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Abstract

We explore the degrees of freedom/dfx N user wirelessX networks, i.e. networks af/ transmitters andv
receivers where every transmitter has an independent gefsaevery receiver. We derive a general outerbound on
the degrees of freedonegion of these networks. When all nodes have a single antenna bolasinel coefficients
vary in time or frequency, we show that ttetal number of degrees of freedom of thenetwork is equal tojuf%
per orthogonal time and frequency dimension. Achievahidifproved by constructing interference alignment schemes
for X networks that can come arbitrarily close to the outerboundegrees of freedom. For the case where either
M =2 or N =2 we find that the degrees of freedom characterization alseiges a capacity approximation that

is accurate to withirO(1). For these cases the degrees of freedom outerbound isyeaabtevable.



. INTRODUCTION

There is increasing interest in approximate capacity ataraations of wireless networks as a means to under-
standing their performance limits. In particular, the higNR regime - where the local additive white Gaussian
noise (AWGN) at each node is de-emphasized relative to kignad interference powers - offers fundamental
insights into optimal interference management schemes. ddygrees-of-freedom approach provides a capacity
approximation whose accuracy approach@d’ in the high signal-to-noise ratio (SNR) regime. A networls la
degrees of freedom if and only if the sum capacity of the netwan be expressed dsog(SNR))+o(log(SN R)).
Since each orthogonal (non-interfering) signalling disien contributes a rate dbg(SN R) + o(log(SNR)), the
degrees of freedom of a network may be interpreted as the auonfbresolvable signal space dimensions. The
capacity characterizations obtained through this appra@ae equivalently described by various researchers as the
multiplexing gain, the pre-log term or the degrees of fragpabaracterization. Starting with the point to point MIMO
channel [1], [2], the degrees of freedom have been charaetefor MIMO multiple access channel (MAC) [3],
MIMO broadcast channel (BC) [4]-[6], 2 user MIMO interfeoenchannel [7], various distributed relay networks
[8]-[10], 2 user MIMO X channel [11]-[15], and most recently th€ user interference channel [16]. For the
purpose of this paper, relevant ideas from these prior warkssummarized as follows.

Consider a two user Gaussian interference channel wheteremie is equipped with a single antenna. Trans-
mitters 77 and 7> have independent messagés,; and Wy, for receiversR;, and Ry, respectively. It is known
that if transmitters’y; and 7, are combined into one compound transmitter withransmit antennas and (or)
the receiversR; and R, are combined into one compound receiver withreceive antennas, then the resulting
point to point MIMO channel (or the resulting vector MAC/B@as2 degrees of freedom, i.e. the sum capacity
of the resulting channel is expressed2dsg(SNR) + o(log(SNR)) [3]-[6]. However, the interference channel
with distributed transmitters andlistributed receivers has only degree of freedom, i.e., its sum capacity is only
log(SNR) + o(log(SNR)) [7], [17]. This loss of degrees of freedom is evidently duethe inability of the
transmitters/receivers to jointly process the transmiiteceived signals.

Consider again the same two user network with distributadsimitters and receivers, but suppose there are
four independent messag#s, |, W12, Wa1, Way such that messagdé’;; originates at transmittef and is intended
for receiveri. This communication scenario is named tkechannel in [18] and is shown to ha\éedegrees of
freedom in [15] when the channel coefficients are time-varyr frequency-selective and drawn from a continuous
distribution. The degrees of freedom of the constdnthannel (i.e. when the channel coefficients are not time-
varying or frequency-selective) remain unknown in genéakingle antenna nodesA key concept that arises in
the context of the X channel [11], [15] (also an essentiainelet of wireless interference networks [16], [19]-[22]
and the compound broadcast channel [23]), is the idea oérffitence Alignment” that refers to an overlap of
signal spaces occupied by undesired interference at eaelvee while keeping the desired signal spaces distinct. To
illustrate why interference alignment on the X channel tetadl /3 degrees of freedom, we construct the following
simple example where alignment is achieved in terms of sigr@pagation delays.

The constant X channel with/ > 1 antennas at each node is considered in [11] and shown toxleqrﬁéij degrees of freedom. The
result is strengthened in [15] where achievabilityf‘éi degrees of freedom is established along with a converse.
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Fig. 1. Interference Alignment on th& channel.4 interference-free channels are created &véme slots

Toy Example - 4 orthogonal channels over 3 time slots

As shown in Figure 1, in this toy example we assume there isopggation delay between each transmitter
and receiver (the delay can also be interpreted as a delay3dime slots). The transmissions are scheduled such
that, following the propagation delays, they arrive at tlesiced receivers free from interference, while they are
aligned with other interference at the undesired receivtss, for example, transmitted symbols for message
are received free from interference at intended receiverbut interfere with the symbols for messaygé., at
receiver2 since bothiWy;, Wi, are undesired messages 5. Due to this interference alignmerat)] 4 messages
are delivered interference-free to their respective destinations using only 3 time slots. While the toy example uses
artificial propagation delays, essentially the same aligminis accomplished in [15] (without involving propagation
delays) over random time-varying channels by sophistitheEamforming in space and time dimensions. Thus, the
toy example illustrates the basic idea behind 4118 degrees of freedom of thz user X channél.

Interference alignment is the key to the degrees of freedioanacterizations of a variety of network communi-
cation scenarios, such as the compound broadcast chard}etf@nitive radio networks [15], [26], deterministic
channel models [24] and the interference channel viith> 2 users [16]. While the principle of interference
alignment is quite simple, the extent to which interfereoar be aligned for a general network topology is difficult
to determine. Ideally one would like all interfering sigmab align at every receiver and all desired signals to
be distinguishable. As we introduce more messages intodheonk, the interference alignment problem becomes
increasingly complex. The most challenging case for ieterice alignment is therefore thenetwork where every
transmitter has an independent message for every reckiviis paper we explore this extreme scenario to find
out the limits of interference alignment.

2As pointed out in [24], propagation delay based exampled sscFigure 1 can be translated first into the deterministinichl model

of [25] and then into a constadt channel with certain specific channel coefficients which aenieve arbitrarily close to the outer bound
of 4/3 degrees of freedom.



II. DEFINITIONS - X NETWORK AND DEGREES OFFREEDOM

Following the terminology of [18], we define all x N userX network as a communication network with/
transmitters andV receivers and a total of/ V independent messages, one from each transmitter to eagheec
The transmitters cannot receive and receivers cannotiamenich precludes relaying, feedback and cooperation
between transmitters or cooperation between receiveisxB userX network is shown in Figure 2. Th& x N
userX network is described by input-output relations

YUe)= Y HUl()xU(k)+ 2U(k), j=12..N

i€{1,2,....M}

where x represents the channel use index. For simplicity we wiluassx represents the time index. It should
be noted that it can equivalently be interpreted as the &eqyindex if coding occurs over orthogonal frequency
slots. X[(x) is the signal transmitted by transmitterY'l'l(x) is the signal received by receivgrand ZU!(x)
represents the additive white Gaussian noise at recgiv@he noise variance at all receivers is assumed to be
equal to unity. HV%(x) represents the channel gain between transmiti@nd receiverj at time x. We assume
that all channel fade coefficients are drawn according tordirmaous distribution. Specifically, we assume that the
cumulative distribution function

