitterj and is intended

for receiveri. This communication scenario is named theX channel in [18] and is shown to have43 degrees of

freedom in [15] when the channel coefficients are time-varying or frequency-selective and drawn from a continuous

distribution. The degrees of freedom of the constantX channel (i.e. when the channel coefficients are not time-

varying or frequency-selective) remain unknown in generalfor single antenna nodes1. A key concept that arises in

the context of the X channel [11], [15] (also an essential element of wireless interference networks [16], [19]–[22]

and the compound broadcast channel [23]), is the idea of “Interference Alignment” that refers to an overlap of

signal spaces occupied by undesired interference at each receiver while keeping the desired signal spaces distinct. To

illustrate why interference alignment on the X channel leads to4/3 degrees of freedom, we construct the following

simple example where alignment is achieved in terms of signal propagation delays.

1The constant X channel withM > 1 antennas at each node is considered in [11] and shown to achieve ⌊ 4M

3
⌋ degrees of freedom. The

result is strengthened in [15] where achievability of4M

3
degrees of freedom is established along with a converse.
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Fig. 1. Interference Alignment on theX channel.4 interference-free channels are created over3 time slots

Toy Example - 4 orthogonal channels over 3 time slots

As shown in Figure 1, in this toy example we assume there is a propagation delay between each transmitter

and receiver (the delay0 can also be interpreted as a delay of3 time slots). The transmissions are scheduled such

that, following the propagation delays, they arrive at the desired receivers free from interference, while they are

aligned with other interference at the undesired receivers. Thus, for example, transmitted symbols for messageW11

are received free from interference at intended receiverR1 but interfere with the symbols for messageW12 at

receiver2 since bothW11,W12 are undesired messages forR2. Due to this interference alignment,all 4 messages

are delivered interference-free to their respective destinations using only 3 time slots. While the toy example uses

artificial propagation delays, essentially the same alignment is accomplished in [15] (without involving propagation-

delays) over random time-varying channels by sophisticated beamforming in space and time dimensions. Thus, the

toy example illustrates the basic idea behind the4/3 degrees of freedom of the2 userX channel2.

Interference alignment is the key to the degrees of freedom characterizations of a variety of network communi-

cation scenarios, such as the compound broadcast channel [23], cognitive radio networks [15], [26], deterministic

channel models [24] and the interference channel withK > 2 users [16]. While the principle of interference

alignment is quite simple, the extent to which interferencecan be aligned for a general network topology is difficult

to determine. Ideally one would like all interfering signals to align at every receiver and all desired signals to

be distinguishable. As we introduce more messages into the network, the interference alignment problem becomes

increasingly complex. The most challenging case for interference alignment is therefore theX network where every

transmitter has an independent message for every receiver.In this paper we explore this extreme scenario to find

out the limits of interference alignment.

2As pointed out in [24], propagation delay based examples such as Figure 1 can be translated first into the deterministic channel model

of [25] and then into a constantX channel with certain specific channel coefficients which canachieve arbitrarily close to the outer bound

of 4/3 degrees of freedom.
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II. D EFINITIONS - X NETWORK AND DEGREES OFFREEDOM

Following the terminology of [18], we define anM ×N userX network as a communication network withM

transmitters andN receivers and a total ofMN independent messages, one from each transmitter to each receiver.

The transmitters cannot receive and receivers cannot transmit which precludes relaying, feedback and cooperation

between transmitters or cooperation between receivers. A2× 3 userX network is shown in Figure 2. TheM ×N

userX network is described by input-output relations

Y [j](κ) =
∑

i∈{1,2,...,M}

H [ji](κ)X [i](κ) + Z [j](κ), j = 1, 2, . . . , N

whereκ represents the channel use index. For simplicity we will assume κ represents the time index. It should

be noted that it can equivalently be interpreted as the frequency index if coding occurs over orthogonal frequency

slots. X [i](κ) is the signal transmitted by transmitteri, Y [j](κ) is the signal received by receiverj and Z [j](κ)

represents the additive white Gaussian noise at receiverj. The noise variance at all receivers is assumed to be

equal to unity.H [ji](κ) represents the channel gain between transmitteri and receiverj at time κ. We assume

that all channel fade coefficients are drawn according to a continuous distribution. Specifically, we assume that the

cumulative distribution function

Fi,j,κ(h) = Pr
(

H [ji](κ) ≤ h
∣

∣

∣

{

H [j′i′](κ′), (i′, j′, κ′) 6= (i, j, κ)
})

is continuous inh. Further, to avoid degenerate channel conditions, we assume that the absolute value of all the

channel gains is bounded between a non-zero minimum value and a finite maximum value. We assume that all

nodes have causal (i.e, present and past) knowledge ofall the channel gains, meaning that at time indexκ, each

node knows all the elements of the set
{

H [ji](k) : (j, i) ∈ {1, 2, . . . , N} × {1, 2, . . . ,M}, k = 1, 2, . . . , κ
}

.
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Fig. 2. A 2 × 3 userX network

We assume that transmitteri has messageW [ji] for receiverj, for eachi ∈ {1, 2, . . . ,M}, j ∈ {1, 2, . . . , N},

resulting in a total ofMN mutually independent messages. The average power at each transmitter is bounded by

ρ, i.e.

E

(

1

κ0

κ0
∑

κ=1

|X [i](κ)|2

)

≤ ρ
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for all i ∈ {1, 2, . . . ,M}, whereκ0 denotes the length of the codeword. LetRji(ρ) =
log(|W [ji](ρ)|)

κ0
denote the

rate of the codeword encoding the messageW [ji], where|W [ji](ρ)| denotes the size of the message set. A rate-

matrix[(Rji(ρ))] is said to beachievable if messagesW [ji] can be encoded at ratesRji(ρ) so that the probability

of error can be made arbitrarily small simultaneously for all messages by choosing appropriately longκ0. Let

C(ρ) represent capacity region of theX network, i.e, it represents the set of all achievable rate-matrices[(Rji(ρ))].

Analogous to the capacity region of the network, the degreesof freedom region of theM ×N userX network is

defined by

D =

{

[(dji)] ∈ R
MN
+ : ∀[(wji)] ∈ R

MN
+

∑

i∈{1,2,...,M},j∈{1,2,...,N}

wjidji ≤ lim sup
ρ→∞



 sup
[(Rji(ρ))]∈C(ρ)

∑

i∈{1,2,...,M},j∈{1,2,...,N}

[wjiRji(ρ)]
1

log(ρ)





}

The degrees of freedom region of the network approximates its capacity region withino(log(ρ)). X networks are

interesting because they encompass all communication scenarios possible in a one-way single hop wireless network.

For example, multiple access, broadcast and interference networks are special cases ofX networks. Since there

are messages from every transmitter to every receiver, every transmitter is associated with a broadcast channel,

every receiver is associated with a multiple access channeland every disjoint pairing of transmitters and receivers

comprises an interference channel within theX network. In particular, any outerbound on the degrees of freedom

region of anX network is also an outerbound on the degrees of freedom of allits subnetworks.

III. R ESULTS

A summary of the key results and the associated insights is presented in this section.

1) Outerbound: The first result of this paper, presented in Section IV, is an outerbound for the degrees of

freedomregion of theM ×N userX network. In particular, thetotal number of degrees of freedom of theM ×N

userX network is shown to be upper-bounded byAMN
M+N−1 per orthogonal time and frequency dimension, when

each node is equipped withA antennas. The outerbound is quite general as it applies to any fully connected (i.e.

all channel coefficients are non-zero)M × N userX network, regardless of whether the channel coefficients are

constant or time varying. The key to the outerbound is to distribute theMN messages in theX network intoMN

(partially overlapping) sets, each havingM + N − 1 elements. By picking these sets in a certain manner we are

able to derive a MAC (multiple access channel) outerbound similar to [7] for the sum rate of the messages in each

set. Since the MAC receiver has onlyA antennas, the MAC has at mostA degrees of freedom. Thus, each set of

messages can at most haveA degrees of freedom. The outerbounds for these sets togetherdefine an outerbound on

the degrees of freedom region of theM × N userX network and adding all the outerbounds gives us the bound

on the total number of degrees of freedom.

