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Abstract

It is known that the capacity of parallel (multi-carrier) Gaussian point-to-point, multiple access and broadcast
channels can be achieved by separate encoding for each subchannel (carrier) subject to a power allocation across
carriers. In this paper we show that such a separation does not apply to parallel Gaussian interference channels in
general. A counter-example is provided in the form of a 3 user interference channel where separate encoding can
only achieve a sum capacity of 2 log(1 + 3SNR) while the actual capacity, achieved only by joint-encoding across
carriers, is 3 log(1 + 2SNR)). As a byproduct of our analysis, we propose a class of multiple-access-outer bounds
on the capacity of the 3 user interference channel.

Index Terms
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I. INTRODUCTION

The study of parallel Gaussian channels is motivated by the frequency-selective or time-varying nature of the
wireless channel. With multi-carrier modulation, (assuming no inter-carrier interference (ICI)) a frequency selective
channel can be viewed as a set of parallel channels with channel coefficients that vary from one carrier to another
but may be assumed constant (flat-fading) over each carrier. Similarly, if inter-symbol-interference (ISI) is absent,
the time-varying channel gives rise to parallel channels whose values are fixed during each symbol but vary from
one symbol to another. In this paper, we will use the terminology of frequency-selective channels and multi-carrier
modulation to refer to parallel Gaussian channels. It is understood that the model is equally applicable to the
time-varying channel as well.

It is well known that over the parallel Gaussian point-to-point channel, coding separately over the individual
subchannels (carriers) achieves the capacity subject to optimal power allocation. Thus the capacity of the parallel
Gaussian point-to-point channel is equal to the sum of the capacities of the point-to-point Gaussian subchannels with
corresponding powers chosen through the water-filling algorithm. Similarly, it has also been shown that separate
coding over each carrier is optimal for parallel Gaussian multiple access (MAC) and broadcast (BC) channels
[1], [2]. The separability of parallel Gaussian point-to-point, MAC and BC is useful because it provides a direct
connection between the single-carrier channel models studied extensively in classical information theory and the
frequency-selective (or time varying) channels that may be more relevant in practice. Coding schemes designed for
the classical (single carrier) models can be applied directly to multi-carrier systems subject to a power allocation
across carriers. A key question that remains open is whether such a separation holds for other Gaussian networks,
and in particular, if separate encoding is optimal for multi-carrier interference networks.

Much work on multi-carrier interference networks (e.g. in the context of DSL [3]–[10]) has focused on optimal
power allocation across carriers under the assumption of separate coding over each carrier. For the two user parallel
interference channel with strong interference it is shown in [10] that indeed the sum capacity is the sum of the
rates that can be achieved by separately encoding over each carrier subject to an overall power optimization. For
the case where more than 2 users are present or when the channels are not restricted to the strong interference
case, since the capacity of even the single-carrier interference channel is not known, usually the rate optimization is
carried out under the practically motivated assumption that all interference is to be treated as noise. Both centralized
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and distributed algorithms, some of which are based on game-theoretic formulations, have been proposed for this
“dynamic spectrum management” problem and the optimality and convergence properties of these algorithms have
been established under the separate encoding assumption.

Joint encoding of multiple-carriers has been used recently in [11] to characterize the sum capacity per carrier, of
the K user multi-carrier Gaussian interference channel. The sum capacity (per carrier) is found to be