Frgun(h) = Pr (HIr) < b {HV 1), (05, ) # (i) })

is continuous inh. Further, to avoid degenerate channel conditions, we asghat the absolute value of all the
channel gains is bounded between a non-zero minimum valdeadinite maximum value. We assume that all
nodes have causal (i.e, present and past) knowledgdl ¢ie channel gains, meaning that at time indexach
node knows all the elements of the 4gl/l(k) : (j,4) € {1,2,..., N} x {1,2,..., M}, k=1,2,...,k}.
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Fig. 2. A2 x 3 userX network
We assume that transmittérhas messag®/l/%! for receiverj, for eachi € {1,2,...,M},j € {1,2,...,N},

resulting in a total ofM N mutually independent messages. The average power at eadmiktter is bounded by
p, i.e.
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. oy log(IWE(p)])
for all i € {1,2,..., M}, wherexy denotes the length of the codeword. Lj;(p) = —

rate of the codeword encoding the mess&ige’, where|[Wl(p)| denotes the size of the message set. A rate-

denote the

matrix|(R;i(p))] is said to beachievable if message$V ! can be encoded at raté®;(p) so that the probability
of error can be made arbitrarily small simultaneously fdrmaéssages by choosing appropriately long Let
C(p) represent capacity region of the network, i.e, it represents the set of all achievable raagrices|(R;i(p))].
Analogous to the capacity region of the network, the degoédseedom region of thé/ x N userX network is
defined by

D= {[(dji)] e RY™N :V[(wy:)] € RN

) 1
Z wjid;; < lim sup sup Z [wji Rji(p)|—— }

ie{1,2,..,M},je{1,2,...N} P00 (R (P)IEC0) jep1 2, MY, je{1,2,....N} log(p)
The degrees of freedom region of the network approximasesapacity region withim(log(p)). X networks are
interesting because they encompass all communicatiorasosmpossible in a one-way single hop wireless network.
For example, multiple access, broadcast and interferertgorks are special cases a&f networks. Since there
are messages from every transmitter to every receivery dvansmitter is associated with a broadcast channel,
every receiver is associated with a multiple access chamelevery disjoint pairing of transmitters and receivers
comprises an interference channel within tkenetwork. In particular, any outerbound on the degrees @fdioen
region of anX network is also an outerbound on the degrees of freedom dfsatlubnetworks.

I1l. RESULTS

A summary of the key results and the associated insightseisgpted in this section.

1) Outerbound: The first result of this paper, presented in Section IV, is ateound for the degrees of
freedomregion of the M x N userX network. In particular, théotal number of degrees of freedom of thé x N
user X network is shown to be upper-bounded %ﬁ% per orthogonal time and frequency dimension, when
each node is equipped with antennas. The outerbound is quite general as it appliesytdudip connected (i.e.
all channel coefficients are non-zerdj x N user X network, regardless of whether the channel coefficients are
constant or time varying. The key to the outerbound is taitiste theM N messages in th& network intoM N
(partially overlapping) sets, each havidg + N — 1 elements. By picking these sets in a certain manner we are
able to derive a MAC (multiple access channel) outerboumilai to [7] for the sum rate of the messages in each
set. Since the MAC receiver has onlyy antennas, the MAC has at madtdegrees of freedom. Thus, each set of
messages can at most hatalegrees of freedom. The outerbounds for these sets togigfiee an outerbound on
the degrees of freedom region of thé x N user X network and adding all the outerbounds gives us the bound
on the total number of degrees of freedom.

2) Asymptotic Interference Alignment Scheme: In Section V-C we present an asymptotic interference aligmm
scheme forM x N userX networks with time varying channel coefficients. By consiulg larger supersymbols the
partial interference alignment scheme is able to approathinnany ¢ > 0 of the degrees of freedom outerbound.
While the idea of partially aligning interference was earlused in theK user interference channel [16], the
extension of the scheme to thé network is more complex, since there is a message for easbntitier-receiver
pair in the network. Combined with the outerbound, the phiititerference alignment scheme establishes that



the total number of degrees of freedom bf x N user X networks with single antenna nodes and time (or
frequency) varying channel coefficients is precisg}%. The partial interference alignment scheme does not
extend completely toX networks where each node has multiple antennas. Howewek imagine each antenna
to be a separate user (which can only reduce the capacity)ahgmple application of the partial interference
alignment scheme shows that an innerboun%@ﬁ% is achievable forM x N userX networks where each
node hasA antennas. If either/ or N is reasonably large, then this innerbound is close to therbaund.

3) Perfect Interference Alignment Scheme: We construct a perfect interference alignment scheme i fhx N
user X channel when the number of receive¥s= 2. This scheme achieves exactly one degree of freedom for
every message over all + N — 1 symbol extension of the channel, thus achieving exactlyahrbound of
% total degrees of freedom over a finite channel extension. lééeshow an interestingeciprocity property
of beamforming and zero-forcing based schemes in wirelessanks. In particular, we show that given a coding
scheme in theX network based entirely on beamforming and zero-forcing,cae construct a beamforming and
zero-forcing based coding scheme over the recipracalktwork achieving the same number of degrees of freedom
as the original scheme. The coding scheme over the recipchaanel may needpriori knowledge of all channel
gains even when the original scheme needs only causal dhienowledge. The reciprocal scheme is therefore
practical in a scenario where channel extensions are cenesidn the frequency domain. This reciprocity property
serves as an achievability proof for thé x N userX channel when/ = 2, for any N. Thus, for eithetM = 2 or
N =2 we are able to construct perfect interference alignmenersels with a finite extension of the channel. We
show that this implies that, in both these cases, we have(a capacity characterization. Note that the asymptotic
interference alignment scheme for the general case onlgisyg capacity characterization withirflog(SNR)).

4) X networks versus Interference Networks: Since we are able to characterize the exact degrees of freedo
of X networks and the degrees of freedom of interference netwvark already known, the comparison follows
simply as a corollary. Thél x K userX channel has significant degrees of freedom advantage oséx thser
interference channel wheR is small. For example, whek = 2, the X network has4/3 degrees of freedom,
whereas the interference channel has dnlifiowever the advantage disappeardsasicreases. This is easily seen
by substitutingd = N = K in the total degrees of freedom expression for fiechannel to obtainﬁ’{(—i1 which
is close toK /2 for large K.

5) Cost of Distributed Processing: This result also follows as a corollary of the main result testablishes the
degrees of freedom fakK networks. Compared td7 x N MIMO which represents joint signal processing at all
transmitters and all receivers, théx N userX channel pays a degrees of freedom penaltyinf( M, N)—%,
which is the cost of distributed processing on tkechannel. While the cost of distributed processing is eqoual t
half the degrees of freedom on the interference channed,iittéresting to note that fak' networks, this penalty
disappears when the number of transmitters is much largerttre number of receivers or vice versa. This is easily
seen because, wheyf > N or N > M, % is very close tomin(M, N). In other words, a small set of
distributed nodes in a wireless communication network withshared messages can serve as a multi-antenna node,
if they are transmitting to, or receiving from a large numbédistributed nodes. We also provide an application
of this result - the two-hop parallel relay network witli distributed transmitting and receiving nodes with large
number of relays. In [8], this parallel relay network is stmow have)M /2 degrees of freedom if the number of
relays was large. By treating the network as a compound &f a K and aK x M X channel, we construct an
alternate degrees-of-freedom-optimal achievable schieamsection VI.



IV. DEGREES OFFREEDOM REGION OUTERBOUND FORX NETWORKS

While our main focus in this paper is on the case where eacle tha$ a single antenna, we present the
outerbound for the more general setting where transmitteas A! antennas and receiver has A} antennas,
Vie{1,2,--- M},je{1,2,--- N}

Theorem 1: Let

pout £ {[(djl)] W(m,n) e {1,2,..., M} x {1,2,...,N}

N M
> dgm + > dnp — dpm < max(AL, A7) }
q=1 p=1

ThenD C D°“ whereD represents the degrees of freedom region ofithe N userX channel. In other words, for
any achievable scheme, the number of degrees of freedorevachby all the messages associated with transmitter
m or receivern is upper-bounded bynax(A?,  A”).