2) Asymptotic Interference Alignment Scheme: In Section V-C we present an asymptotic interference alignment

scheme forM×N userX networks with time varying channel coefficients. By considering larger supersymbols the

partial interference alignment scheme is able to approach within any ǫ > 0 of the degrees of freedom outerbound.

While the idea of partially aligning interference was earlier used in theK user interference channel [16], the

extension of the scheme to theX network is more complex, since there is a message for each transmitter-receiver

pair in the network. Combined with the outerbound, the partial interference alignment scheme establishes that
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the total number of degrees of freedom ofM × N user X networks with single antenna nodes and time (or

frequency) varying channel coefficients is preciselyMN
M+N−1 . The partial interference alignment scheme does not

extend completely toX networks where each node has multiple antennas. However, ifwe imagine each antenna

to be a separate user (which can only reduce the capacity) then a simple application of the partial interference

alignment scheme shows that an innerbound ofAMN
M+N−1/A is achievable forM × N userX networks where each

node hasA antennas. If eitherM or N is reasonably large, then this innerbound is close to the outerbound.

3) Perfect Interference Alignment Scheme: We construct a perfect interference alignment scheme for the M ×N

userX channel when the number of receiversN = 2. This scheme achieves exactly one degree of freedom for

every message over anM + N − 1 symbol extension of the channel, thus achieving exactly theouterbound of
MN

M+N−1 total degrees of freedom over a finite channel extension. We also show an interestingreciprocity property

of beamforming and zero-forcing based schemes in wireless networks. In particular, we show that given a coding

scheme in theX network based entirely on beamforming and zero-forcing, wecan construct a beamforming and

zero-forcing based coding scheme over the reciprocalX network achieving the same number of degrees of freedom

as the original scheme. The coding scheme over the reciprocal channel may needapriori knowledge of all channel

gains even when the original scheme needs only causal channel knowledge. The reciprocal scheme is therefore

practical in a scenario where channel extensions are considered in the frequency domain. This reciprocity property

serves as an achievability proof for theM ×N userX channel whenM = 2, for anyN . Thus, for eitherM = 2 or

N = 2 we are able to construct perfect interference alignment schemes with a finite extension of the channel. We

show that this implies that, in both these cases, we have anO(1) capacity characterization. Note that the asymptotic

interference alignment scheme for the general case only yields a capacity characterization withino(log(SNR)).

4) X networks versus Interference Networks: Since we are able to characterize the exact degrees of freedom

of X networks and the degrees of freedom of interference networks are already known, the comparison follows

simply as a corollary. TheK × K userX channel has significant degrees of freedom advantage over the K user

interference channel whenK is small. For example, whenK = 2, the X network has4/3 degrees of freedom,

whereas the interference channel has only1. However the advantage disappears asK increases. This is easily seen

by substitutingM = N = K in the total degrees of freedom expression for theX channel to obtain K2

2K−1 which

is close toK/2 for largeK.

5) Cost of Distributed Processing: This result also follows as a corollary of the main result that establishes the

degrees of freedom forX networks. Compared toM × N MIMO which represents joint signal processing at all

transmitters and all receivers, theM×N userX channel pays a degrees of freedom penalty ofmin(M,N)− MN
M+N−1 ,

which is the cost of distributed processing on theX channel. While the cost of distributed processing is equal to

half the degrees of freedom on the interference channel, it is interesting to note that forX networks, this penalty

disappears when the number of transmitters is much larger than the number of receivers or vice versa. This is easily

seen because, whenM ≫ N or N ≫ M , MN
M+N−1 is very close tomin(M,N). In other words, a small set of

distributed nodes in a wireless communication network withno shared messages can serve as a multi-antenna node,

if they are transmitting to, or receiving from a large numberof distributed nodes. We also provide an application

of this result - the two-hop parallel relay network withM distributed transmitting and receiving nodes with large

number of relays. In [8], this parallel relay network is shown to haveM/2 degrees of freedom if the number of

relays was large. By treating the network as a compound of aM × K and aK × M X channel, we construct an

alternate degrees-of-freedom-optimal achievable schemein section VI.
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IV. D EGREES OFFREEDOM REGION OUTERBOUND FORX NETWORKS

While our main focus in this paper is on the case where each node has a single antenna, we present the

outerbound for the more general setting where transmitteri has At
i antennas and receiverj has Ar

j antennas,

∀i ∈ {1, 2, · · · ,M}, j ∈ {1, 2, · · · , N}.

Theorem 1: Let

Dout △
=

{

[(dji)] : ∀(m,n) ∈ {1, 2, . . . ,M} × {1, 2, . . . , N}

N
∑

q=1

dqm +

M
∑

p=1

dnp − dnm ≤ max(At
m, Ar

n)

}

ThenD ⊆ Dout whereD represents the degrees of freedom region of theM×N userX channel. In other words, for

any achievable scheme, the number of degrees of freedom achieved by all the messages associated with transmitter

m or receivern is upper-bounded bymax(At
m, Ar

n).

Proof: We start by definingMN setsWnm, n ∈ {1, 2, · · · , N},m ∈ {1, 2, · · · ,M} as follows:

Wnm , {W [pq] : (p − n)(q − m) = 0} (1)

In other words, the setWnm contains only those messages that either originate at transmitter m or are destined for

receivern. Note that theMN sets are not disjoint and that each set containsM + N − 1 elements.

We will determine an outerbound for the total degrees of freedom achievable by each of the message sets when

all other messages are eliminated. In other words, considerthe X channel when the only messages that need to be

communicated are those that belong to the setWnm. Note that eliminating some messages cannot hurt the rates

achievable by the remaining messages, as shown in [15], [16]. Now we show that the total number of degrees of

freedom of all messages in a setWnm is no more thanmax(At
m, Ar

n).
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Ŵ
[21]

Ŵ
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Consider any reliable coding scheme in theX channel where all messages not in the setWnm are eliminated.

Now, suppose a genie provides all the messagesW [nq], q ∈ {1, 2, · · · ,m − 1,m + 1,m + 2, · · · ,M} to each

of the receivers1, 2, · · · , n − 1, n + 1, n + 2 · · ·N . Then, receivers1, 2, 3, . . . , n − 1, n + 1, . . . , N can cancel the

interference caused byX [1],X [2], · · ·X [m−1],X [m+1], . . . ,X [M ] so that, effectively, the receiverp obtainsŶ [p] from

the received signal where

Ŷ [p] = H [pm]X [m] + Z [p]

wherep ∈ {1, 2, · · · , n−1, n+1, n+2, · · ·N}. Also using the coding scheme, receivern can decode its desired mes-

sagesW [nt], t = 1, 2, 3, . . . ,M . Therefore, receivern can subtract the effect ofX [1],X [2], . . . ,X [m−1],X [m+1], . . . ,X [M ]

from the received signal so that it obtainsŶ [n] where

Ŷ [n] = H [nm]X [m] + Z [n]

Notice that receiversp 6= n are able to decode messagesW [pm] from Ŷ [p]. Now, we can reduce the noise at receiver

n and if Ar
n < At

m we add antennas at receivern so that it hasmax(At
m, Ar

n) antennas. By reducing noise and

adding antennas we can ensure thatŶ [p], p 6= n are degraded versions of̂Y [n] (for the details of this argument in

the multiple antenna case, see [7]). In other words, by reducing noise and possibly adding antennas, we can ensure

that receivern can decode all messagesW [pm]. Note that the performance of the original coding scheme cannot

deteriorate because of the genie or from reducing the noise or from adding antennas and therefore the converse

argument is not affected. We have now shown that in a genie-aided channel with reduced noise (see Figure 3),

receiverm is able to decode all the messages in the setWnm when these are the only messages present. This

implies that degrees of freedom of the messages in the setWnm lies within the degrees of freedom region of the

multiple access channel with transmitters1, 2, . . . ,M and receivern. Since receivern hasmax(At
m, Ar

n) antennas

the total number of degrees of freedom for all messages in thesetWnm cannot be more thanmax(At
m, Ar

n). This

gives us the outerbound

max
[(dji)]∈D

N
∑

q=1

dqm +

M
∑

p=1

dnp − dnm ≤ max(At
m, Ar

n) (2)

Repeating the arguments for eachm,n we arrive at the result of Theorem 1.

