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Abstract— The optimality of transmit beamforming for a
multiple antenna system with partial/limited feedback is inves-
tigated and a single general necessary and sufficient condition
for beamforming to achieve ergodic capacity is derived. The
condition obtained is universal - applicable to all partial/limited
feedback scenarios in all ergodic fading channel distributions
regardless of the number of transmit/receive antennas or transmit
power. Using the universal condition we explore the optimality
of beamforming for the quantized mean feedback scheme, which
generalizes previous results for the separate cases of mean
feedback and quantized feedback. Numerical results are provided
to complement the analysis.

Index Terms— Beamforming, Ergodic Capacity, Partial Feed-
back, MIMO channels, Quantized Mean Feedback, Quantized
Feedback.

I. INTRODUCTION

Multiple antenna systems with partial/limited feedback
strategies have generated a lot of research interest in recent
years (mean and covariance feedback [1]–[9], magnitude feed-
back [10], [11] and quantized feedback [12]–[24]). Character-
ization of the ergodic capacity of such partial/limited feedback
systems is the subject of several publications [1], [3], [4], [10],
[18], [25]. In many cases the transmitter optimization problem
yields a simple unit rank (beamforming) solution, which
is often desired due to the simplicity of the beamforming
scheme. In a partial/limited feedback scenario, the optimality
of transmit beamforming therefore determines whether or not
it is possible to use the beamforming transmit scheme to
simultaneously achieve both the maximum throughput and also
the low system complexity.

Previous work on partial/limited feedback systems has in-
vestigated the optimality of beamforming for different feed-
back strategies in some well known fading channel models
(perfect feedback [25], mean/covariance feedback [2], [4], [5],
quantized direction feedback [18], [19], magnitude feedback
[20]). While such results are very useful for the specific
systems considered, their scope is limited by the underlying
assumptions about the feedback scheme and the channel fade
distribution. Feedback schemes (or channels) encountered in
practice very rarely conform to any of the strategies (or
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channel distributions) discussed in previous work. In reality,
channel and system non-idealities often force these feedback
schemes to be combinations of the well known strategies. As
an example, consider the typical mean and quantized feed-
back models. Mean feedback captures the effects of feedback
delay and channel estimation error. However it assumes the
availability of an unquantized channel mean (infinite capacity
feedback channel). Similarly quantized feedback captures the
effects of quantization in the feedback channel but assumes
that the quantized version of the current channel vector is
available instantaneously at the transmitter (zero delay feed-
back channel). In practice, feedback channels are associated
with both a finite feedback rate and a non-zero feedback
delay. Consequently the resulting feedback schemes do not
correspond to the definitions of mean feedback or quantized
feedback. Previously known results on mean or quantized
feedback are also not directly pertinent to such practical
feedback schemes because the results do not accommodate
changes to the underlying feedback strategies and/or channel
models. Thus arises the need for a unified view - one that
is applicable to any general partial/limited feedback system
regardless of the nature or specificities of the feedback strategy
or channel model.

The main goal of this work is to provide a unified treatment
of the optimality of beamforming for general partial/limited
feedback scenarios. We are motivated by the observation
that the conditions for the optimality of beamforming (w.r.t
maximizing ergodic capacity) for mean [2], covariance [4]
and quantized direction feedback [19] are obtained by a
similar Lagrangian optimization of the corresponding capacity
expressions. By unifying all possible partial/limited feedback
strategies under a single framework, we find that the same
technique can be used to obtain insights into the optimal-
ity of beamforming for general feedback schemes. In this
work, we first identify a common form for the optimality
of beamforming condition that is applicable to all feedback
schemes - partial or limited - in all kinds of ergodic fading
channel models. In particular, results obtained in previous
work [2], [4], [5], [18]–[20] can be easily derived as special
cases of the general condition. As the second contribution
of this work, we apply the universal optimality condition
to obtain results for practically motivated feedback models
combining elements of both mean and quantized feedback.
While we focus primarily on partial/limited feedback system
with multiple transmit antennas and a single receive antenna
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(MISO case), corresponding results for MIMO systems are
also provided. We begin with the system model in Section II.