Proof: We start by definingl/ N setswWw™™ n € {1,2,--- ,N},m € {1,2,--- , M} as follows:

wrm L wled s (p — n) (g —m) = 0} 1)

In other words, the sety™™ contains only those messages that either originate atnittesm or are destined for
receivern. Note that theM N sets are not disjoint and that each set contdihg- N — 1 elements.

We will determine an outerbound for the total degrees ofdome achievable by each of the message sets when
all other messages are eliminated. In other words, congtideX channel when the only messages that need to be
communicated are those that belong to the)3&t™. Note that eliminating some messages cannot hurt the rates
achievable by the remaining messages, as shown in [15], N&¥ we show that the total number of degrees of
freedom of all messages in a 98t is no more thamax(A?, , A").

o) )
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Fig. 3. (a)2 x 3 X channel with messagésd’*! (b) Converse argument i x 3 X channel for messages W'



Consider any reliable coding scheme in thechannel where all messages not in the d&t™ are eliminated.
Now, suppose a genie provides all the messdged!.q € {1,2,--- ,m — 1,m + 1,m +2,--- , M} to each
of the receiverd,2,--- ,n—1,n+1,n+2---N. Then, receiversy,2,3,...,n — 1,n+1,..., N can cancel the
interference caused by, X2 ... x(m=1 xlm+1  xIM] g that, effectively, the receiverobtainsy ! from
the received signal where

ylel — gleml xtml o 7lpl

wherep € {1,2,--- ,n—1,n+1,n+2,--- N}. Also using the coding scheme, receiwetan decode its desired mes-
sagedV ™ ¢ =1,2, 3, ..., M. Therefore, receiver can subtract the effect of !, x 2 .. x[m-1] xlm+1 —  xI[M]
from the received signal so that it obtaiti§”) where

yinl — prloml xlm] o glnl

Notice that receivers # n are able to decode messad&§™ from Y ¥!. Now, we can reduce the noise at receiver
n and if A7 < A! we add antennas at receiverso that it hasmax(A!,, A7) antennas. By reducing noise and
adding antennas we can ensure th&t, p # n are degraded versions &f"! (for the details of this argument in
the multiple antenna case, see [7]). In other words, by liedutoise and possibly adding antennas, we can ensure
that receivem can decode all messag#s”. Note that the performance of the original coding schemaatn
deteriorate because of the genie or from reducing the noigeom adding antennas and therefore the converse
argument is not affected. We have now shown that in a gediedachannel with reduced noise (see Figure 3),
receiverm is able to decode all the messages in the)48t” when these are the only messages present. This
implies that degrees of freedom of the messages in th#/8ét lies within the degrees of freedom region of the
multiple access channel with transmittér®, . .., M and receiven. Since receiven hasmax(AL,, A”) antennas

the total number of degrees of freedom for all messages iseh)"™ cannot be more thamax(A’,, A7). This
gives us the outerbound

N M
[(g};lj}ép - dqm + Z: dnp - dnm é maX(Aim AZ) (2)

q=1 p=1
Repeating the arguments for eaehyn we arrive at the result of Theorem 1. |

Since our focus in this paper is on the total degrees of freefty the case when all nodes have one antenna,
the following corollary establishes the needed outerbound
Corollary 1. The total number of degrees of freedom of thechannel withM/ transmitters andV receivers

and1 antenna at each node, is upper bounded B i.e.
MN
Ay < ——mM——
(@nlep 2 T M4+N-1

ne{1,2,...,N},me{1,2,...,M}
Proof: The bound can be obtained by summing all theV inequalities describing the outerbound of the

degrees of freedom region and settinfj, = A7 = 1 for all transmitters and receivers. [ |

The outerbound of Theorem 1 is not only useful for the totahbar of degrees of freedom, but rather it bounds
the entire degrees of freedom region of theé x N user X network. In other words, Theorem 1 provides an
outerbound for any fully connected distributed single ha@work under the given system model. For example,
consider a hypothetical channel wishsingle antenna transmitters aBdingle antenna receivers, and 6 messages,
Wil i £ 40,5 € {1,2,3}, i.e, the3 x 3 userX channel withiw '] = 1W[22 = W3] = ¢ The solution to the



following linear programming problem provides an outenhaddor the total number of degrees of freedom of this
channel.

max((g,,)) > dmi
m=#l

St Y dmg+ Y dy—dpmy <1 V(m,1) € {1,2,3} x {1,2,3}

In many cases of interest these outerbounds can be showntighbeFor example, in th@ x 2 user X network,
the outerbound of Theorem 1 is shown to represent the erggeeds of freedom region [15].

V. INTERFERENCEALIGNMENT AND INNERBOUNDS ON THEDEGREES OFFREEDOM

The following is the main result of this section.

Theorem 2: The M x N userX network with single antenna nodes hﬂ% degrees of freedom.

The converse for the theorem is already proved in the coyotta Theorem 1.

The achievable scheme for thé networks are based on interference alignment and zeroéprEor the general
M x N userX network we provide a partial interference alignment basediibound that approaches the outerbound
as we increase the size of the supersymbols (channel exteshisWhile the degrees of freedom achieved by this
scheme can come withia of the degrees of freedom outerbound for any 0, the two are never exactly equal.
This is sufficient for a degree of freedom characterizatimn,it does not provide a@(1) capacity characterization.
In some cases (when eith&f = 2 or N = 2) we are able to creatgerfect interference alignment schemes so that
the degrees of freedom outerboundeigctly achieved with a finite channel extension. In these casegjdbeees
of freedom also leads to a capacity characterization thatdsirate withinO(1).

Before we proceed to describe the achievable schemes, werpra corollary to Theorem 2.

Corollary 2: Let Dy, represent the total number of degrees of freedom ofMhe N user X network where
all transmitting and receiving nodes haxdeantennas each.Then,

AMN AMN
———— 5 <Dy < —F——
M+N-1/A M+ N-1
Proof: The degrees of freedom outerbound follows from Theorem E ifiherbound can be derived using
an achievable scheme that treats each antenna in the neawalsingle distributed user. So, effectively, for this

achievable scheme, the network isdd/ x AN user X network with single-antenna nodes. Then, Theorem 2

AMN
M+N—1/A

Note that our degrees of freedom characterization ofithe N user MIMO X network is not tight, ifA > 1. We

implies that degrees of freedom are achievable. |
now proceed to describe the perfect interference alignmemgme for thél/ x 2 userX network. Two preliminary
lemmas used in proofs presented in the subsequent secfitine paper are placed in Appendix I.

A. Perfect Interference Alignment for the M x 2 user X network

The outerbound for thé/ x 2 userX channel states that it cannot achieve more than a totg@%‘éf degrees
of freedom. We now present the construction of an interfegealignment scheme which achieves exa%l%f1
degrees of freedom for each of thé/ messages, thus exactly achieving the outerbound. The schenpresent
here is an extension of the scheme presented in [15].
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Consider aM + 1 symbol extension of the channel formed by combiniig- 1 symbols into a super-symbol.
This channel can be expressed as

Yl = Y H"()XM (k) + 21 (k)
me{1,2,...,M}

YEk) = Y HP()XM (k) + 2P (k)
me{1,2,....,M}

whereX!"l (k) is a(M +1) x 1 column vector representing the + 1 symbol extension of the transmitted symbol
Xl je

[ X (M + 1) + 1)

o | XMU(R(M +1) +2)

X (k) 3)

| XMk 4+ 1)(M 4+ 1))

Similarly YU! and ZU! representV + 1 symbol extensions of th&'ll and ZU! respectivelyHVU™ is a diagonal
(M +1) x (M + 1) matrix representing thé/ + 1 symbol extension of the channel, i.e.,

[ HUm (5(M + 1) + 1) 0 . 0 ]
_ 0 HUm (x(M4+1)+2) ... 0
I 0 0 e HUM((k 4 1)(M 4+ 1)) |
We now describe an achievable scheme that achieves oneedefgreedonyd;,,, = 1,5 =1,2,m =1,2,..., M

for each message over thig + 1 symbol extension, thus achieving a total2df/ degrees of freedom oveéd + 1
symbols.