Since our focus in this paper is on the total degrees of freedom for the case when all nodes have one antenna,

the following corollary establishes the needed outerbound.

Corollary 1: The total number of degrees of freedom of theX channel withM transmitters andN receivers

and1 antenna at each node, is upper bounded byMN
M+N−1 i.e.

max
[(dji)]∈D

∑

n∈{1,2,...,N},m∈{1,2,...,M}

dnm ≤
MN

M + N − 1

Proof: The bound can be obtained by summing all theMN inequalities describing the outerbound of the

degrees of freedom region and settingAt
m = Ar

n = 1 for all transmitters and receivers.

The outerbound of Theorem 1 is not only useful for the total number of degrees of freedom, but rather it bounds

the entire degrees of freedom region of theM × N user X network. In other words, Theorem 1 provides an

outerbound for any fully connected distributed single hop network under the given system model. For example,

consider a hypothetical channel with3 single antenna transmitters and3 single antenna receivers, and 6 messages,

W [ji], i 6= j, i, j ∈ {1, 2, 3}, i.e, the3 × 3 userX channel withW [11] = W [22] = W [33] = φ. The solution to the
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following linear programming problem provides an outerbound for the total number of degrees of freedom of this

channel.

max[(dij)]

∑

m6=l

dml

s.t
3
∑

q=1

dmq +

3
∑

p=1

dpl − dml ≤ 1 ∀(m, l) ∈ {1, 2, 3} × {1, 2, 3}

In many cases of interest these outerbounds can be shown to betight. For example, in the2 × 2 userX network,

the outerbound of Theorem 1 is shown to represent the entire degrees of freedom region [15].

V. INTERFERENCEALIGNMENT AND INNERBOUNDS ON THEDEGREES OFFREEDOM

The following is the main result of this section.

Theorem 2: The M × N userX network with single antenna nodes hasMN
M+N−1 degrees of freedom.

The converse for the theorem is already proved in the corollary to Theorem 1.

The achievable scheme for theX networks are based on interference alignment and zero-forcing. For the general

M×N userX network we provide a partial interference alignment based innerbound that approaches the outerbound

as we increase the size of the supersymbols (channel extensions). While the degrees of freedom achieved by this

scheme can come withinǫ of the degrees of freedom outerbound for anyǫ > 0, the two are never exactly equal.

This is sufficient for a degree of freedom characterization,but it does not provide anO(1) capacity characterization.

In some cases (when eitherM = 2 or N = 2) we are able to createperfect interference alignment schemes so that

the degrees of freedom outerbound isexactly achieved with a finite channel extension. In these cases, thedegrees

of freedom also leads to a capacity characterization that isaccurate withinO(1).

Before we proceed to describe the achievable schemes, we present a corollary to Theorem 2.

Corollary 2: Let DΣ represent the total number of degrees of freedom of theM × N userX network where

all transmitting and receiving nodes haveA antennas each.Then,

AMN

M + N − 1/A
≤ DΣ ≤

AMN

M + N − 1
Proof: The degrees of freedom outerbound follows from Theorem 1. The innerbound can be derived using

an achievable scheme that treats each antenna in the networkas a single distributed user. So, effectively, for this

achievable scheme, the network is aAM × AN userX network with single-antenna nodes. Then, Theorem 2

implies that AMN
M+N−1/A degrees of freedom are achievable.

Note that our degrees of freedom characterization of theM ×N user MIMOX network is not tight, ifA > 1. We

now proceed to describe the perfect interference alignmentscheme for theM ×2 userX network. Two preliminary

lemmas used in proofs presented in the subsequent sections of the paper are placed in Appendix I.

A. Perfect Interference Alignment for the M × 2 user X network

The outerbound for theM × 2 userX channel states that it cannot achieve more than a total of2M
M+1 degrees

of freedom. We now present the construction of an interference alignment scheme which achieves exactly1M+1

degrees of freedom for each of the2M messages, thus exactly achieving the outerbound. The scheme we present

here is an extension of the scheme presented in [15].
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Consider aM + 1 symbol extension of the channel formed by combiningM + 1 symbols into a super-symbol.

This channel can be expressed as

Y[1](κ) =
∑

m∈{1,2,...,M}

H[1m](κ)X[m](κ) + Z[1](κ)

Y[2](κ) =
∑

m∈{1,2,...,M}

H[2m](κ)X[m](κ) + Z[2](κ)

whereX[m](κ) is a (M +1)×1 column vector representing theM +1 symbol extension of the transmitted symbol

X [m], i.e

X[m](κ)
△
=















X [m](κ(M + 1) + 1)

X [m](κ(M + 1) + 2)
...

X [m]((κ + 1)(M + 1))















(3)

Similarly Y[j] andZ[j] representM + 1 symbol extensions of theY [j] andZ [j] respectively.H[jm] is a diagonal

(M + 1) × (M + 1) matrix representing theM + 1 symbol extension of the channel, i.e.,

H[jm](κ)
△
=















H [jm](κ(M + 1) + 1) 0 . . . 0

0 H [jm](κ(M + 1) + 2) . . . 0
... · · ·

. . .
...

0 0 · · · H [jm]((κ + 1)(M + 1))















(4)

We now describe an achievable scheme that achieves one degree of freedomdjm = 1, j = 1, 2,m = 1, 2, . . . ,M

for each message over thisM + 1 symbol extension, thus achieving a total of2M degrees of freedom overM + 1

symbols.

The encoding strategy is as follows. Transmitterm encodes messagesW [1m] and W [2m] as two independent

streamsx[1m] andx[2m] and respectively transmits these two streams along directionsv[1m] andv[2m] (See Figure

4 for the special case whereM = 2). We can then write

X[m] = x[1m]v[1m] + x[2m]v[2m]

The received message at receiverj is

Y[j] =

M
∑

m=1

H[jm]x[1m]v[1m] +

M
∑

m=1

H[jm]x[2m]v[2m] + Z[j]

wherej = 1, 2.

Receiver1 decodes itsM desired messages by zero-forcing the all interference vectors v[2m],m = 1, 2, . . . ,M .

In other words, receiver1 first processesY[1] as Ỹ[1] = P1Y
[1], whereP1 is a matrix which represents the

kernel (null-space) of the set of interfering column vectors, i.e.,
[

H[11]v[21] H[12]v[22] . . . H[1M ]v[2M ]
]

. Now to

recoverM interference-free streams for desired signals fromỸ[1], the matrixP1 has to have a dimension ofM . In

other words, the matrix
[

H[11]v[21] H[12]v[22] . . . H[1M ]v[2M ]
]

must have a dimension of1. Equivalently, all the

interference streams must align along a common direction (See Figure 4). Therefore, vectorsv[2m], i = 2, . . . ,M

are picked so that their corresponding interference terms at receiver1 perfectly align with the interference from

transmitter1 - i.e H[1m]v[2m] lies alongH[11]v[21] for all m = 2, . . . ,M .