II. SYSTEM MODEL

The system model is a point-to-point multiple antenna
downlink with a base station consisting of M transmit an-
tennas communicating with a single antenna receiver as in
Figure 1. For simplicity of exposition we focus primarily on
the MISO scenario in this correspondence. Extensions to the
MIMO scenario are dealt with separately in Section III-D.
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Fig. 1: System Model

X = [X1 X2 · · · XM ]T ∈ C(M×1) is the signal transmitted
from the base station. H = [H1 H2 · · · HM ]T ∈ C(M×1)

is the time varying channel vector, where Hm denotes the
channel gain from the mth transmit antenna to the receiver.
Z ∼ CN (0, 1) represents the circularly symmetric complex
Gaussian noise at the receiver. The received signal is denoted
by Y ∈ C. We have suppressed the time dependence of
the variables to keep the notation simple. The mathematical
relationship between the input and the output is described by
the following equation

Y = 〈H, X〉+ Z = H†X + Z. (1)

We consider the perfect CSIR scenario, where the receiver
is assumed to track the channel perfectly and has com-
plete knowledge of the instantaneous channel vector. The
transmitter, on the other hand, obtains partial/limited channel
information from the receiver through an error free feedback
path.

We represent the feedback information mathematically by
the random variable F. The channel feedback F is a determin-
istic function of the time varying channel state H and/or the
time varying statistics of the channel. The set of all possible
realizations of the feedback information F will be denoted
by F . This formulation directly captures the nature of the
feedback in the variable F and serves as a common framework
for systems with partial/limited feedback [20].

Conditioned on the feedback F, the complex correlation
matrix of the input can be written as K (F) = EX|F

[
XX†].

The power constraint at the transmitter is given by

Tr (K (F)) = EX|F
[
X†X

] ≤ P ∀ F ∈ F . (2)

We have chosen a ‘short-term’ power constraint - the
transmit power is the same (equal to P ) regardless of the
value of the feedback F to the transmitter. While such a

constraint simplifies the analysis, our results are applicable
even when the transmitter chooses a different transmit power
P (F) (with EF [P (F)] = P ) depending on the feedback
F. Such a feedback dependent power adaptation will only
introduce an additional optimization in order to calculate the
best transmit powers P ∗ (F).

A. Problem Statement

We are interested in determining whether the simple beam-
forming strategy is optimal in terms of maximizing the ergodic
capacity of the multiple antenna system with partial/limited
feedback. Specifically, we seek answers to the following:

1) Optimality of beamforming: For a general par-
tial/limited CSIT model, given the feedback F, is beam-
forming the optimal input strategy, i.e., is the opti-
mal input covariance matrix of the form K? (F) =
Pb? (F)b?† (F), where b? (F) is an (M × 1) unit vec-
tor?

2) Quantized Mean Feedback Example: Using results
derived for arbitrary feedback scenarios, what are the
insights that can be obtained on the optimality of beam-
forming for quantized mean feedback systems?

III. OPTIMALITY OF BEAMFORMING

In this section, we introduce the general conditions for
the optimality of beamforming for a partial/limited feedback
MISO system with partial/limited feedback. Corresponding
conditions for the MIMO case are provided in Section III-D.

A. Capacity Expressions

The capacity C fb of the partial/limited feedback system is
given by [26]:

C fb = EF

[
max

K(F):Tr(K(F))≤P
EH|F

[
log

(
1 + H†K (F)H

)]
]

.

(3)
The capacity is achieved by transmitting independent complex
circular Gaussian symbols along the eigenvectors of K? (F),
the optimal input covariance matrix. The eigenvalues of
K? (F) decide the powers to be allocated to the corresponding
complex Gaussian symbols. We notice from equation (3)
the capacity optimization problem can be solved as separate
optimizations over all F ∈ F , i.e.,

C fb (F) = max
K(F):Tr(K(F))≤P

EH|F
[
log

(
1 + H†K (F)H

)]
.