The encoding strategy is as follows. Transmitterencodes messagég!'” and W>™ as two independent
streamse!!™ andz[2™ and respectively transmits these two streams along direxiil!” andv[2™ (See Figure
4 for the special case wherd = 2). We can then write

Xl — plmllim] | [2m)[2m)

The received message at receiyds

M M
YUl = S lmlphmlyliml | ggli gl ylznl 4z

m=1 m=1

wherej =1, 2.

Receiverl decodes its\/ desired messages by zero-forcing the all interferenceoxeet?”, m = 1,2,..., M.
In other words, receivet first processe'!!l as YI!I = P, Y1, whereP; is a matrix which represents the
kernel (null-space) of the set of interfering column vestare., [HvI2 HI2v22 | HIMIVEM]] Now to
recover)M interference-free streams for desired signals fifi, the matrixP; has to have a dimension of. In
other words, the matriyHvi2 HI2vi22 | HIMIVIZMIT must have a dimension df Equivalently, all the
interference streams must align along a common directiee Sgure 4). Therefore, vectovs?™ i =2,..., M
are picked so that their corresponding interference tetmmeceiverl perfectly align with the interference from
transmitterl - i.e HI™v[27 lies alongHM v for all m = 2,..., M.

HImyRm — gl gy =0 M (5)
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Fig. 4. Interference Alignment on thex 2 user X network [15]

This ensures that, from the point of view of receiverall the interference termE!'"v[2™ |ie along a single
vector Hv[21| so thatP; has a dimension of\/. Similarly, at receive, we intend to decode itd/ desired
streams using ) = P, Y2, whereP; is the kernel (null-space) ofii2!vt HI2AvI2 - HEMIVIMI To
ensure thaP, has)M linearly independent columns, we piek'™ m # 1 as

£ (CUORVIRUDINY 2 (G RVIR I, S U (6)

Now that we have ensured all interference is restricted tp @me dimension at each receiver, this dimension can
be nulled to eliminate all interference, leavidg interference free dimensions to recover thedesired messages
for each receiver. What is needed is that the desired sigrwbks are linearly independent of the interference. In
other wordsP; (resp.Ps), which is the null-space dH!MIv[2l (resp.H[2!v[!]) should not null out any of the
desired vectors at receivér (resp. receivee) . Therefore we need to pick!'!l and v[2!! so that the following
matrices are of full rank.

[H“”v“” gty giMly M H“”vmq at receiver 1
[H[ﬂ}v[?l} a2 gRMIRM] Hmv[”q at receiver 2

Note that the first\ column vectors of the above matrices represent the sigmapooents, and the last column
represents the aligned interference. We now pick the caduofnv!!!l and v[2! randomly from independent
continuous distributions i.e.,

b1

| PM+1

q1

| IM+1 |
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An important observation here is that oneé!l andv[?! are picked as above, equations (5) and (6) can be used

to pick v m + 1 with just causal channel knowledge. i.e., tile component of the transmitted vector at any

transmitter depends only on the fiistliagonal entries of1l% (in fact, it depends only on thi¢h diagonal entry).

The desired signal can now be shown to be linearly indepdrafehe interference at both receivers almost surely.
For example at receiver, we need to show that matrix

Ap = [EUGY ph2lyhe o M i) pply 2]

has full rank. Since all channel matrices are diagonal ahdéfnk, we can multiply by H'!)~! and use equations
(5) and (6) to replace the above matrix by

j_\lz[v“” (H[11])—1H[12]H[21](H[22])—1V[11] (H[ll])—lH[lK}H[Ql](H[ZK})—IV[H] V[21]]

Let H,Eji] is the kth diagonal entry of1l/’/, We now make the following observations

’

1) The assumption on the channel model implies tHé{"’H{H,EJ,J"/],(k i,5) # (k,i,7)} has a continuous
(cumulative) distribution,

1m]

2) In thekth row, the exponent QH,E is 1 in the element in thenth column of A; and0 in all other columns
form =2,..., M. Therefore, in theth row, H,[flm] has a different exponent in the element in thecolumn,

as compared to its exponent in theth column, for anym # m/'.

The above observations combined with the result of Lemmae$gmted in Appendix | imply that the matrix;
has full rank of M + 1 almost surely. Thus, the desired signal vectors are lipeadependent of the aligned
interference vectors almost surely.

Similarly, the desired signal can be shown to be linearlyepehdent of the interference at rece@edmost surely.
Therefore,2M independent streams are achievable over(thle+ 1) symbol extension of the channel resulting
in ]gj—ffl degrees of freedom over the original channel. Also, sineedthievable scheme essentially crea&s
point-to-point links over a\/ + 1 symbol extension of the channel, it provides @(1) capacity characterization
[16] of the M x 2 userX network as

2M
Clo) = 3757
whereC(p) is the sum-capacity of the network as a function of transrower p.

log(p) + O(1)

B. Achievability for 2 x M X network - Reciprocity of beamforming and zero-forcing based schemes

Consider an\/ x N userX network. We refer to this as the primal network. Consider aclyievable scheme on
this channel based on beamforming and zero-forcing. Speltjfi consider any achievable scheme whose coding
strategy maybe described as follows.

« Encoding - Transmitte§ encodes a message to receiyezlong independent streams and beamforms these
streams along linearly independent vectors. For exampdgith stream to receiver is encoded at transmitter
i anl[f” and beamformed along directio,rgi] anEj'i}v,[j”.

« Decoding - Receivej decodes all the desired message streams through zerogoFar example, to decode
the kth stream from transmitter; i.e, x%l] the receiver projects the received vector almré’é] which nulls all

undesired streams.
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The reciprocal (or dual) network is the network formed whiem transmitters and receivers of the primal network

are interchanged and the channel gains remain the sameefdtegrthe dual of a/ x N user X network is a

N x M userX network. The channel gain between transmititemd receiverj in the primal network is equal

to the channel gain between transmitjeand receiver in the dual network. It can be shown that corresponding
to every zero-forcing based achievable scheme in the prire@bork, there exists a zero-forcing based achievable
scheme in the reciprocal network that achieves the same ewaildegrees of freedom as the primal network. In

particular, the coding scheme that achieves this in the deflork may be described as follows.

« Encoding - In the dual network, transmittgrencodes a message to receivegilong linearly independent
streams and beamforms these streams along directions énatused for zero-forcing in the primal network.
For example, théth stream to receiveris encoded a§gﬂ and beamformed along directiorfﬂ as@%j]u,[f”,
(where uggi} represents the zero-forcing vector used in the primal nédvay receiverj to decode thekth
stream from transmitte)

« Decoding - Receivei decodes all the desired streams through zero-forcing attiegtions that were the
beamforming directions in the primal network. For examjrethe dual network, to decode thigh desired
stream from transmittey i.e Egﬂ, receiveri projects the received vector along vectdfi] - where vgi}
represents the beamforming vector used in the primal n&tlgrtransmitteri to transmit thekth stream to
receiver;j

It can be easily verified that the above scheme maps evenpémdient interference-free stream in the primal
M x N userX network to an independent interference-free stream in tieé¢ &' x M user X network and thus
achieves the same number of degrees of freedom in the dwabrketThis scheme therefore establishes a general
duality of beamforming and zero-forcing based interfeezsalignment schemes. Below, we provide a formal proof
of reciprocity for theM = 2 case. The proof serves as an achievable scheme 2 th& user X network with
frequency selective channels.