C(SNR) =
K

2
log(SNR) + o(log(SNR)),

where SNR1 represents the signal to noise power ratio. In other words, the K user interference channel has K/2
degrees of freedom2 per orthogonal time and frequency dimension. The key to the capacity characterization is a
novel interference alignment scheme introduced in [11]. Interference alignment, as defined in [13], refers to the
construction of signals such that they cast overlapping shadows at the receivers where they constitute interference
while they remain distinghishable at the receivers where they are desired. The interference alignment constructions
proposed in [11] are based on joint encoding over multiple frequencies. Due to interference alignment, the joint
encoding scheme of [11] outperforms the dynamic spectrum management schemes of [4]–[8] in terms of degrees of
freedom 3. However, it has not been shown that this joint encoding is necessary to achieve capacity. Interestingly,
another recent work in [14] has provided examples where interference alignment is achieved over a single-carrier
interference channel, i.e., with separate encoding. Thus, it remains unclear whether the capacity of multi-carrier
interference channels can be achieved by separate encoding over each carrier and a power allocation across carriers.
It is this open problem that we address in this paper. Our main contribution, stated in Theorem 1 is an example of
two parallel interference channels, each of which by itself has only 1 degree of freedom, but when taken together
they allow 3 degrees of freedom. Thus, we show that for the capacity of parallel interference channels, the whole
is more than the sum of its parts. Moreover, our example shows that even within the restricted class of coding
schemes where interference must be treated as noise (e.g., the vast majority of coding schemes considered in the
dynamic spectrum management literature), separate coding is strictly sub-optimal compared to joint coding across
parallel channels.

As a byproduct of our analysis we also find a class of outer bounds on the capacity of the 3 user interference
channel. These outer bounds share the property that one receiver (possibly aided by a genie and/or noise reduction)
is able to decode all messages - so that the multiple-access channel capacity to the genie-aided receiver becomes
an outer bound on the sum capacity of the 3 user interference channel. The MAC outer bounds can be viewed as
a generalization, to 3 users, of Kramer’s genie-aided approach [15] and Carleial’s [16] noise-reduction approach.
These outer bounds play an important role in identifying singularity conditions for interference channels that have
only one degree of freedom. However, the bounds are generally loose in the degrees of freedom sense and tighter
bounds at high SNR may be obtained by an application of Carleial’s outer bound on each of the 2 user channels
contained within the K user interference channel.

II. CHANNEL MODEL

Consider the 3 user, memoryless interference channel, with M parallel sub-channels, defined as:

Y[m](n) = H[m]X[m](n) + Z[m](n), m ∈ {1, 2, · · · , M} (1)

where, during the nth channel use,

Y[m](n) = [Y [m]
1 (n), Y [m]

2 (n), Y [m]
3 (n)] (2)

X[m](n) = [X [m]
1 (n), X [m]

2 (n), X [m]
3 (n)] (3)

Z[m](n) = [Z [m]
1 (n), Z [m]

2 (n), Z [m]
3 (n)] (4)

are the vectors containing the received symbols, the transmitted symbols and the zero mean unit variance circularly
symmetric complex Gaussian AWGN terms, respectively, for users indexed by the subscripts, over sub-channels

1For this result, SNR may be interpreted as the transmit power at each transmitter with the additive white Gaussian noise power (AWGN) at
each receiver normalized to unity.

2Also known as multiplexing-gain (See [12]) or capacity pre-log.
3Interestingly, in both cases interference is treated as noise, so no multiuser detection is involved.



3
that are indexed by the superscripts. For each sub-channel m ∈ {1, 2, · · · , M}, the channel matrix H[m] is a 3× 3
matrix with elements H

[m]
k,j representing the channel coefficients from transmitter j to receiver k, j, k ∈ {1, 2, 3}.

Each sub-channel matrix is fixed across channel uses. All channel coefficients, inputs and outputs as well as noise
terms are complex4.

For codewords spanning N channel uses, the transmitted symbols from transmitter k, [X1
k(n), · · · , X

[M ]
k (n)],

n = 1, 2, · · · , N, are subject to the total transmit power constraint

1
N

N∑
n=1

[m]∑
m=1

E[|X [m]
k (n)|2] ≤ Pk (5)

To avoid cumbersome notation, the channel-use index n is not explicitly mentioned henceforth.
Transmitter i has message Wi for receiver i for i = 1, 2, 3. The messages are independent. The rate of the

ith user is defined as Ri = log(|Wi|)
N where |Wi| is the cardinality of the message set corresponding to message