(4)
Suppose we constrain K (F) to be unit rank, i.e, fix

the transmit strategy to be beamforming, the corresponding
beamforming capacity can be written as

Cbf (F) = max
b:‖b‖=1

EH|F
[
log

(
1 + H† (

Pbb†
)
H

)]
. (5)
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B. Universal Condition for the Optimality of Beamforming

For the problem definition of Section II-A, we begin with
a mathematical statement of the necessary and sufficient
condition for the optimality of beamforming described in the
following theorem:

Theorem 1.A: Beamforming along b(F) is the optimal
transmit strategy if and only if

λmax

(
EH|F

[
HH†

1 + P |H‖|2
])

= EH|F

[ |H‖|2
1 + P |H‖|2

]
, (6)

where H‖ is the projection of the channel H along the
beamforming vector b (F) (i.e, H‖ = H†b(F)) and λmax (· )
denotes the maximum eigenvalue.
Proof: The proof is similar to the corresponding result in
[19]. While [19] uses matrix differentiation, for the sake of
completeness, we provide an alternate proof in Appendix A
that only involves taking scalar derivatives.

The necessary and sufficient condition of equation (6) is
universal - applicable to a wide variety of partial/limited feed-
back strategies regardless of the distribution of the channel, the
amount/quality of feedback, the number of transmit antennas
or the amount of transmit power. The condition can also be
written in terms of two simplified conditions that are intuitive
and straightforward to work with. We now introduce these
conditions.

C. Simplified Universal Conditions

Let U = {u1 = b (F) , u2, · · · , uM−1, uM} be any set
of orthonormal vectors. Let H⊥k be the projection of the
channel H along uk, i.e, H⊥k = H†uk. As defined earlier, let
H‖ be the projection of the channel H along the beamforming
vector b (F), i.e, H‖ = H†b(F). Note that H⊥1 = H‖. We
state the following theorem from [19]:

Theorem 1.B: Beamforming along b(F) is the optimal
transmit strategy if and only if (necessary and sufficient) both
the following conditions are simultaneously satisfied:

1) Condition 1:

EH|F

[
H‖H∗

⊥j

1 + P |H‖|2
]

= 0 ∀ 2 ≤ j ≤ M. (7)

2) Condition 2:

λmax

(
EH|F

[(
I− bb†

)†
HH† (

I− bb†
)

1 + P |H‖|2
])

≤

EH|F

[ |H‖|2
1 + P |H‖|2

]
. (8)

Proof: Extension of Theorem 2 of [19].
It can be shown (similar to Theorem 1, [19]) that Condition

1 is by itself a necessary condition for the optimality of
beamforming because it will be satisfied by the best beamform-
ing vector, i.e., the vector that maximizes the beamforming
capacity of equation (5).

The correspondence between Theorems 1.A and 1.B is
captured in the following corollary:

Corollary 1: The general condition of Theorem 1.A is
equivalent to the simplified conditions of Theorem 1.B.

Proof: Appendix B.

In many partial/limited feedback scenarios, due to the
symmetry of the channel distribution given the feedback, the
possible optimal beamforming direction can be easily guessed.
In such cases, Condition 1 is an invaluable tool to analytically
ascertain whether or not a particular direction is indeed the op-
timal beamforming vector. In general feedback scenarios when
no such guesses for the possible optimal beamforming vector
exist, analytically checking for the conditions of equations
(7) and (8) is hard because all feasible beamforming vectors
will have to be tested. We point out that numerically testing
for Condition 1 involves validating an equality (equation (7))
and is subject to the precision employed in the generation of
the beamforming vectors and the channel realizations. On the
other hand, numerically checking Condition 2 is easier because
the inequality is strict in most cases.