H[1m]v[2m] = H[11]v[21],m = 2, . . . ,M (5)
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Fig. 4. Interference Alignment on the2 × 2 userX network [15]

This ensures that, from the point of view of receiver1, all the interference termsH[1m]v[2m] lie along a single

vectorH[11]v[21], so thatP1 has a dimension ofM . Similarly, at receiver2, we intend to decode itsM desired

streams using̃Y[2] = P2Y
[2], whereP2 is the kernel (null-space) of

[

H[21]v[11] H[22]v[12] . . . H[2M ]v[1M ]
]

. To

ensure thatP2 hasM linearly independent columns, we pickv[1m],m 6= 1 as

H[2m]v[1m] = H[21]v[11],m = 2 . . . M (6)

Now that we have ensured all interference is restricted to only one dimension at each receiver, this dimension can

be nulled to eliminate all interference, leavingM interference free dimensions to recover theM desired messages

for each receiver. What is needed is that the desired signal vectors are linearly independent of the interference. In

other wordsP1 (resp.P2), which is the null-space ofH[11]v[21] (resp.H[21]v[11]), should not null out any of the

desired vectors at receiver1 (resp. receiver2) . Therefore we need to pickv[11] and v[21] so that the following

matrices are of full rank.
[

H[11]v[11] H[12]v[12] . . . H[1M ]v[1M ] H[11]v[21]
]

at receiver 1
[

H[21]v[21] H[22]v[22] . . . H[2M ]v[2M ] H[21]v[11]
]

at receiver 2

Note that the firstM column vectors of the above matrices represent the signal components, and the last column

represents the aligned interference. We now pick the columns of v[11] and v[21] randomly from independent

continuous distributions i.e.,

v[11] =















p1

p2

...

pM+1















v[21] =















q1

q2

...

qM+1














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An important observation here is that oncev[11] andv[21] are picked as above, equations (5) and (6) can be used

to pick v[1m],m 6= 1 with just causal channel knowledge. i.e., thelth component of the transmitted vector at any

transmitter depends only on the firstl diagonal entries ofH[ji] (in fact, it depends only on thelth diagonal entry).

The desired signal can now be shown to be linearly independent of the interference at both receivers almost surely.

For example at receiver1, we need to show that matrix

Λ1 =
[

H[11]v[11] H[12]v[12] . . . H[1M ]v[1M ] H[11]v[21]
]

has full rank. Since all channel matrices are diagonal and full rank, we can multiply by(H[11])−1 and use equations

(5) and (6) to replace the above matrix by

Λ̄1 =
[

v[11] (H[11])−1H[12]H[21](H[22])−1v[11] . . . (H[11])−1H[1K]H[21](H[2K])−1v[11] v[21]
]

Let H
[ji]
k is thekth diagonal entry ofH[ji]. We now make the following observations

1) The assumption on the channel model implies thatH
[ji]
k |{H

[j
′

i
′

]

k′ , (k
′

, i
′

, j
′

) 6= (k, i, j)} has a continuous

(cumulative) distribution,

2) In thekth row, the exponent ofH [1m]
k is 1 in the element in themth column ofΛ̄1 and0 in all other columns

for m = 2, . . . ,M . Therefore, in thekth row, H [1m]
k has a different exponent in the element in them column,

as compared to its exponent in them
′

th column, for anym 6= m
′

.

The above observations combined with the result of Lemma 1 presented in Appendix I imply that the matrix̄Λ1

has full rank ofM + 1 almost surely. Thus, the desired signal vectors are linearly independent of the aligned

interference vectors almost surely.

Similarly, the desired signal can be shown to be linearly independent of the interference at receiver2 almost surely.

Therefore,2M independent streams are achievable over the(M + 1) symbol extension of the channel resulting

in 2M
M+1 degrees of freedom over the original channel. Also, since the achievable scheme essentially creates2M

point-to-point links over aM + 1 symbol extension of the channel, it provides anO(1) capacity characterization

[16] of the M × 2 userX network as

C(ρ) =
2M

M + 1
log(ρ) + O(1)

whereC(ρ) is the sum-capacity of the network as a function of transmit power ρ.

B. Achievability for 2 × M X network - Reciprocity of beamforming and zero-forcing based schemes

Consider anM ×N userX network. We refer to this as the primal network. Consider anyachievable scheme on

this channel based on beamforming and zero-forcing. Specifically, consider any achievable scheme whose coding

strategy maybe described as follows.

• Encoding - Transmitteri encodes a message to receiverj along independent streams and beamforms these

streams along linearly independent vectors. For example, thekth stream to receiverj is encoded at transmitter

i asx
[ji]
k and beamformed along directionv[ji]

k asx
[ji]
k v

[ji]
k .

• Decoding - Receiverj decodes all the desired message streams through zero-forcing. For example, to decode

the kth stream from transmitteri, i.e, x[ji]
k , the receiver projects the received vector alongu

[ji]
k which nulls all

undesired streams.
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The reciprocal (or dual) network is the network formed when the transmitters and receivers of the primal network

are interchanged and the channel gains remain the same. Therefore, the dual of anM × N userX network is a

N × M userX network. The channel gain between transmitteri and receiverj in the primal network is equal

to the channel gain between transmitterj and receiveri in the dual network. It can be shown that corresponding

to every zero-forcing based achievable scheme in the primalnetwork, there exists a zero-forcing based achievable

scheme in the reciprocal network that achieves the same number of degrees of freedom as the primal network. In

particular, the coding scheme that achieves this in the dualnetwork may be described as follows.

• Encoding - In the dual network, transmitterj encodes a message to receiveri along linearly independent

streams and beamforms these streams along directions that were used for zero-forcing in the primal network.

For example, thekth stream to receiveri is encoded as̄x[ij]
k and beamformed along directionu[ji]

k asx̄
[ij]
k u

[ji]
k ,

(whereu
[ji]
k represents the zero-forcing vector used in the primal network by receiverj to decode thekth

stream from transmitteri)

• Decoding - Receiveri decodes all the desired streams through zero-forcing alongdirections that were the

beamforming directions in the primal network. For example,in the dual network, to decode thekth desired

stream from transmitterj i.e x̄
[ij]
k , receiveri projects the received vector along vectorv

[ji]
k - where v

[ji]
k

represents the beamforming vector used in the primal network by transmitteri to transmit thekth stream to

receiverj

It can be easily verified that the above scheme maps every independent interference-free stream in the primal

M × N userX network to an independent interference-free stream in the dual N × M userX network and thus

achieves the same number of degrees of freedom in the dual network. This scheme therefore establishes a general

duality of beamforming and zero-forcing based interference alignment schemes. Below, we provide a formal proof

of reciprocity for theM = 2 case. The proof serves as an achievable scheme in the2 × N userX network with

frequency selective channels.

Proof of Theorem 2 for the 2 × N user X network: The 2 × N userX network maybe represented as

Y [m](κ) = H [m1](κ)X [1](κ) + H [m2](κ)X [2](κ) + Z [m](κ),m = 1, 2, . . . , N (7)

Consider theN + 1 symbol extension of the2 × N userX network which can be represented as

Y[m](κ) =
∑

l∈{1,2}

H[ml](κ)X[l](κ) + Z[m](κ),m = 1, 2 . . . N

The vectorsX[i],Y[i],Z[i] are (N + 1) × 1 vectors andH[ij] is (N + 1) × (N + 1) matrix (Refer to (3), (4) for

a similar channel extension over theM × 2 userX network) The reciprocal of this extended network is aN × 2

userX network which can be expressed as

Ȳ[1](κ) =
∑

m∈{1,2...N}

H̄[1m](κ)X̄[m](κ) + Z̄[1](κ)

Ȳ[2](κ) =
∑

m∈{1,2...N}

H̄[2m](κ)X̄[m](κ) + Z̄[2](κ)

where the over-bar notation indicates quantities in the reciprocal channel. The vectors̄X[i], Ȳ[i], Z̄[i] are(N +1)×1

vectors andH̄[ij] is (N + 1)× (N + 1) matrix. Note that in the reciprocal channel, the channel gains are identical

to those in the original channel, and we can write

H̄[ij](κ) = H[ji](κ), j ∈ {1, 2 . . . N}, i ∈ {1, 2} (8)



14

Now, consider the achievable scheme over thisN×2 userX channel, as described in Section V-A. In the achievable

scheme, transmitteri encodes messagēW [ji] as x̄[ji] and beamforms it along direction̄v[ji] so that the signal at

receiverj, for j ∈ {1, 2}, is

Ȳ[j] =
N
∑

m=1

x̄[1m]H̄[jm]v̄[1m] +
N
∑

m=1

x̄[2m]H̄[jm]v̄[2m] + Z̄[j]