Wi. A rate vector R = (R1, R2, R3) is said to be achievable if messages Wi, i = 1, 2, 3, can be simultaneously
encoded at rates Ri, i = 1, 2, 3 so that the probability of decoding error can be made arbitrarily small by choosing
an appropriately large N . The capacity region C(P) is the closure of the set of all achievable rate vectors in the
network, where we define P = [P1, P2, P3] as the vector of transmit powers. The sum capacity CΣ(P) of the
network is defined as

CΣ(P) = max
R∈C(P)

3∑
i=1

Ri

Separability: We say that the 3 user interference network is separable if and only if

CΣ(P) = max
P[m]:

P
M
m=1 P[m]=P

M∑
m=1

C
[m]
Σ (P[m]) (6)

where CΣ(P[m]) is the sum-capacity of the mth sub-channel subject to a transmit power constraint vector P[m].
Thus, parallel interference channels are separable if the sum capacity can be achieved by achieving the stand-alone
sum-capacity of each sub-channel, subject to an optimal power allocation across sub-channels.

Notation: The notation Z ∼ N c(a, b) indicates that the random variable Z follows a circularly symmetric complex
Gaussian distribution with mean a and variance b. For a matrix H , HT refers to the transpose of H , Trace[H ] is
the trace of H , det(H) is the determinant of H and H† refers to the conjugate transpose of H .

III. THE CASE OF ONLY ONE SUB-CHANNEL, M = 1
We start with a lemma, applicable to the case of only one-subchannel, M = 1. Since this lemma applies only to

M = 1, we suppress the superscripts to simplify the notation.
Recall that the minor Mij(H) of the matrix H is the determinant of the 2×2 matrix that remains after removing

from H its ith row and jth column. Also, the channel is called fully-connected if and only if all channel coefficients
are non-zero.

Lemma 1: If ∃(i, j, k) ∈ {1, 2, 3}, i �= j, j �= k, k �= i for which Mij(H) = 0, then the sum-capacity of the 3
user fully-connected interference channel with channel matrix H is bounded as follows:

CΣ(P) ≤ log

⎛
⎝1 +

|Hj1|2P1 + |Hj2|2P2 + |Hj3|2P3

min
(
1,

|Hji|2
|Hii|2 ,

|Hjk |2
|Hkk|2

)
⎞
⎠ (7)

The following example illustrates an application of Lemma 1.
Example: Consider the channel matrix

H =

⎡
⎣ 1 1 −1

−1 1 1
1 −1 1

⎤
⎦ (8)

4Note that the results of this work extend in a straightforward manner even if all symbols are restricted to take only real values.



4Ŵ1

Ŵ2
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Fig. 1. The 3 user interference channel

This channel matrix satisfies the condition of Lemma 1, i.e. M2,1 = 0 and therefore, its sum-capacity is bounded by
log(1+P1 +P2 +P3). Note that this channel has only one degree of freedom (sum-capacity pre-log factor = 1). For
this channel, interestingly, the sum-capacity is exactly log(1 + P1 + P2 + P3), i.e. the bound of Lemma 1 is tight.
Achievability is straightforward, because (as we show next in the proof of Lemma 1) this is the multiple-access
channel sum-capacity for each of the three multiple-access channels corresponding to receivers 1, 2, 3 from all three
transmitters. In other words, any reliable coding scheme for a multiple access channel to, e.g., receiver 1, is also a
reliable coding scheme for receivers 2 and 3, so that they can all decode all three messages.

Proof of Lemma 1: As required by the statement of the lemma, let us assume that the channel H is fully connected
(all elements are non-zero), and the condition of Lemma 1 is satisfied. Without loss of generality, we consider the
case M3,1 = 0, so that

H2,3

H2,2
=

H1,3

H1,2
= γ, γ �= 0.

Consider any coding scheme that achieves a rate tuple (R1, R2, R3), and where the probability of error can
be made arbitrarily small by using appropriately long codewords. In particular, suppose Pe ≤ ε/3 is achievable
with codewords of length N . We will define a new receiver, called receiver 0, and show that the same coding
scheme achieves probability of error Pe ≤ ε for the multiple access channel from all transmitters to receiver 0,
i.e., any rate pair achievable on the interference channel is also available on the multiple access channel to receiver
0. The sum-capacity of the multiple access channel therefore becomes an outerbound to the interference channel
sum-capacity.