D. The MIMO Case

Previously, we have focused on situations where the receiver
is equipped with a single antenna, i.e, the MISO scenario.
In this section, we consider the MIMO scenario, where the
receiver is equipped with L receive antennas. The input-
output equation can be written as Y = H†X + Z, where
X ∈ C(M×1) is the signal from the base station, H ∈ C(M×L)

is the channel matrix, Z ∼ CN (0, IL) ∈ C(L×1) denotes the
circularly symmetric complex Gaussian noise at the receiver
and Y ∈ C(L×1) is the received signal vector. The feedback
model follows that described for the MISO case in Section
II with F denoting the feedback and F representing the set
of possible feedback realizations. Similar to the MISO case,
one can derive a necessary and sufficient condition for the
optimality of beamforming with partial/limited feedback for
the MIMO scenario:

Theorem 1.C: Beamforming along b (F) is the optimal
transmit strategy if and only if

λmax

[
EH|F

[
H

(
IL + PH†b (F)b† (F)H

)−1
H†

]]
=

EH|F
[
b† (F)H

(
IL + PH†b (F)b† (F)H

)−1
H†b (F)

]
. (9)

Proof: The proof for the MIMO case is similar to Theorem
7 of [19].

IV. QUANTIZED MEAN FEEDBACK

Conditions for the optimality of beamforming in some
well known fading scenarios have been provided for a few
partial/limited feedback strategies in earlier work [2], [4],
[5], [18]–[20]. Using the simplified optimality conditions
introduced in Section III, [20] considers a variety of existing
feedback strategies and derives optimality results for some
specific channel fading scenarios. We emphasize here that the
scope of the universal optimality conditions is not limited to
previously known feedback strategies. They can also be used
to identify if beamforming is optimal for feedback schemes
(and channel distributions) where such results are not known.
As an example we introduce the ‘quantized mean’ feedback
scheme and derive conditions to be satisfied for beamforming
to be optimal.

Consider a typical mean feedback scenario [1] where the
channel is distributed as H ∼ CN

(
µµµ, ∆

M IM

)
, with a mean
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vector µµµ. The channel vector can therefore be regarded as
a superposition of a mean vector µµµ and an independent
isotropic ‘estimation error’ g, and written as H = µµµ + g,
where g is a circularly symmetric complex Gaussian vector
distributed as g ∼ CN

(
0, ∆

M IM

)
. In a practical feedback

channel, finite bandwidth constraints force a quantization of
the channel mean information at the receiver. Suppose the
receiver quantizes the channel mean µµµ via a given1 set of
N = 2B quantization vectors Q = {q1, q2, · · · , qN}
known to both the transmitter and receiver2. If the index that
is fed back to the transmitter is n, the channel mean µµµ ∈ Dn,
where Dn is the quantization region of qn. Since the feedback
involves sending a quantized version of the channel mean, we
refer to this hybrid scheme as the ‘quantized mean’ feedback
strategy.

A. Optimality of Beamforming for Quantized Mean Feedback

The simplified universal conditions of equation (7) and (8)
will be used to derive optimality of beamforming results for
the quantized mean feedback scheme. We are particularly
interested in determining whether or not beamforming along
the quantization vector fed back is optimal. For simplicity we
assume (without loss of generality) that the index fed back is
n = 1 (the quantization vector closest to the channel mean
µµµ is q1) and that the corresponding quantization vector3 is
q1 = [1 0 · · · 0]. We have H‖ = H†b = (µµµ + g)† b =
(µ1 + g1)

∗ and H⊥j = (µj + gj)
∗, where µk and gk are

the kth components of the corresponding vectors. Since µµµ
and g are independent, the two simplified conditions for the
quantized mean strategy can be (from equations (7) and (8))
written as

1) Condition 1 (for quantized mean feedback):

Eµµµ∈D1Eg

[
(µ1 + g1) (µl + gl)

∗

1 + P | (µ1 + g1) |2
]

= 0 ∀ 2 ≤ l ≤ M.

(10)
2) Condition 2 (for quantized mean feedback):

Eµµµ∈D1Eg

[
1 + P |(µj + gj)|2
1 + P |(µ1 + g1)|2

]
≤ 1 ∀ 1 ≤ j ≤ M.

(11)
Beamforming along the quantization vector fed back will be
the optimal transmit strategy when both equations (10) and
(11) are satisfied. An inspection of the form of equations
(10) and (11) reveals that form of Condition 1 is similar to
the definition of a centroid, i.e., Condition 1 relates to the
symmetry of the channel distribution around the beamforming
vector - it tests the direction of the beamforming vector. On the

1We assume that the quantization set is predetermined - we are only
concerned with the problem of optimality of beamforming and do not deal
with the problem of finding the optimal quantization vectors.