Proof of Theorem 2 for the 2 x N user X network: The 2 x N userX network maybe represented as

vIml(g) = MG X W (k) + HM2 (1) XPN (k) + Z2M(k),m =1,2,... N 7)
Consider thelV + 1 symbol extension of the@ x N user X network which can be represented as
Y(e) = > HM ()X (k) + 2 (k),m =1,2...N
le{1,2}
The vectorsX!, Y1, Zl1 are (N + 1) x 1 vectors andH!"/! is (N + 1) x (V 4 1) matrix (Refer to (3), (4) for
a similar channel extension over tiié x 2 user X network) The reciprocal of this extended network igvax 2
user X network which can be expressed as

YOk = > BM(E)XM (k) + ZN (k)
me{1,2...N}

YP(k) = > HP(R)XM (k) + 2P (k)
me{1,2...N}

where the over-bar notation indicates quantities in th@recal channel. The vecto&!!, Y ZI1 are (N +1) x 1
vectors andd! is (N + 1) x (N + 1) matrix. Note that in the reciprocal channel, the channehgare identical
to those in the original channel, and we can write

H(k) = HU(k),j € {1,2... N},i e {1,2} (8)



14

Now, consider the achievable scheme over ffiig 2 userX channel, as described in Section V-A. In the achievable
scheme, transmitter encodes messad& ! as zl/) and beamforms it along direction’” so that the signal at

receiverj, for j € {1,2}, is

N N
YUl = 3 glmlglimlglinl 5 glemlglimlgln | 7l
m=1 m=1

The dependence on the indexis dropped above for compactness. In this achievable schemeiver; decodes
zU7 using zero-forcing. Letl’! represent the zero-forcing vector used by recejvén decodezl’!. Sinceal/’
nulls all the interfering streams, we can write

@I TAIIGIM = 0,v(1,m) # (5,7) 9)
= (@Y = 00l TRUGU | (gli1TZU)

We now use the above fact to construct beamforming direstidil and zero-forcing vectoral”! in the original
2 x N userX network. The beamforming and zero-forcing vectors we gorswill enable receivef to decode
messagéV /! by nulling interference from all other vectors. In the primatwork, let transmittej encode message
Wil to receiveri asz[¥] wherej € {1,2},i € {1,2,... N}. The beamforming directions of the primal network
are chosen to be the zero-forcing vectors in the dual chaneelvl?! = all j € {1,2},i € {1,2,... N}. The
transmitted message is therefore

N N
Xl — Z 2lmilymil — Z glmilgbml 5 = 1,2
m=1 m=1
The received vector at receiveis
N
Yyl = 3 (x[muH[mv[mu +x[m2}H[i21V[m21) 0
m=1
M
= Y (x[mllH[iuﬁw + m[mmH[mﬁ@m]) U
m=1
fori e {1,2,..., N}. Now, at receivei, streamz!/] is decoded by projecting the received vector alarig = v/,

i.e., the vector that was used for beamforming at transmitte the dual network.

M
@UTYE = § (gl (x[muH[iuﬁum}H[mmH[iz}ﬁ[zm})+(V[M)sz

3
Il

(x[mu (U THEGAm) | m2] (v[m)TH[z'z}ﬁmm}) + (wUiTZl

Il
M=

3
[N

Il
M=

(x[mu (H GGl 4 4lm2) (Hm]ﬁ[zm})T‘—,w) + (i)l

3
I

(x[mll(ﬁ[lm])Tﬁ[li]‘—,[ji] n x[m2](ﬁ[2m])Tﬁ[2i]‘—,[ji]) +(@NTZ j=1,2i=1,2,....N

Il
M=

3
5

Above, we have used equation (8) in the final step. Combingqgton (9) with the above equation, we get

(@FINTY )l @l TR | (gliyT 7
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Thus, the zero-forcing vectar’" cancels all interference and?! can be decoded free of interference. This implies
that1 degree of freedom is achieved for messH@e’!, for eachi € {1,2... N}, j € {1,2}. 2N degrees of freedom
are achieved over the extend2dc N userX network implying that]\?—f1 degrees of freedom are achieved in the
original 2 x N userX network. The reciprocal scheme also implies thatdhig) capacity of the2 x N userX
network is

C(p) = Nl log(p) + O(1)

whereC(p) is the sum-capacity of the network as a function of transrower p
|

Remark: The achievable scheme described in above proof requiresathes to havepriori channel knowledge
of all the channel co-efficients. This is because, to constbeamforming vectors in th2 x N user X network,
the transmitters need to be aware of the zero-forcing vedtoithe dualN x 2 user X network. Construction
of zero-forcing vectors at the receivers in the ddak 2 user X network requires knowledge of all the channel
co-efficients during the transmission. Therefore, the dmgp strategy based on reciprocity requires non-causal
channel knowledge, if. indicates time-index in (7). Therefore, from a practicatgpective, the above achievable
scheme may be feasible wherrepresents frequency-index, and channels are frequestegtive. This is because,
if x represents frequency, the achievable scheme only requirdss to have knowledge of the channels over all
frequencies and therefore does not violate any causality constraihtsiuist be noted that the Theorem 2 holds
whetherx represents time, or frequency. The partial interferenigmadent scheme we describe in the next subsection
is applicable in the& x N userX network even if channels only have causal channel knowlegiggx represents
time-index.

C. Partial Interference Alignment for General M x N user X Networks

The solution for the general case does not immediatelyvioftom the solution to thel/ x 2 user X network.
To see this, consider ttgex 3 userX network, where we intend to achieve the outerboun@ déegrees of freedom.
Consider & symbol extension of the channel. Over this extended chaocoesider a hypothetical achievable scheme
where each of th® messages achievésdegree of freedom if possible, using beamforming at alldnaitters and
zero-forcing at all receivers. Let messdgé”’! be beamformed along vectef7! at transmitterj. Receiver intends
to decoddV (/! using zero-forcing. At receiver to decodes independent messagsi’!!, w2l Wl using zero-
forcing, the vectors corresponding to the desired messagagy3 linearly independent directions. Since signals
come from a space of dimensidn the 6 interfering vectors must occupy the remainidglimensions. Although
there appears to be no obvious generalization of3tle2 network to achieve this, one possible technique maybe
the following.

1) At receiverl, the vectorsv?/! j = 1,2, 3 which correspond to receivéralign a long a common direction,

i.e.,
HIU21 — g2l (22 — 18l (23] (10)

Similarly, the vectors corresponding to receivgri.e. vi%! j = 1,23, align along a different common
direction, so that
HIUy B — 2]y (32 — g3l (33] (11)

Thus, the total dimension of the interferenceiand receiver can decode all its desired messages.
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2) Atreceiver, interference vectors corresponding to receivatign along a common direction, and interference
vectors corresponding to receivgralign along a different common direction.

3) Atreceiver3, interference vectors corresponding to rece/align along a common direction, and interference
vectors corresponding to receiveralign along a different common direction.