Define a new receiver, receiver 0, with received signal Y0, which is a possibly reduced-noise version of the
received signal of receiver 1.

Y0 = H11Y1 + H12Y2 + H13Y3 + Z0 (9)

Z0 ∼ N c

(
0, min

(
1,

|H12|2
|H22|2 ,

|H13|2
|H33|2

))
(10)

Since Y1 is a degraded version of Y0, if receiver 1 can decode his message W1 from his received signal Y1, then
receiver 0 can decode W1 as well.

After decoding message W1 successfully, receiver 0 is able to reconstruct transmitter 1’s symbols X1,5 which
allows it to create a new signal:

Y ′
0 =

H22

H12
(Y0 − H11X1) + H21X1 (11)

= H21X1 + H22X2 + H23X3 + Z ′
0 (12)

Z ′
0 ∼ N c

(
0, min

( |H22|2
|H12|2 , 1,

|H22|2|H13|2
|H12|2|H33|2

))
(13)

Since Y2 is a degraded version of Y ′
0 , if receiver 2 can decode his message W2 from his received signal Y2, then

receiver 0 can decode W2 as well.

5It is easily shown that there is no loss of generality in the assumption that the mapping from messages to codewords is deterministic. See,
e.g. Proposition 1 in [17].
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After decoding message W1, W2, receiver 0 is able to reconstruct both X1, X2 which allows it to create a new

signal:

Y ′′
0 =

H33

H13
(Y0 − H11X1 − H12X2) + H31X1 + H32X2 (14)

= H31X1 + H32X2 + H33X3 + Z ′′
0 (15)

Z ′′
0 ∼ N c

(
0, min

( |H33|2
|H13|2 ,

|H33|2|H12|2
|H13|2|H22|2 , 1

))
(16)

Since Y3 is a degraded version of Y ′′
0 , if receiver 3 can decode his message W3 from his received signal Y3,

then receiver 0 can decode W3 as well.
We have established that receiver 0 is able to decode all three messages. The probability of error for the multiple

access channel is easily bounded by the union bound, Pe ≤ ε. The sum-rate, therefore, cannot be more than the
sum-capacity of all the multiple access channel from all three transmitters to receiver 0. Since this is true for any
reliable coding scheme, this gives us a sum-capacity bound for the interference channel

CΣ(P) ≤ log

⎛
⎝1 +

H2
11P1 + H2

12P2 + H2
13P3

min
(
1, |H12|2

|H22|2 , |H13|2
|H33|2

)
⎞
⎠ (17)

Thus the proof of Lemma 1 is complete.
Lemma 1 has interesting implications for the degrees-of-freedom characterization of constant interference chan-

nels. While the degrees of freedom are known for K user interference channels that are time-varying or frequency-
selective [11], the degrees of freedom of even a 3 user fully-connected interference channel with constant channel
coefficients remain unknown in general. Several examples are known [11], [14], [18] of 3 user interference channels
that can achieve more than 1 degree of freedom, using various forms of interference alignment. Lemma 1 provides
a counterpoint, identifying a class of 3 user interference channels which have only 1 degree of freedom.

An interesting interpretation of the counterexample presented above is the following. Consider a game that
is played between two players. The players will pick the channel coefficient values for a (single-carrier) 3 user
interference channel. Player 1 intends to maximize the number of degrees of freedom of the channel. Player 2 wants
to minimize the number of degrees of freedom of the channel. In this game, player 1 moves first and player 2 moves
second. During his turn, player 1 is allowed to select the values of all the channel coefficients. Player 2 can only
change the value of 1 channel coefficient after the values have been chosen by player 1. Which channel coefficient
player 2 is allowed to change is also decided by player 1. There is a constraint that all channel co-efficients must
be non-zero. First, consider the constant interference channel. Note that [14] has already shown that there exist
3 user channels with close to 3/2 degrees of freedom. Therefore, in absence of player 2, player 1 can design a
channel that will achieve close to 3/2 degrees of freedom. However, if player 2 can control any one of the channel
co-efficients, he can use the result of Lemma 1 to win the game by reducing the number of degrees of freedom to
unity. For example, if player 2 has control of h1,2, he can choose the channel co-efficient to be equal to h1,3h2,2