2While the quantization is performed just as in quantized feedback [12]–
[22], [27], notice that the channel mean µµµ is quantized (instead of the
instantaneous channel H).

3Given any arbitrary set of quantization vectors in a specific coordinate
system, the coordinate system can be rotated (regardless of the kind of
channel distribution) so that q1 (the first quantization vector) is along the
vector [1 0 · · · 0]T . We emphasize here that the channel distribution and the
orientation of the quantization vectors (with the corresponding quantization
regions) will also correspondingly change.

other hand, it can be seen that Condition 2 tests the strength
of the channel along the beamforming vector relative to the
strength of the channel in the null space of the beamforming
vector.

B. Optimality Results

Consider the quantized mean feedback scheme discussed in
Section IV. Let the quantization vectors be chosen according
to the Grassmannian criterion [13]. Since condition 1 is always
satisfied by the best beamforming vector (necessary condition),
the optimality of beamforming is effectively decided only by
Condition 2, which depends on the angular spread of the
quantization region and the distribution of the channel given
the mean vector. It is not mathematically tractable to determine
the exact geometry of the quantization regions for general
M and N . To understand the impact of the angular spread
of the quantization region on the optimality of beamforming,
we approximate the decision regions to be conical volumes
symmetric around the associated quantization vector. The
conical volume (Figure 2) is defined by the half-angle4 θ, i.e.,

Dn =
{

µµµ :
∣∣∣∣
〈

µµµ

‖µµµ‖ , qn

〉∣∣∣∣ ≥ cos (θ)
}

. (12)

g

Dn

θ
qn

µµµ

H

Fig. 2: Illustration of the conical quantization region in the
three dimensional real domain R3.

The half-angle θ can be thought of as a measure of the
quantization error - as θ decreases, the amount of feedback
(number of quantization vectors N ) increases. When θ is small
(large N ), quantized mean feedback resembles mean feedback.
Similarly ∆, related to the feedback delay, is a measure of the
error in the estimation of the channel mean - the estimation
error. The higher the ∆, the lower the conditional probability
that the channel vector H ∈ Dn given µµµ ∈ Dn. When ∆
is small, quantized mean feedback is similar to quantized
feedback.

When the estimation error (governed by ∆) and the quan-
tization error (governed by θ) are small, one would expect

4Given the number of Grassmannian quantization vectors N , the half-angle
θ is half the smallest angle between any two vectors in the Grassmannian

quantization set, i.e., θ = 1
2

arccos

[
max
i, j

|qiq
†
j |

]
. We note that θ monoton-

ically decreases with N .
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beamforming along the channel mean to be optimal. However,
it is not obvious whether or not beamforming is capacity
achieving at higher estimation and/or quantization errors. The
optimality conditions derived in Section IV-A can be used
to numerically determine if beamforming is optimal for a
particular (∆, θ) pair.

We consider a M = 4 antenna quantized mean feedback
system. For different values of the transmit power P , the
expectations in equations (10) and (11) are calculated by aver-
aging over realizations of µµµ and g. While the µµµ are generated
so that they are uniformly distributed within the conical region
D1, the realizations of g follow g ∼ CN (

0, ∆
M IM

)
. We fix

E
[‖µµµ‖2] =

(
1− ∆

M

)
so that the resulting channel vectors

have E
[‖H‖2] = 1. Figure 3 plots the boundary between

the beamforming optimal and suboptimal regions for different
values of P .

Fig. 3: Beamforming optimal regions for a quantized mean feedback
system with M = 4 transmit antennas. For any P , the region enclosed
by the corresponding plot and the axes defines the (∆, θ) values for
which beamforming along the quantized mean achieves capacity. The
shaded area represents the region where beamforming is optimal for
P = 5.