The dependence on the indexκ is dropped above for compactness. In this achievable scheme, receiverj decodes

x̄[ji] using zero-forcing. Let̄u[ji] represent the zero-forcing vector used by receiverj to decodex̄[ji]. Sinceū[ji]

nulls all the interfering streams, we can write

(ū[ji])T H̄[jm]v̄[lm] = 0,∀(l,m) 6= (j, i) (9)

⇒ (ū[ji])T Ȳ[j] = x̄[ji](ū[ji])T H̄[ji]v̄[ji] + (ū[ji])T Z̄[j]

We now use the above fact to construct beamforming directions v[ij] and zero-forcing vectorsu[ij] in the original

2 × N userX network. The beamforming and zero-forcing vectors we construct will enable receiveri to decode

messageW [ij] by nulling interference from all other vectors. In the primal network, let transmitterj encode message

W [ij] to receiveri asx[ij] wherej ∈ {1, 2}, i ∈ {1, 2, . . . N}. The beamforming directions of the primal network

are chosen to be the zero-forcing vectors in the dual channel, i.e., v[ij] = ū[ji], j ∈ {1, 2}, i ∈ {1, 2, . . . N}. The

transmitted message is therefore

X[j] =
N
∑

m=1

x[mj]v[mj] =
N
∑

m=1

x[mj]ū[jm], j = 1, 2

The received vector at receiveri is

Y[i] =
N
∑

m=1

(

x[m1]H[i1]v[m1] + x[m2]H[i2]v[m2]
)

+ Z[i]

=
M
∑

m=1

(

x[m1]H[i1]ū[1m] + x[m2]H[i2]ū[2m]
)

+ Z[i]

for i ∈ {1, 2, . . . , N}. Now, at receiveri, streamx[ij] is decoded by projecting the received vector alongu[ij] = v̄[ji],

i.e., the vector that was used for beamforming at transmitter i in the dual network.

(v̄[ji])TY[i] =

M
∑

m=1

(v̄[ji])T
(

x[m1]H[i1]ū[1m] + x[m2]H[i2]ū[2m]
)

+ (v̄[ji])T Z[i]

=

M
∑

m=1

(

x[m1](v̄[ji])TH[i1]ū[1m] + x[m2](v̄[ji])T H[i2]ū[2m]
)

+ (v̄[ji])TZ[i]

=

M
∑

m=1

(

x[m1](H[i1]ū[1m])T v̄[ji] + x[m2](H[i2]ū[2m])T v̄[ji]
)

+ (v̄[ji])TZ[i]

=

M
∑

m=1

(

x[m1](ū[1m])T H̄[1i]v̄[ji] + x[m2](ū[2m])T H̄[2i]v̄[ji]
)

+ (v̄[ji])TZ[i], j = 1, 2, i = 1, 2, . . . , N

Above, we have used equation (8) in the final step. Combining equation (9) with the above equation, we get

(v̄[ji])TY[i] = x[ij](ū[ji])T H̄[ji]v̄[ji] + (v̄[ji])T Z[i]
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Thus, the zero-forcing vector̄v[ji] cancels all interference andx[ij] can be decoded free of interference. This implies

that1 degree of freedom is achieved for messageW [ij], for eachi ∈ {1, 2 . . . N}, j ∈ {1, 2}. 2N degrees of freedom

are achieved over the extended2 × N userX network implying that 2N
N+1 degrees of freedom are achieved in the

original 2 × N userX network. The reciprocal scheme also implies that theO(1) capacity of the2 × N userX

network is

C(ρ) =
2N

N + 1
log(ρ) + O(1)

whereC(ρ) is the sum-capacity of the network as a function of transmit power ρ

Remark: The achievable scheme described in above proof requires thenodes to haveapriori channel knowledge

of all the channel co-efficients. This is because, to construct beamforming vectors in the2 × N userX network,

the transmitters need to be aware of the zero-forcing vectors in the dualN × 2 userX network. Construction

of zero-forcing vectors at the receivers in the dualN × 2 userX network requires knowledge of all the channel

co-efficients during the transmission. Therefore, the encoding strategy based on reciprocity requires non-causal

channel knowledge, ifκ indicates time-index in (7). Therefore, from a practical perspective, the above achievable

scheme may be feasible whenκ represents frequency-index, and channels are frequency-selective. This is because,

if κ represents frequency, the achievable scheme only requiresnodes to have knowledge of the channels over all

frequencies and therefore does not violate any causality constraints. It must be noted that the Theorem 2 holds

whetherκ represents time, or frequency. The partial interference alignment scheme we describe in the next subsection

is applicable in the2×N userX network even if channels only have causal channel knowledge, andκ represents

time-index.

C. Partial Interference Alignment for General M × N user X Networks

The solution for the general case does not immediately follow from the solution to theM × 2 userX network.

To see this, consider the3×3 userX network, where we intend to achieve the outerbound of9
5 degrees of freedom.

Consider a5 symbol extension of the channel. Over this extended channel, consider a hypothetical achievable scheme

where each of the9 messages achieves1 degree of freedom if possible, using beamforming at all transmitters and

zero-forcing at all receivers. Let messageW [ij] be beamformed along vectorv[ij] at transmitterj. Receiveri intends

to decodeW [ij] using zero-forcing. At receiveri, to decode3 independent messagesW [i1],W [i2],W [i3] using zero-

forcing, the vectors corresponding to the desired messagesoccupy3 linearly independent directions. Since signals

come from a space of dimension5, the 6 interfering vectors must occupy the remaining2 dimensions. Although

there appears to be no obvious generalization of the3 × 2 network to achieve this, one possible technique maybe

the following.

1) At receiver1, the vectorsv[2j], j = 1, 2, 3 which correspond to receiver2 align a long a common direction,

i.e.,

H[11]v[21] = H[12]v[22] = H[13]v[23] (10)

Similarly, the vectors corresponding to receiver3, i.e. v[3j], j = 1, 2, 3, align along a different common

direction, so that

H[11]v[31] = H[12]v[32] = H[13]v[33] (11)

Thus, the total dimension of the interference is2 and receiver1 can decode all its desired messages.
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2) At receiver2, interference vectors corresponding to receiver1 align along a common direction, and interference

vectors corresponding to receiver3 align along a different common direction.

3) At receiver3, interference vectors corresponding to receiver2 align along a common direction, and interference

vectors corresponding to receiver1 align along a different common direction.

Along with the above conditions, we need the desired signal vectors to be linearly independent of the2 interference

dimensions at each receiver. Note that if we can find vectorsv[ij] that satisfy the conditions listed above along with

the linear independence condition, then that would show achievability of 9
5 degrees of freedom using a5 symbol

extension. However, we argue below that construction ofv[ij] satisfying all these conditions is infeasible. Note that,

in the construction just described, the beamforming vectors corresponding to receiver2 align at receivers1 and3,

i.e.

H[i1]v[21] = H[i2]v[22] = H[i3]v[23], i = 1, 3 (12)

(12) implies that

v[22] = (H[12])−1H[11]v[21] (13)

= (H[32])−1H[31]v[21] (14)

⇒ v[21] = (H[11])−1H[12](H[32])−1H[31]v[21] (15)

In other words,v[21] is an eigen-vector ofT
△
= (H[11])−1H[12](H[32])−1H[31]. SinceT is diagonal, this implies

thatv[21] is a column vector of the identity matrix. This means thatv[21] is an eigen vector of all channel matrices,

since they are all diagonal. Further, equation (12) impliesthatv[22] is merely a scaled version ofv[21]. This implies

that at receiver2, H[21]v[21] andH[22]v[22] are linearly dependent, since they both are scaled versionsof the same

column of the identity matrix, i.e., we can write

span(H[22]v[22]) = span(H[21]v[21]) = span(v[21])

Therefore, the desired signals arenot decodable at receiver2 using zero-forcing of interference. This implies that

the scheme described in Section V-A cannot be generalized inthe manner described above. However, we note

that this argument does not preclude the existence of a general zero-forcing based interference alignment scheme

that uses a finite symbol extension of the channel to achieve the outerbound. We only claim that the construction

described through alignment conditions 1), 2) and 3) listedabove is not possible. The main result of this work

is that the degrees of freedom outerbound of Theorem 1 is tight, and despite the apparent complexity of theX

channel, interference alignment is indeed possible. We nowproceed to provide a brief intuitive overview of our

achievable scheme. A formal proof is presented in Appendix II.