Along with the above conditions, we need the desired sigaedors to be linearly independent of thénterference
dimensions at each receiver. Note that if we can find vectéfsthat satisfy the conditions listed above along with
the linear independence condition, then that would shovieaability of % degrees of freedom usingfasymbol
extension. However, we argue below that constructionl©f satisfying all these conditions is infeasible. Note that,
in the construction just described, the beamforming vectorresponding to receiveralign at receiverd and 3,

- HIUV21 — 0222 — i3y (23] 5 — 1 3 (12)
(12) implies that

vi22l — (H[lz})—lH[n}v[m] (13)

_ (H[32})—1H[31}V[21] (14)

- 21— (H[11})—1H[12} (H[32})—1H[31}V[21} (15)

In other words,v?!) is an eigen-vector o = (H!')~"H[Z(HB2)~THB!, SinceT is diagonal, this implies
thatv[2!l is a column vector of the identity matrix. This means th&t! is an eigen vector of all channel matrices,
since they are all diagonal. Further, equation (12) imptieg v(22 is merely a scaled version of2!. This implies
that at receive®, H2v[2ll and H22lv[22] are linearly dependent, since they both are scaled versibtie same
column of the identity matrix, i.e., we can write

sparfH!?2vI?2) = spafH!?!lv[?')) = sparfv/?!])

Therefore, the desired signals arat decodable at receiver using zero-forcing of interference. This implies that
the scheme described in Section V-A cannot be generalizéleimanner described above. However, we note
that this argument does not preclude the existence of a glepo-forcing based interference alignment scheme
that uses a finite symbol extension of the channel to achlevetiterbound. We only claim that the construction
described through alignment conditions 1), 2) and 3) lisiedve is not possible. The main result of this work
is that the degrees of freedom outerbound of Theorem 1 i, tagid despite the apparent complexity of thie
channel, interference alignment is indeed possible. We pmegeed to provide a brief intuitive overview of our
achievable scheme. A formal proof is presented in Appenidix |

Consider any arbitrary > 0,n € N. The achievable scheme we provide considét&/a-N—1) (f(n) + o(f(n)))

symbol extension of the channel, where
F(n) £ (M-1)(N-1)

Over this extended channel, we construct an achievablarseise that each message achieyés) + o(f(n))
degrees of freedom. By picking an arbitrarily largeve can achieve, on the original (i.e., not extended) channel
arbitrarily close tom degrees of freedom fagach message, per orthogonal time/frequency dimension. Hence,
asn — oo, the achieved number of degrees of freedom is arbitram’jye:to%

scheme over the extended channel uses beamforming atreliriiieers and zero-forcing at all receivers. Specifically,

(See Figure 6). The achievable
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Interference
Alignment

N1
N2

N'M

@—> Indicates vectors corresponding to W] Desired Signals Interference

Fig. 5. Interference Alignment on th&/ x N userX network

T T T T T
Degrees of Freedom outerbound

9/5

15l Degrees of Freedom achieved |

Degrees of Freedom

Fig. 6. The number of degrees of freedom achieved versusngaean for the 3 x 3 userX network

messagdV ] is beamformed along (n) + o(f(n)) linearly independent directions at transmitjerReceiveri
correspondingly decodes the message by projecting théveelceector into a space of dimensigiin) + o(f(n))
which nulls the interference. The beamforming and zeroifgy directions are chosen as depicted in Figure 5.
As shown in the figure, at receivgt the f(n) + o(f(n)) beams corresponding /1% i £ j align with the
f(n) + o(f(n)) beams corresponding @ ", k # 1. In other words, at receivef # i, the union of the received
vectors corresponding to messagés’l, w2l .. WMl lies in a space of dimensiofi(n) + o(f(n)). Note
that for a fixedn, the overlap between these vectors is partial, i.e. theoveatorresponding tdv !} do not
perfectly co-incide with the vectors correspondingiid®? at receiverj # i. However, number of vectors that
do not align is captured by the(f(n)) factor, which is negligible tof(n) - the portion that aligns - ifn is
large. In other words, the alignment is asymptotically getfasn becomes arbitrarily large. Since the cardinality
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N distributed relays

Fig. 7. The parallel relay network

of the set{i # j,i € {1,2...N}} is N — 1, the dimension ofall the interfering vectors at receiveris (N —

1) (f(n) 4+ o(f(n))). Also, since corresponding to each of thé desired messages, the number of beams received
is f(n)+o(f(n)), the dimension of the set of vectors corresponding to theetemessages &/ (f(n) + o(f(n))).

If the set of interfering vectors at a receiver are lineanigependent of the set of desired vectors, then, in a space of
dimension(M + N —1) (f(n) + o(f(n))), the M (f(n) + o(f(n))) desired streams can be decoded by nulling the
(N —1)(f(n)+o(f(n))) interfering dimensions. We show that this linear indep@odecondition can be satisfied

at all receivers. The precise construction of beamforming zero-forcing vectors that leads to this can be found
in the proof placed in Appendix Il.

VI. DEGREES OFFREEDOM OF THEPARALLEL RELAY NETWORK

In this section, we present an application of the resulthefgrevious section. We provide an alternate proof of
the degrees of freedom characterization of the parallayrabtwork (Figure 7), first studied in [8].

Consider a two hop parallel relay network wifif distributed single antenna transmitters ahd distributed
single antenna receivers. We assume that the intermediptéds N half-duplex relays.

Much like the M user interference network, transmittgihas a single messadg€&l’! to transmit to receivey,
wherej = 1,2,... M and thus there are a total 8f messages in this channel. All transmitters and relays have a
average power constraint of Through an achievable scheme based on amplify-and-fdreategy at the relays,
[8] shows that this network has//2 degrees of freedom if the number of rela¥sapproaches infinity. We use
the degrees of freedom characterization¥ofnetwork to provide an alternate optimal achievable schemshow
the same result by treating this network as a concatenatibmooX networks. Notice that the interpretation of the
parallel relay network as a compound of tw networks results is restrictive, since it implies that tetays are
forced to decode, and hence fixes coding strategies to denatiéorward based achievable schemes. However, in
time-varying (or frequency-selective) channels, thisesoh is optimal, as it achieved /2 degrees of freedom.

Theorem 3: % degrees of freedom are achievable by a decode-and-forvii gy in the two-hop
parallel relay network withAM distributed transmitters and receivers with distributed half-duplex relays. If
N — oo, this parallel relay network ha&//2 degree of freedom.
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The proof follows from the degrees of characterization @f Xh channel. For brevity’s sake, we only provide an
outline of the proof here. The messagé’! is split into N independent sub-messaglééj],n =1,2...N with
messagé/f/’,ij] meant to be decoded by reldy Our achievable scheme operates in two phases, both of vainich
active for half the duration of transmission. Let the bloekdth of whole transmission 24" symbols. In the first
phase corresponding to the fir6tsymbols, the coding scheme corresponding to Miex N user X network is
employed so thaﬁ log(p) + o(log(p)) bits corresponding to each sub-message is transmittedh€second
phase, notice that each relay hﬂgffv—_l log(p) + o(log(p)) bits of information for each receiver - these bits are
transmitted inT" symbols over theV x M userX network to the receivers. Since there is a totaldéfV sub-
messages in the system, a totalj\é}% log(p) + o(log(p)) bits are transmitted over the network i symbols

thus achievingz(Mfﬁfix_l) degrees of freedom per symbol overall.

VIl. CONCLUSION

The X network is arguably the most important single-hop netwarkes it contains, within itself, most other
one-way fully connected single hop networks. For instarice,2 user MAC, BC and interference channels are
all embedded in a two useX¥ channel, and therefore can be derived by setting apprepmigssages to null. We
provide an outerbound for the degrees of freedegion of the X network with arbitrary number of single-antenna
transmitters and receivers and no shared information amodgs. We also show that thatal number of degrees
of freedom of theM x N userX network is equal toj%. The degrees of freedom region outerbound is very
useful since it can be used to bound the number of degreeeefidm of most practical distributed single-hop
wireless ad-hoc networks.