h2,3

to ensure that the channel has only 1 degree of freedom. Thus, in a constant single-carrier channel, player 2 wins
the game.

Now, suppose the channel coefficients vary with time, i.e., we have a parallel Gaussian channel. At each time
instant the players take turns to design the channel coefficients according to the rules described above. Corresponding
to each sub-channel, player 2 has control of one of the channel co-efficients. In this case, player 2 can kill the
degrees of freedom of the individual subchannels by using Lemma 1. However, player 1 still wins the game since
3/2 degrees of freedom are achievable through the interference alignment scheme of [11] which codes across all
parallel channels. Thus, in the time-varying case, player 1 wins the game.

IV. PARALLEL INTERFERENCE CHANNELS, M > 1
The following theorem states the main result of this paper.
Theorem 1: Parallel interference channels are not always separable, i.e.,

CΣ(P) ≥ max
P[m]:

PM
m=1 P[m]=P

M∑
m=1

C
[m]
Σ (P[m]) (18)
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and the inequality cannot be replaced with an equality in general.

Proof of Theorem 1: The proof is through a specific example. Consider two parallel interference channels, i.e.,
M = 2,

H1 =

⎡
⎣ 1 1 −1

−1 1 1
1 −1 1

⎤
⎦ (19)

H2 =

⎡
⎣ 1 −1 1

1 1 −1
−1 1 1

⎤
⎦ (20)

and symmetric power constraints P1
M = P2

M = P3
M = SNR.

Separate Coding Capacity: From Lemma 1, we find that the sum-capacity of sub-channel H1 under power
constraint P1 = [SNR, SNR, SNR] is log(1 + 3SNR). This is easily seen because Lemma 1 provides the converse,
while achievability follows by an orthogonal time division scheme, i.e., each user transmits for a fraction 1/3 of
the total time, with power 3SNR. Similarly, the sum-capacity of sub-channel H2 under power constraint P2 =
[SNR, SNR, SNR] is log(1+3SNR). The optimality of uniform power allocation follows from the symmetry of the
channels and we have the maximum rate achievable with separate coding

max
P[m]:

P
M
m=1 P[m]=P

M∑
m=1

C
[m]
Σ (P[m]) = 2 log(1 + 3SNR) (21)

On the other hand, we show that the sum-capacity of these parallel channels, taken together, is 3 log(1+2SNR) >
2 log(1+3SNR). This is achievable only by joint coding, thus establishing the inseparability of parallel interference
channels.

Joint Coding Capacity - Achievability: The joint coding scheme that achieves the capacity 3 log(1 + 2SNR) is
particularly simple. Each transmitter repeats its transmitted symbol over the two sub-channels,

X
[1]
k = X

[2]
k = Xk

and each receiver simply adds the outputs of the two sub-channels

Y
[1]
k + Y

[2]
k = Yk

Because of the special structure of these channel matrices,

H1 + H2 = 2I, (22)

all interference is cancelled, and the resulting interference channel is described as:⎡
⎣ Y1

Y2

Y3

⎤
⎦ = 2

⎡
⎣ X1

X2

X3

⎤
⎦+

⎡
⎣ Z1

Z2

Z3

⎤
⎦ (23)

where

Z
[1]
k + Z

[2]
k = Zk ∼ N c(0, 2) (24)

Desired signals add in phase so that the received signal power is quadrupled while the independent noise terms add
to double the noise power. Thus the SNR is effectively doubled and each user achieves a rate log(1 + 2SNR) for
a sum-rate of 3 log(1 + 2SNR).