Consider any arbitraryn > 0, n ∈ N. The achievable scheme we provide considers a(M+N−1) (f(n) + o(f(n)))

symbol extension of the channel, where

f(n)
△
= n(M−1)(N−1)

Over this extended channel, we construct an achievable scheme so that each message achievesf(n) + o(f(n))

degrees of freedom. By picking an arbitrarily largen we can achieve, on the original (i.e., not extended) channel,

arbitrarily close to 1
M+N−1 degrees of freedom foreach message, per orthogonal time/frequency dimension. Hence,

asn → ∞, the achieved number of degrees of freedom is arbitrarily close to MN
M+N−1 (See Figure 6). The achievable

scheme over the extended channel uses beamforming at all transmitters and zero-forcing at all receivers. Specifically,
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Fig. 6. The number of degrees of freedom achieved versus parametern for the 3 × 3 userX network

messageW [ij] is beamformed alongf(n) + o(f(n)) linearly independent directions at transmitterj. Receiveri

correspondingly decodes the message by projecting the received vector into a space of dimensionf(n) + o(f(n))

which nulls the interference. The beamforming and zero-forcing directions are chosen as depicted in Figure 5.

As shown in the figure, at receiverj, the f(n) + o(f(n)) beams corresponding toW [ik], i 6= j align with the

f(n) + o(f(n)) beams corresponding toW [il], k 6= l. In other words, at receiverj 6= i, the union of the received

vectors corresponding to messagesW [i1],W [i2], . . . W [iM ] lies in a space of dimensionf(n) + o(f(n)). Note

that for a fixedn, the overlap between these vectors is partial, i.e. the vectors corresponding toW [i1] do not

perfectly co-incide with the vectors corresponding toW [i2] at receiverj 6= i. However, number of vectors that

do not align is captured by theo(f(n)) factor, which is negligible tof(n) - the portion that aligns - ifn is

large. In other words, the alignment is asymptotically perfect asn becomes arbitrarily large. Since the cardinality
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Ŵ2
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of the set{i 6= j, i ∈ {1, 2 . . . N}} is N − 1, the dimension ofall the interfering vectors at receiverj is (N −

1) (f(n) + o(f(n))). Also, since corresponding to each of theM desired messages, the number of beams received

is f(n)+o(f(n)), the dimension of the set of vectors corresponding to the desired messages isM (f(n) + o(f(n))).

If the set of interfering vectors at a receiver are linearly independent of the set of desired vectors, then, in a space of

dimension(M +N − 1) (f(n) + o(f(n))), theM (f(n) + o(f(n))) desired streams can be decoded by nulling the

(N − 1) (f(n) + o(f(n))) interfering dimensions. We show that this linear independence condition can be satisfied

at all receivers. The precise construction of beamforming and zero-forcing vectors that leads to this can be found

in the proof placed in Appendix II.

VI. D EGREES OFFREEDOM OF THEPARALLEL RELAY NETWORK

In this section, we present an application of the results of the previous section. We provide an alternate proof of

the degrees of freedom characterization of the parallel relay network (Figure 7), first studied in [8].

Consider a two hop parallel relay network withM distributed single antenna transmitters andM distributed

single antenna receivers. We assume that the intermediate hop hasN half-duplex relays.

Much like theM user interference network, transmitterj has a single messageW [j] to transmit to receiverj,

wherej = 1, 2, . . . M and thus there are a total ofM messages in this channel. All transmitters and relays have an

average power constraint ofρ. Through an achievable scheme based on amplify-and-forward strategy at the relays,

[8] shows that this network hasM/2 degrees of freedom if the number of relaysN approaches infinity. We use

the degrees of freedom characterization ofX network to provide an alternate optimal achievable scheme to show

the same result by treating this network as a concatenation of two X networks. Notice that the interpretation of the

parallel relay network as a compound of twoX networks results is restrictive, since it implies that the relays are

forced to decode, and hence fixes coding strategies to decode-and-forward based achievable schemes. However, in

time-varying (or frequency-selective) channels, this scheme is optimal, as it achievesM/2 degrees of freedom.

Theorem 3: MN
2(M+N−1) degrees of freedom are achievable by a decode-and-forward strategy in the two-hop

parallel relay network withM distributed transmitters and receivers withN distributed half-duplex relays. If

N → ∞, this parallel relay network hasM/2 degree of freedom.
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The proof follows from the degrees of characterization of the X channel. For brevity’s sake, we only provide an

outline of the proof here. The messageW [j] is split into N independent sub-messagesW
[j]
n , n = 1, 2 . . . N with

messageW [j]
k meant to be decoded by relayk. Our achievable scheme operates in two phases, both of whichare

active for half the duration of transmission. Let the block length of whole transmission be2T symbols. In the first

phase corresponding to the firstT symbols, the coding scheme corresponding to theM × N userX network is

employed so that T
M+N−1 log(ρ)+ o(log(ρ)) bits corresponding to each sub-message is transmitted. Forthe second

phase, notice that each relay hasT
M+N−1 log(ρ) + o(log(ρ)) bits of information for each receiver - these bits are

transmitted inT symbols over theN × M userX network to the receivers. Since there is a total ofMN sub-

messages in the system, a total ofTMN
M+N−1 log(ρ) + o(log(ρ)) bits are transmitted over the network in2T symbols

thus achieving MN
2(M+N−1) degrees of freedom per symbol overall.

VII. C ONCLUSION

The X network is arguably the most important single-hop network since it contains, within itself, most other

one-way fully connected single hop networks. For instance,the 2 user MAC, BC and interference channels are

all embedded in a two userX channel, and therefore can be derived by setting appropriate messages to null. We

provide an outerbound for the degrees of freedomregion of the X network with arbitrary number of single-antenna

transmitters and receivers and no shared information amongnodes. We also show that thetotal number of degrees

of freedom of theM ×N userX network is equal to MN
M+N−1 . The degrees of freedom region outerbound is very

useful since it can be used to bound the number of degrees of freedom of most practical distributed single-hop

wireless ad-hoc networks.

This is an optimistic result from the point of view of networkinformation theory. It suggests that, from a degrees

of freedom perspective, distributed single antenna nodes with no prior common information can behave as a single

node with multiple antennas if they are transmitting to or receiving from a relatively large number of nodes. We

provide an example of this scenario in the form of a degrees offreedom of the parallel relay network.

The result of this work demonstrates the power of the technique of interference alignment combined with zero-

forcing. The optimality of interference alignment in theX network motivates a closer look at interference alignment

based schemes. For example, we note that the optimal achievable scheme uses arbitrarily long channel extensions

in most cases. From a practical perspective, an important extension of this work is the study of the performance of

achievable schemes restricted to fixed finite channel extensions. It has been observed that arbitrarily long channel

extensions can be avoided without compromising optimalityin the 3 user interference network if all the nodes are

equipped with multiple antennas. A study of the MIMOX network can potentially reveal more efficient schemes

achieving optimality using shorter channel extensions.

APPENDIX I

PRELIMINARIES

In this section we present two lemmas that will be useful in the construction of the interference alignment

schemes.

Lemma 1: Consider anM × M square matrixA such thataij , the element in theith row andjth column of

A, is of the form

aij =

K
∏

k=1

(x
[k]
i )α

[k]
ij
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wherex
[k]
i are random variables and all exponents are integers,α

[k]
ij ∈ Z. Suppose that

1) x
[k]
i |{x

[k
′

]

i′
,∀(i, k) 6= (i

′

, k
′

)} has a continuous cumulative probability distribution.