This is an optimistic result from the point of view of netwdriformation theory. It suggests that, from a degrees
of freedom perspective, distributed single antenna nodiésne prior common information can behave as a single
node with multiple antennas if they are transmitting to arefeing from a relatively large number of nodes. We
provide an example of this scenario in the form of a degredseeflom of the parallel relay network.

The result of this work demonstrates the power of the tealeif interference alignment combined with zero-
forcing. The optimality of interference alignment in thenetwork motivates a closer look at interference alignment
based schemes. For example, we note that the optimal abldeseheme uses arbitrarily long channel extensions
in most cases. From a practical perspective, an importaansion of this work is the study of the performance of
achievable schemes restricted to fixed finite channel extesslt has been observed that arbitrarily long channel
extensions can be avoided without compromising optimatitthe 3 user interference network if all the nodes are
equipped with multiple antennas. A study of the MIMB network can potentially reveal more efficient schemes
achieving optimality using shorter channel extensions.

APPENDIX |
PRELIMINARIES

In this section we present two lemmas that will be useful ie donstruction of the interference alignment
schemes.
Lemma 1. Consider anM x M square matrixA such thata;;, the element in théth row andjth column of

A, is of the form
K

kN o
aij = [T @)=

k=1
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[K]

wherez; " are random variables and all exponents are integé;fkg Z. Suppose that

1) x£k1|{xl[.ff I W(i,k) # (', k')} has a continuous cumulative probability distribution.
2) Vi, j,j €{1,2,..., M} with j # j'
(1] 12] (K] (1 12 (K]
(aij O O > # <ozl.j,,ozij,,...,ozij, )
In other words, each random variable has a continuous cdfitoned on all the remaining variables. Also,
any two terms in the same row of the matex differ in at least one exponent.

Then, the matrixA has a full rank ofM with probability 1.
Proof: We need to show thgfA |, the determinant ofA is non-zero with probabilityi. Let C;; represent the
co-factor corresponding te;;. Then,

|A| = Cr1a11 + Cr2a12 . .. Ciyarny
Note thata;; is a product of powers ozk[lk],k = 1,2... K. This implies that|/A| = 0 only if a polynomial in
:c[lk}, k =1,2... K whose co-efficients ar€';,j = 1,2... N is equal to zero. Therefor¢A| = 0 with non-zero

probability only if atleast one of the following two conditis are satisfied.

1) The polynomial is the zero polynomial.
2) x[lk], k=1,2,...,K are roots of the polynomial formed by settihg| = 0.

If condition 1) is not satisfied, then the set of roots of thdypomial formed is a finite set. Notice that;; is a
function ofxifi],m =23,...,M,k=1,2,..., K. Therefore, the variableﬁlk}, k=1,2,..., K have a continuous
cumulative joint distribution conditioned afl;,l = 1,2, ..., M and the probability that these variables take values
from a finite set is equal t0. Therefore, the probability of condition 2) being satisfied. We now argue that the
probability of conditionl) being satisfied is also equal @ Now, since eachu;; has aunique set of exponents,
condition 1) is satisfied only if all the coefficients if,; are zero, i.e., ifC;; = 0,5 = 1,2,..., M. Therefore,
Pr(|A| =0) > 0 = Pr(Cia = 0) > 0. Note thatC,, is the determinant of the matrix formed by stripping the
last row and last column olA. Now, the same argument can be iteratively used, stripgieglast row and last

column at each stage, until we reach a single element matritamingay, i.e.,
Pr(JA| =0) > 0= Pr(ap1 =0)>0

(K]

K
ap is of the form H zy; Lk =1,2,...,K, and therefore has a continuous probability distributidfe can

k=1
hence conclude thdtr(ay = 0) = 0 and thereforéA | is non-zero almost surely. Thus, the column vector&of

are linearly independent with probability |
Lemma 2: Let Ty, Ty,..., Ty be diagonal matrices of size x p such thatT;|{T; ;. (i',j') # (i,4)} has

a continuous cumulative density function, whérg represents thgth diagonal entry iril;. In other words, any

diagonal entry has a continuous cumulative density functanditioned on all the other variables forming the

diagonal entries of all the matrices. Also, tbe a column vector which is independent®f, T, ..., T,, such

that, all its entries are drawn i.i.d from a continuous dstiion. Then, for anyn € N satisfyingu > (n + 1)V,

we can construct, with probability, full rank matricesV and' V' of sizesy x n’ andu x (n + 1)V respectively,
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such that the following relations are satisfied.
span(T;V) C span V')

(
spanTyV) C span(V/>

spanTyV) C span(V')

where spariP) represents the span of the columns of maRixFurthermore, the above conditions can be satisfied
with every entry in thekth row of V (andV' ) being a multi-variate monomial function of entries in thia rows
ofwandT;,i=1,2,...,N.

Proof: Let

v = {( H Tf‘i)wz(al,ag,...,aN)6{1,2,...,n}N}

i=1,2,..,N
Vo= {( I T)w:(a0....0n) €{L,2,...,n+1}"}
i=1,2,..,N

Note the slight abuse in notation in the above two equatioti®e -right hand side represents the set of column
vectors which may occur in any order to form the matrices @ dbrresponding left hand sides. To clarify the
notation, letn = 1. Then'V contains the column vectdF;T5... Tyw. V' contains the2" column vectors of
the form T T3> ... T4 w for all a; € {1,2}. It can be clearly seen that the set of columnsIgV is a subset

of the set of columns oV', so that

span(T;V) span(V/) Vi=1,2,...N

Further, Lemma 1 can be applied to show tNatnd V' have full rank. To see this, consider the matrix
A= [V’U]

whereU is ap x (u — (n + 1)) matrix whose entries;; are chosen i.i.d from a probability distribution whose
cumulative distribution function is continuous. Then, vem@pply Lemma 1 ta\, since each term of thigh row is
a product of powers df},,;, wjp,m = 1,2... N,k =1,2... (u—(n+1)N),1 = 1,2,..., u. Further, it can be verified
that these variables and their corresponding exponeritystite conditions of Lemma 1. Therefore, the result of
the lemma implies that is non-singular with probabilityi. Thus, the columns oV’ are linearly independent

almost surely. Further, since the set of columnsVofs a subset of the columns &f , the non-singularity ofA
implies thatV also has linearly independent columns almost surely. Thiispdetes the proof. |

APPENDIX Il
DEGREES OF FREEDOM OF THB/ x N USERX NETWORK WITH N > 2

The achievability scheme is similar to the achievabilitggfrfor the generaK user interference channel in [16].
Letl’ = (M —1)(N —1). We will develop a coding scheme based on interference rakgmn which achieves a total
of N]\g’(‘:ﬂ;? i%‘ﬂ% "" degrees of freedom for any arbitrany Taking supremum over aft proves that the total
number of degrees of freedom is equalﬁ% as desired. To show this, we construct a scheme that achaeves
total of (M — 1)Nn® + N(n +1)" degrees of freedom overa, = N(n+ 1) + (M — 1)n" symbol extension of

the original channel. (Note that, the symbol extension &eddegrees of freedom achieved conform to the intuitive
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explanation provided in Section V-C) Over the extended okrthe scheme achievés+1)" degrees of freedom
for each of theV message$V/!l, j = 1,2... N and achieves degrees of freedom for all the othek/ — 1) N
message$V’lill j =1,2...N,i =2,3... N. The signal vector in the extended channel at itfeuser’s receiver

can be expressed as
M

YUl(k) = ZH[M( )X (k) + ZV] (k)
=1
wherej € {1,2,..., N}, andX!/ is ay,, x 1 column vector representing the, symbol extension of the transmitted
symbol X1, i.e )
X (k4 1)