Joint Coding Capacity - Converse: While the achievability of 3 log(1+ 2SNR) is enough to prove the insepara-
bility of parallel interference channels, we show that 3 log(1+2SNR) is in fact the capacity of the parallel channels
H[1],H[2]. For the converse argument, we bound the sum-rate of two users at a time. For example, suppose we
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wish to find an outer bound on the sum-rate of users 1 and 2. We eliminate user 3, which cannot hurt users 1 and
2, to obtain the two user parallel interference channel.

Receiver 1:

[
Y

[1]
1

Y
[2]
1

]
=

[
1 0
0 1

] [
X

[1]
1

X
[2]
1

]
+
[

1 0
0 −1

][
X

[1]
2

X
[2]
2

]
+

[
Z

[1]
1

Z
[2]
1

]
(25)

Receiver 2:

[
Y

[1]
2

Y
[2]
2

]
=

[ −1 0
0 1

][
X

[1]
1

X
[2]
1

]
+
[

1 0
0 1

][
X

[1]
2

X
[2]
2

]
+

[
Z

[1]
2

Z
[2]
2

]
(26)

On this channel we establish a multiple-access bound as follows. Consider any reliable coding scheme that achieves
rates R1, R2. Since the coding scheme is reliable, receiver 1 can decode his message and reconstruct X

[1]
1 , X

[2]
1 ,

which allows receiver 1 to generate the following equivalent signal.[
Y

[1]

1

Y
[2]

1

]
=

[
1 0
0 −1

]([
Y

[1]
1

Y
[2]
1

]
−
[

X
[1]
1

X
[2]
1

])
+
[ −1 0

0 1

] [
X

[1]
1

X
[2]
1

]
(27)

=
[ −1 0

0 1

][
X

[1]
1

X
[2]
1

]
+
[

1 0
0 1

][
X

[1]
2

X
[2]
2

]
+

[
Z

[1]
1

−Z
[2]
1

]
(28)

which is statistically equivalent to the received signal (26) of receiver 2. Since receiver 2 is able to decode W2

from his received signal, receiver 1 can decode W2 as well. Now, since receiver 1 is able to decode both messages
W1, W2, the sum-rate of the interference channel is bounded above by the sum-capacity of the multiple access
channel from transmitters 1, 2 to receiver 1. Thus, we have the following outer bound on R1 + R2,

R1 + R2 ≤ max log det

([
I +

[
1 0
0 1

]
Q1

[
1 0
0 1

]
+
[

1 0
0 −1

]
Q2

[
1 0
0 −1

]])
(29)

s.t. E

⎛
⎝[ X

[1]
1

X
[2]
1

][
X

[1]
1

X
[2]
1

]†⎞⎠ � Q1 ≥ 0 (30)

E

⎛
⎝[ X

[1]
2

X
[2]
2

][
X

[1]
2

X
[2]
2

]†⎞⎠ � Q2 ≥ 0 (31)

Trace[Q1] ≤ 2SNR (32)

Trace[Q2] ≤ 2SNR (33)

Because of the concavity of the log det(·) function, it is maximized by Q1 = Q2 = (SNR)I, which results in
the outer bound:

R1 + R2 ≤ 2 log(1 + 2SNR) (34)

Similarly, we find the outer bounds R1 + R3 ≤ 2 log(1 + 2SNR), R2 + R3 ≤ 2 log(1 + 2SNR). Adding all the
bounds, we have the sum-capacity bound

CΣ ≤ 3 log(1 + 2SNR). (35)

Since this is also achievable as described earlier, this is the capacity of the parallel interference channels in (19),
(20).