2) ∀i, j, j
′

∈ {1, 2, . . . ,M} with j 6= j
′

(

α
[1]
ij , α

[2]
ij , . . . , α

[K]
ij

)

6=
(

α
[1]

ij′ , α
[2]

ij′ , . . . , α
[K]

ij′

)

In other words, each random variable has a continuous cdf conditioned on all the remaining variables. Also,

any two terms in the same row of the matrixA differ in at least one exponent.

Then, the matrixA has a full rank ofM with probability 1.

Proof: We need to show that|A|, the determinant ofA is non-zero with probability1. Let Cij represent the

co-factor corresponding toaij . Then,

|A| = C11a11 + C12a12 . . . C1Ma1M

Note thata1j is a product of powers ofx[k]
1 , k = 1, 2 . . . K. This implies that|A| = 0 only if a polynomial in

x
[k]
1 , k = 1, 2 . . . K whose co-efficients areC1j , j = 1, 2 . . . N is equal to zero. Therefore,|A| = 0 with non-zero

probability only if atleast one of the following two conditions are satisfied.

1) The polynomial is the zero polynomial.

2) x
[k]
1 , k = 1, 2, . . . ,K are roots of the polynomial formed by setting|A| = 0.

If condition 1) is not satisfied, then the set of roots of the polynomial formed is a finite set. Notice thatC1l is a

function ofx[k]
m ,m = 2, 3, . . . ,M, k = 1, 2, . . . ,K. Therefore, the variablesx[k]

1 , k = 1, 2, . . . ,K have a continuous

cumulative joint distribution conditioned onC1l, l = 1, 2, . . . ,M and the probability that these variables take values

from a finite set is equal to0. Therefore, the probability of condition 2) being satisfiedis 0. We now argue that the

probability of condition1) being satisfied is also equal to0. Now, since eacha1j has aunique set of exponents,

condition 1) is satisfied only if all the coefficients ifa1j are zero, i.e., ifC1j = 0, j = 1, 2, . . . ,M . Therefore,

Pr(|A| = 0) > 0 ⇒ Pr(C1M = 0) > 0. Note thatC1M is the determinant of the matrix formed by stripping the

last row and last column ofA. Now, the same argument can be iteratively used, stripping the last row and last

column at each stage, until we reach a single element matrix containingaM1, i.e.,

Pr(|A| = 0) > 0 ⇒ Pr(aM1 = 0) > 0

aM1 is of the form
K
∏

k=1

x
[k]
M

α[k]
M1

, k = 1, 2, . . . ,K, and therefore has a continuous probability distribution.We can

hence conclude thatPr(aM1 = 0) = 0 and therefore|A| is non-zero almost surely. Thus, the column vectors ofA

are linearly independent with probability1.

Lemma 2: Let T1,T2, . . . ,TN be diagonal matrices of sizeµ × µ such thatTij |{Ti′ j′ , (i
′

, j
′

) 6= (i, j)} has

a continuous cumulative density function, whereTij represents thejth diagonal entry inTi. In other words, any

diagonal entry has a continuous cumulative density function, conditioned on all the other variables forming the

diagonal entries of all the matrices. Also, letw be a column vector which is independent ofT1,T2, . . . ,Tn such

that, all its entries are drawn i.i.d from a continuous distribution. Then, for anyn ∈ N satisfyingµ > (n + 1)N ,

we can construct, with probability1, full rank matricesV andV
′

of sizesµ× nN andµ× (n + 1)N respectively,
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such that the following relations are satisfied.

span(T1V) ⊂ span
(

V
′

)

span(T2V) ⊂ span
(

V
′

)

...

span(TNV) ⊂ span
(

V
′

)

where span(P) represents the span of the columns of matrixP. Furthermore, the above conditions can be satisfied

with every entry in thekth row of V ( andV
′

) being a multi-variate monomial function of entries in thekth rows

of w andTi, i = 1, 2, . . . , N .

Proof: Let

V =
{(

∏

i=1,2,...,N

Tαi

i

)

w : (α1, α2, . . . , αN ) ∈ {1, 2, . . . , n}N
}

V
′

=
{(

∏

i=1,2,...,N

Tαi

i

)

w : (α1, α2, . . . , αN ) ∈ {1, 2, . . . , n + 1}N
}

Note the slight abuse in notation in the above two equations -the right hand side represents the set of column

vectors which may occur in any order to form the matrices on the corresponding left hand sides. To clarify the

notation, letn = 1. ThenV contains the column vectorT1T2 . . .TNw. V
′

contains the2N column vectors of

the formTα1

1 Tα2

2 . . .TαN

N w for all αi ∈ {1, 2}. It can be clearly seen that the set of columns ofTiV is a subset

of the set of columns ofV
′

, so that

span(TiV) ⊂ span
(

V
′

)

,∀i = 1, 2, . . . N

Further, Lemma 1 can be applied to show thatV andV
′

have full rank. To see this, consider the matrix

Λ =
[

V
′

U
]

whereU is a µ × (µ − (n + 1)N ) matrix whose entriesuij are chosen i.i.d from a probability distribution whose

cumulative distribution function is continuous. Then, we can apply Lemma 1 toΛ, since each term of thelth row is

a product of powers ofTml, ulk,m = 1, 2 . . . N, k = 1, 2 . . . (µ−(n+1)N ), l = 1, 2, . . . , µ. Further, it can be verified

that these variables and their corresponding exponents satisfy the conditions of Lemma 1. Therefore, the result of

the lemma implies thatΛ is non-singular with probability1. Thus, the columns ofV
′

are linearly independent

almost surely. Further, since the set of columns ofV is a subset of the columns ofV
′

, the non-singularity ofΛ

implies thatV also has linearly independent columns almost surely. This completes the proof.

APPENDIX II

DEGREES OF FREEDOM OF THEM × N USERX NETWORK WITH N > 2

The achievability scheme is similar to the achievability proof for the generalK user interference channel in [16].

Let Γ = (M −1)(N −1). We will develop a coding scheme based on interference alignment which achieves a total

of N(n+1)Γ+(M−1)NnΓ

N(n+1)Γ+(M−1)nΓ degrees of freedom for any arbitraryn. Taking supremum over alln proves that the total

number of degrees of freedom is equal toMN
M+N−1 as desired. To show this, we construct a scheme that achievesa

total of (M − 1)NnΓ + N(n + 1)Γ degrees of freedom over aµn = N(n + 1)Γ + (M − 1)nΓ symbol extension of

the original channel. (Note that, the symbol extension and the degrees of freedom achieved conform to the intuitive
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explanation provided in Section V-C) Over the extended channel, the scheme achieves(n+1)Γ degrees of freedom

for each of theN messagesW [j1], j = 1, 2 . . . N and achievesnΓ degrees of freedom for all the other(M − 1)N

messagesW [ji], j = 1, 2 . . . N, i = 2, 3 . . . N . The signal vector in the extended channel at thejth user’s receiver

can be expressed as

Y[j](κ) =
M
∑

i=1

H[ji](κ)X[i](κ) + Z[j](κ)

wherej ∈ {1, 2, . . . , N}, andX[i] is aµn×1 column vector representing theµn symbol extension of the transmitted

symbolX [i], i.e

X[i](κ)
△
=















X [i](µnκ + 1)

X [i](µnκ + 2)
...

X [i](µn(κ + 1))















Similarly Y[i] andZ[i] representµn symbol extensions of theY [i] andZ [i] respectively.H[ji] is a diagonalµn×µn

matrix representing theµn symbol extension of the channel i.e

H[ji](κ)
△
=















H [ji](µnκ + 1) 0 . . . 0

0 H [ji](µnκ + 2) . . . 0
... · · ·

. . .
...

0 0 · · · H [ji](µn(κ + 1))















Over the extended channel, messageW [j1] is encoded at transmitter1 as(n + 1)Γ independent streamsx[j1]
m ,m =

1, 2, . . . (n + 1)Γ along directionsv[j1]
m ,m = 1, 2 . . . (n + 1)Γ. So the signal transmitted at transmitter1 may be

written as

X[1] =
N
∑

j=1

(n+1)Γ
∑

m=1

x[j1]
m v[j1]

m =
N
∑

j=1

V[j1]x[j1]

where the dependence on the channel use indexκ is suppressed above for the sake of compactness. Note thatV[j1]

is a µn × (n + 1)Γ matrix whose columns arev[j1]
m ,m = 1, 2, . . . (n + 1)Γ. Similarly x[j1] is a (n + 1)Γ × 1 vector.