) Xl nk+ 2
XM(/{) é (:u - )

| X (ke + 1)) |

Similarly Yl andZ!! represenis,, symbol extensions of th& !l and Z[! respectivelyHV is a diagonalt,, x j,
matrix representing thg,, symbol extension of the channel i.e

HU (i + 1) 0 ]
y 0 HV (k0 + 2
H[ﬂ}(,‘i) é . (:U’ )
] 0 0 oo HU(py(k+1)) ]

Over the extended channel, mess&@@” is encoded at transmittdras (n + 1)F independent streamé%”,m =
1,2,...(n+ 1)I along directionw%ﬂ,m =1,2...(n + 1)I'. So the signal transmitted at transmittemay be

written as
N

N (n+1)
_ Z Z Vil = 3 Vit
j=1 m=1

7=1
where the dependence on the channel use indexsuppressed above for the sake of compactness. Not® tHat
is a i, x (n+ 1)F matrix whose columns are?! m = 1,2,... (n + 1) Similarly x/! is a (n + 1)T x 1 vector.
In the same mannety’ i £ 1 is encoded into:" independent streams by transmitieas

szﬂ] il — ZVJZ] 7]

j=1m=1

where VUil is a y1,, x I matrix The received signal at tﬁéh receiver can then be written as
M N
vkl — ZH[M](ZVMXW]) + zl¥

We wish to design beamforming directioh8*" so that receivej can decode each of the desired signals by
nulling the interference. We ensure this by aligning ireezhce so that the dimension of the space spanned by
the interference vectors at any receiver is equal&b— 1)(n + 1)I'. Once the interference is aligned in this
fashion, a receiver can decode its desited+ 1) + (M — 1)nl" streams by zero-forcing the interference in the
pn = (N =1 (n+ D"+ (n+ 1) + (M —1)n" dimensional space. Interference alignment is ensured bgsihg
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the beamforming direction¥ ¥l so that the following interference alignment equations satisfied at receiver

5,¥5=1,2...N.
Span(H[ji]V[li])
Span(H[ﬂ]V[zi])

Span(H[ji}V[(j—l)i
Span(H[ji}V[(j'f‘l)i

Span(HUi]V[Ni])

)
)

C

Span(H[jl}V[ll])
Span(H[jl}V[m])

span(HUIVIG-11) Vi=2,3,...M (16)

Span(H[jl]V[(j'i‘l)l})

Span(HUHV[Nl])

where spafP), represents the span of the column vectors of m&rikn other words, we wish to pick matricag*’!

so that, at receivey, all the interfering spaces from transmittes3, ... M align themselves with the interference

from transmitterl. Then, at any receiver, the dimensionatifthe interfering streams is equal to the dimension of the
interference from transmittdrwhich is equal td N —1)(n+1)" as required. Note that there g/ —1)(N—1) =T’
relations above corresponding to receiyerTherefore a total of’ N relations of the form spdP) < spafQ)

need to be satisfied. These relations can be re-ordered trpbbeseed alternately as

span(HIMIVIED)
span(HRIVIED) -

Span(H[(k—l)i}V[ki]) C

span(H!MVIk)
span(HIZVIkL)

span(HI(k- D1 vk Vi=23,...MVk=1,2...N (17)
Span(H[(k‘H)i}V[ki]) C Span(H[(k"'l)l]V[kl])
span(HIVIVIF) ¢ span(HINIVIFI)
In order to satisfy the above relations, we first choose
vk vkl = vIEMl g =192 N

Now, the relations in (17) can be re-written as

span(Tvik2))
span( T2 vIk2))
span(T3dvIk2))

Span(T[(k—l)ﬂV[kz})
Span(T[(k-l-l)i} AVaALZ] )

span(TVilvIk2)

where

-
-
-

N N

span(VIk1)
span(VI+1l)
span(VI+1)

span(VIk1)
span(VI+1)

span(VIk1)

Vi

2,3...Mk=12...N

(18)

TVl = V)|V j=12.. . Ni=23...M
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We now wish to pickV[¥1 and VI*2 so that the above relations are satisfied and thenvi§é = VI[+2 ; =
3,4... M. To satisfy the above relations, we first generatex 1 column vectorswl* .k = 1,2... N such
that all the entries of the matrixwl!l w(? ... wlN] are chosen i.i.d fronsome continuous distribution whose
support lies between a finite minimum value and a finite marimualue. Notice that for a fixed, there arel’
interference alignment relations of the form in Lemma 2.ngstolumn vectow!*! (which has non-zero entries
with probability 1), the construction of the lemma can be used to construcbrwepaced/¥? and VI* satisfying
the desired interference alignment relations of (18). Alk® construction ensures that ravk*?) = n'" and
rank VI*1) = (n 4+ 1)I" as required.

Now, we have designeWl? j € {1,2,...N},i € {1,2,...,M} so that the desired interference alignment
equations of (16) are satisfied. We now need to ensure thathtreceiver, all the desired signal streams are linearly
independent of each other and independent of the intederaso that they can be decoded using zero-forcing. Notice
that at any receivek, interference alignment ensures that all the interferimgasns arrive along1*v Ul ; —
1,2...k—1,k+1,... N and therefore, the interference space is the space spaygrbd @V —1)(n+1)"" column
vectors ofI;, where

I, = [HFIVIT gyl gy =D gkl k01 pglktlyg IV
The desired streams at receivearrive along the(n + 1)'' + (M — 1)n' column vectors oD;, where
D, — [H[k:l]v[kl} F*2y (k2] “'H[kM}V[k:M]]
[H[kllv[kl} a2y (k2] “.H[RM]V[/’C?]]
So, at receivek, we need to ensure that the matrix
Ay =Dy L

has a full rank ofu,, almost surely. Now, notice that an element in tih¢h row of Ay is a product of powers
of H%i] and w,[%] fori =1,2...M,57=1,2... N, whereH,[%ﬂ represents the diagonal entry in theh row of
HUY andw!) represents the entry in theth row of the column vectow!!. We intend to use Lemma 1 to show
that the matrixA has full rank with probabilityl. To do so, we need to verify that the conditions of Lemma 1
are satisfied. In particular, we need to ensure that, in angioes, the set of exponents in different columns are
different. We now make the following observations

1) In them® row, the product term iE* VUi containwk with exponent 1, but do not contain?, !, ;' # j
2) Notice that the equation correspondinddt”, i = 2,3, ... M is missing in the interference alignment relations
of (17) at receivelk. The construction of Lemma 2 ensures that monomial entigsdm!” row of VI¥2 do

not containHilﬁi],i =2...M.

Observation 1) implies that all the monomial entries of thi row of I, are unique. Furthermore, it also implies
that all the monomial terms ik, are different from all the monomials .. Now, observation 2) implies that all
the entries inD,, are unique, since the termi,[,lﬁi] occurs only in the column vectors corresponding®6iv{+2 |
Therefore, the conditions of Lemma 1 are met and so we canuwdsthe matrixA, has a full rank ofu,, almost
surely.

Thus, the desired signal is linearly independent of therfietence at all the receivers and therefore, using the

Neo+DT+(M-1)Nn"
TMn+1)T+(M-1)nT

techniques of interference alignment and zero-forc degrees of freedom are achievable over
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the M x N userX network for anyn € N. Taking supremum ovet, we conclude that th& channel haqwf‘f%

degrees of freedom.
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