Thus, unlike point-to-point, multiple-access and broadcast channels, in general separate coding does not suffice to
achieve the capacity of parallel interference channels. Figure 2 illustrates the suboptimality of separate coding over
each carrier in comparison with the interference alignment based joint coding scheme for the channel described in
equations (19)-(20). Note that no such example can be constructed for the parallel Gaussian point to point, multiple
access and broadcast channels because in all those cases separate coding over each carrier is capacity-optimal for
any channel realization.
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Ŵ3

Genie

S1 = a1X1 + a2X2 + a3X3 + Z̃1

Reduce noise
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V. MULTIPLE ACCESS OUTER BOUNDS FOR THE CAPACITY OF 3 USER INTERFERENCE CHANNEL

In this section, we provide an interesting application of the result of Lemma 1 in the form of a class of outer
bounds for the classical (single-carrier) 3 user interference channel. The outer bound argument goes as follows.
Consider any achievable coding scheme. Using this coding scheme, receiver 1 can decode W1. Our aim is to
enhance receiver 1 with enough information so that it can decode W2 and W3 as well (see Figure 3). Then the
capacity region of the multiple access channel(MAC) formed by the three transmitters and the (enhanced) receiver
1 forms an outer bound for the capacity region of the interference channel. The improvements to receiver 1 are
described in the following steps

1) To help receiver 1 decode W2 : Let a genie provide receiver 1 with S1 = a1X1+a2X2+a3X3+Z̃1 where Z̃1 is
an AWGN term independent of Xi, i = 1, 2, 3. Note that this side information effectively acts as an additional
antenna at receiver 1. The noise term Z̃1 can possibly be correlated with other noise variables Zi, i = 1, 2, 3.
Now, receiver 1 can linearly combine its received signal with its side information to form U1 = αY1 +βS1 to
form another (noisy) linear combination of the codewords Xi, i = 1, 2, 3. α and β can be chosen such that the
co-efficients of X1 and X2 in U1 satisfy the conditions of Theorem 1. Note that if these channel co-efficients
already satisfy the condition of 1, then side information of S1 is not needed. Now, the proof of Theorem 1
implies that by sufficiently reducing the noise at receiver 1, we can ensure that receiver 1 decodes W2 as well.
Thus, with the aid of a genie and possibly reducing the noise, we have ensured that receiver 1 can decode
W2. Note that neither the genie information, nor the reduction of noise reduce the capacity of this channel
and therefore do not affect the outer bound argument.

2) To help receiver 1 decode W3 : Receiver 1, enhanced as described in the previous step, can now decode W1
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and W2. We can now choose ᾱ, β̄, γ̄ such that

V1 = ᾱX1 + β̄X2 + γ̄Y
′
1

= H31X1 + H32X2 + H33X3 + γ̄Z
′
1.

Note that receiver 1 can form V1. We use Y
′
1 and Z

′
1 above rather than Y1 and Z1 since the previous step

involves reducing the noise at receiver 1. Statistically, V1 differs from Y3 only in the variance of the noise
term. Therefore, by further reducing the noise if required, receiver 1 can also decode W3. As in the previous
step, it is important to note that the reduction of noise does not affect the outer bound argument

Steps 1 and 2 above imply that the capacity region of the 3 user Gaussian interference channel is outer-bounded by
the capacity region of the single-input-multiple-output (SIMO) Gaussian MAC which receives S1 on one antenna
and a reduced-noise version of Y1 on the other. This class of bounds can be optimized over ai, i = 1, 2, 3 and
the statistics of Z̃1. Further, similar outer bounds can be found by enhancing receiver 2 or receiver 3 rather than
receiver 1. Note that, since a MAC with two antennas has 2 degrees of freedom, this class of outer bounds is loose
from the perspective of degrees of freedom. Using Carleial’s outer bounds on each of the two user interference
channels contained within the 3 user interference channel produces a degrees of freedom outer bound of 3/2 (See
[11], [19]).