In the same manner,W [ji], i 6= 1 is encoded intonΓ independent streams by transmitteri as

X[i] =
N
∑

j=1

nΓ
∑

m=1

x[ji]
m v[ji]

m =
N
∑

j=1

V[ji]x[ji]

whereV[ji] is a µn × nΓ matrix The received signal at thekth receiver can then be written as

Y[k] =
M
∑

i=1

H[ki]
(

N
∑

j=1

V[ji]x[ji]
)

+ Z[k]

We wish to design beamforming directionsV[ki] so that receiverj can decode each of the desired signals by

nulling the interference. We ensure this by aligning interference so that the dimension of the space spanned by

the interference vectors at any receiver is equal to(N − 1)(n + 1)Γ. Once the interference is aligned in this

fashion, a receiver can decode its desired(n + 1)Γ + (M − 1)nΓ streams by zero-forcing the interference in the

µn = (N − 1)(n + 1)Γ + (n + 1)Γ + (M − 1)nΓ dimensional space. Interference alignment is ensured by choosing
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the beamforming directionsV[ki] so that the following interference alignment equations aresatisfied at receiver

j,∀j = 1, 2 . . . N .

span
(

H[ji]V[1i]
)

⊂ span
(

H[j1]V[11]
)

span
(

H[ji]V[2i]
)

⊂ span
(

H[j1]V[21]
)

...

span
(

H[ji]V[(j−1)i]
)

⊂ span
(

H[j1]V[(j−1)1]
)

span
(

H[ji]V[(j+1)i]
)

⊂ span
(

H[j1]V[(j+1)1]
)

...

span
(

H[ji]V[Ni]
)

⊂ span
(

H[j1]V[N1]
)



























































∀i = 2, 3, . . . M (16)

where span(P), represents the span of the column vectors of matrixP. In other words, we wish to pick matricesV[ki]

so that, at receiverj, all the interfering spaces from transmitters2, 3, . . . M align themselves with the interference

from transmitter1. Then, at any receiver, the dimension ofall the interfering streams is equal to the dimension of the

interference from transmitter1 which is equal to(N−1)(n+1)Γ as required. Note that there are(M−1)(N−1) = Γ

relations above corresponding to receiverj. Therefore a total ofΓN relations of the form span(P) ≺ span(Q)

need to be satisfied. These relations can be re-ordered to be expressed alternately as

span
(

H[1i]V[ki]
)

⊂ span
(

H[11]V[k1]
)

span
(

H[2i]V[ki]
)

⊂ span
(

H[21]V[k1]
)

...

span
(

H[(k−1)i]V[ki]
)

⊂ span
(

H[(k−1)1]V[k1]
)

span
(

H[(k+1)i]V[ki]
)

⊂ span
(

H[(k+1)1]V[k1]
)

...

span
(

H[Ni]V[ki]
)

⊂ span
(

H[N1]V[k1]
)



























































∀i = 2, 3, . . . M,∀k = 1, 2 . . . N (17)

In order to satisfy the above relations, we first choose

V[k2] = V[k3] = . . .V[kM ],∀k = 1, 2 . . . N

Now, the relations in (17) can be re-written as

span
(

T[1i]V[k2]
)

⊂ span
(

V[k1]
)

span
(

T[2i]V[k2]
)

⊂ span
(

V[k1]
)

span
(

T[3i]V[k2]
)

⊂ span
(

V[k1]
)

...

span
(

T[(k−1)i]V[k2]
)

⊂ span
(

V[k1]
)

span
(

T[(k+1)i]V[k2]
)

⊂ span
(

V[k1]
)

...

span
(

T[Ni]V[k2]
)

⊂ span
(

V[k1]
)







































































∀i = 2, 3 . . . M, k = 1, 2 . . . N

(18)

where

T[ji] = (H[j1])−1H[ji], j = 1, 2 . . . N, i = 2, 3 . . . M
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We now wish to pickV[k1] and V[k2] so that the above relations are satisfied and then useV[ki] = V[k2], i =

3, 4 . . . M . To satisfy the above relations, we first generateµn × 1 column vectorsw[k], k = 1, 2 . . . N such

that all the entries of the matrix
[

w[1] w[2] . . . w[N ]
]

are chosen i.i.d fromsome continuous distribution whose

support lies between a finite minimum value and a finite maximum value. Notice that for a fixedk, there areΓ

interference alignment relations of the form in Lemma 2. Using column vectorw[k] (which has non-zero entries

with probability1), the construction of the lemma can be used to construct vector spacesV[k2] andV[k1] satisfying

the desired interference alignment relations of (18). Also, the construction ensures that rank(V[k2]) = nΓ and

rank(V[k1]) = (n + 1)Γ as required.

Now, we have designedV[ji], j ∈ {1, 2, . . . N}, i ∈ {1, 2, . . . ,M} so that the desired interference alignment

equations of (16) are satisfied. We now need to ensure that at each receiver, all the desired signal streams are linearly

independent of each other and independent of the interference, so that they can be decoded using zero-forcing. Notice

that at any receiverk, interference alignment ensures that all the interfering streams arrive alongH[k1]V[j1], j =

1, 2 . . . k−1, k+1, . . . N and therefore, the interference space is the space spanned by the (N −1)(n+1)Γ column

vectors ofIk where

Ik =
[

H[k1]V[11] H[k1]V[21] . . . H[k1]V[(k−1)1] H[k1]V[(k+1)1] . . .H[k1]V[N1]
]

The desired streams at receiverk arrive along the(n + 1)Γ + (M − 1)nΓ column vectors ofDk where

Dk =
[

H[k1]V[k1] H[k2]V[k2] . . .H[kM ]V[kM ]
]

=
[

H[k1]V[k1] H[k2]V[k2] . . .H[kM ]V[k2]
]

So, at receiverk, we need to ensure that the matrix

Λk = [Dk Ik]

has a full rank ofµn almost surely. Now, notice that an element in themth row of Λk is a product of powers

of H
[ji]
m and w

[j]
m for i = 1, 2 . . . M, j = 1, 2 . . . N , whereH

[ji]
m represents the diagonal entry in themth row of

H[ji] andw
[j]
m represents the entry in themth row of the column vectorw[j]. We intend to use Lemma 1 to show

that the matrixΛ has full rank with probability1. To do so, we need to verify that the conditions of Lemma 1

are satisfied. In particular, we need to ensure that, in a given row, the set of exponents in different columns are

different. We now make the following observations

1) In themth row, the product term inH[ki]V[ji] containw
[j]
m with exponent 1, but do not containw[j

′

]
m , j

′

6= j

2) Notice that the equation corresponding toH[ki], i = 2, 3, . . . M is missing in the interference alignment relations

of (17) at receiverk. The construction of Lemma 2 ensures that monomial entries in themth row of V[k2] do

not containH
[ki]
m , i = 2 . . . M .

Observation 1) implies that all the monomial entries of themth row of Ik are unique. Furthermore, it also implies

that all the monomial terms inIk are different from all the monomials inDk. Now, observation 2) implies that all

the entries inDk are unique, since the termH [ki]
m occurs only in the column vectors corresponding toH[ki]V[k2] .

Therefore, the conditions of Lemma 1 are met and so we can conclude the matrixΛk has a full rank ofµn almost

surely.

Thus, the desired signal is linearly independent of the interference at all the receivers and therefore, using the

techniques of interference alignment and zero-forcing,N(n+1)Γ+(M−1)NnΓ

N(n+1)Γ+(M−1)nΓ degrees of freedom are achievable over
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theM ×N userX network for anyn ∈ N. Taking supremum overn, we conclude that theX channel has MN
M+N−1

degrees of freedom.
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