Example: Consider the perfectly symmetric 3 user interference channel where Hii = 1, ∀i = 1, 2, 3 and Hi,j =
h, ∀i �= j, i, j ∈ {1, 2, 3}. Suppose h is real and greater than 1. Also, let the transmit power at each transmitter be
equal to SNR. Since the channel does not satisfy the conditions of Theorem 1, a genie provides receiver 1 with
information of S1 = a1X1 + (1− h)X2 + X3 + Z̃1 where Z̃1 is an i.i.d AWGN term correlated with Z1 such that

E
[
|Z1 + Z̃1|2

]
= 1. Note that since we started with an achievable coding scheme, receiver 1 can decode W1 using

information from Y1. Receiver 1 can subtract the effect of X1 from S1 and Y1 and obtain S̃1 = (1 − h)X2 + Z̃1

and Ỹ1 = hX2 + hX3 + Z1. Receiver 1 can now decode X2 from hX1 + Ỹ1 + S̃1 since it is of the form
hX1 + X2 + hX3 + Z

′
2 where Z

′
2 is a AWGN term with unit variance. Now that receiver 1 is aware of X1 and

X2, it can add appropriate terms to Y1 to form V1 = h(hX1 + hX2 + X3) + Z1. Since h > 1, Y3 is a degraded
version of V1 which implies that receiver 1 can decode W3 as well. Thus, all rates achievable in this interference
channel, are achievable in the single-input-multiple-output (SIMO) multiple access channel with 3 single antenna
nodes respectively transmitting X1, X2, X3 and a two-antenna node receiving Y1 along the first antenna and S1

along the second. Thus, the capacity region of this multiple access channel is an outer-bound for the capacity of
the interference channel. Furthermore, parameters a1 and Z̃1 are parameters which can be used for optimization.
So, for example, we can bound the sum-capacity CΣ of the 3 user interference channel by

CΣ ≤ min
(a1, Z̃1)

E
[
(Z1 + Z̃1)2

]
≤ 1

Z̃1 ∼ N c(0, σ2)

log

(
det
(
Kz + SNRHH†)

det (Kz)

)

where Kz indicates the covariance matrix corresponding to noise vector [Z1 Z̃1]T and

H =
[

1 h h
a1 (1 − h) 0

]

VI. DISCUSSION

We showed that in general, independent coding over the various channel states of the parallel Gaussian interference
channel is not capacity optimal. The key is that even though interference alignment may not be possible over each
carrier, it may still be accomplished by coding across carriers. Combined with the interference alignment schemes
used in [11] which rely on joint coding, the results of this paper indicate that the benefits of joint-coding are not
limited to the specific example used to prove Theorem 1.

However, since our examples rely on interference alignment which is only known to be relevant for interference
channels with 3 or more users, we have not shown that the 2 user parallel Gaussian interference channel is
inseparable. Prior to this work, it was claimed in [20] that two user one-sided parallel Gaussian interference
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channels (also known as Z interference channels) are separable. Following our work, Sankar et. al. [21] have
shown that parallel Z channels are, in fact, not separable, which also establishes the inseparability of parallel two
user interference channel. It is interesting to note that in the two user interference channel, interference alignment
is not relevant, because there is only one interferer seen by each receiver. The inseparability result for the 2 user
interference channel therefore, highlights other interesting aspects of joint coding - e.g., a strong interference link
in one subchannel can compensate for a weak interference link in another subchannel, so that joint encoding puts
the overall channel into a strong interference regime. The distinct nature of the 2 and 3 user inseparability results
is also evident in that for the 2 user interference channel joint coding does not have a degree-of-freedom advantage
(i.e. the number of degrees of freedom remains equal to 1, with or without joint coding). Moreover, the 3 user
example in this paper shows that joint coding, even with single user receivers (i.e. treating interference as noise),
can beat the best separate coding scheme that utilizes optimal multiuser detection. To the best of our knowledge
this is not the case for the 2 user interference channel where decoding part of the interference appears necessary
for the inseparability result. Interestingly, it has been shown that separate coding is optimal if all sub-channels are
in the very weak (noisy) interference regime [22].

The inseparability of parallel interference channels has been shown recently to have interesting implications for
the capacity of ergodic fading interference channels [23]. From a practical perspective, it prompts a closer look at
joint versus separate coding schemes in parallel Gaussian interference channels.
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