For any given P , the region enclosed by the corresponding
curve in Figure 3 and the axes represents all the (∆, θ) pairs
for which beamforming is optimal. When the angular spread
of the quantization region θ is small and the estimation error
∆ is low, it can be seen from Figure 3 that beamforming is
optimal. For fixed values of P and ∆, beamforming should
become suboptimal once the half angle θ is increased be-
yond a certain threshold. This is because as θ increases, the
quantization region becomes bigger and higher throughputs
may be achieved by distributing power along two or more
directions. This threshold boundary is reflected by the dotted
line in Figure 3. The abscissa of the point of intersection of
the dotted line and the curve for a given P is the value of
θ beyond which beamforming is suboptimal for all ∆. As an
illustrative example, the shaded area in figure 3 represents all
the points in the (∆, θ) plane where beamforming is optimal

for P = 5. It can be seen from the figure that beamforming is
suboptimal for P = 5 when θ > 79◦ regardless of the value
of ∆.

From the figure, it can also be seen that as the transmit
power increases, the optimality region becomes smaller. This
is consistent with the waterfilling analogy - beamforming
becomes suboptimal when the amount of water increases
(larger transmit power) or when the modes become very deep
(higher estimation error - larger ∆).

V. NUMERICAL RESULTS: LESS FEEDBACK MORE OFTEN,
OR MORE FEEDBACK LESS OFTEN?

Consider a typical limited feedback system with perfect
CSIR. Let the forward channel be described by an autore-
gressive model [1], so that the channel realization at time t is
given by

H (t) = aH (t− 1) +
√

1− a2w, (13)

where w ∼ N (
0, 1

M I
)
, a is the forgetting factor (0 ≤ a ≤ 1).

Let the feedback channel allow a finite rate of B bits every
D feedback channel uses. In efficiently utilizing the available
feedback bandwidth, the receiver can use one of the following
strategies:
• Strategy 1: Once every D channel uses, quantize the in-

stantaneous channel using B bits (feedback more channel
information less often).

• Strategy 2: Every channel use, quantize the instantaneous
channel using B

D bits (feedback less channel information
more often).

Notice that in both cases the average amount of feedback
is the same, equal to B

D bits per feedback channel use. A
natural question that arises out of the above discussion is:
which strategy offers a higher throughput? To answer this,
we compare the throughputs of the two strategies assuming
vector quantization at the receiver based on the Grassmannian
criterion5 [13] - in Strategy 1, the receiver uses a set of N1 =
2B quantization vectors while Strategy 2 employs N2 = 2

B
D

vectors. In Strategy 1, the channel model implies that the B
bit feedback at the beginning of the block (D channel uses)
is the quantized channel mean for the entire block. Therefore
Strategy 1 is essentially quantized mean feedback. Similarly
Strategy 2 involves feeding back a quantized version of the
instantaneous channel every block - it is quantized feedback.

Figure 4 shows the average throughputs of the two strategies
with increasing delay in feedback for forgetting factors a =
0, 0.5, 0.9 and 1. The input covariance matrix in Strategy
1 is calculated as in [1] while beamforming is considered as
the transmit scheme in Strategy 2. The number of transmit
antennas considered is M = 3, B = 6 bits and the average
receive SNR is assumed to be 5dB. We use the best known
line packings provided by [28] for the quantization vector sets.
The throughput plots for perfect feedback and no-feedback are
also shown for comparison.

When D = 1, for all a, both quantized mean (Strategy 1)
and quantized (Strategy 2) feedback strategies receive B =

5Note that the channel has memory and one may be able to achieve a better
quantization by utilizing this memory. However we consider only the static
quantization set model for simplicity.
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Perfect Feedback

Strategy 1 (Mean Feedback, a = 1)

Strategy 1 (Mean Feedback, a = 0.9)

Strategy 2 (Quantized Feedback)

Strategy 1 (Mean Feedback, a = 0.5)

Strategy 1 (Mean Feedback, a = 0)

No feedback

Fig. 4: Throughput plots of the two strategies for different values
of the feedback delay D. The throughput of quantized direction
feedback is independent of a. Throughputs for the perfect and no
feedback cases are shown for the sake of comparison.

6 bits every channel use and consequently have the same
throughput. As D increases, quantized mean feedback conveys
less precise information about the instantaneous state of the
channel (a 6= 0). The performance of Strategy 1 therefore
deteriorates with an increase in D. For large a (a ≈ 1, high
memory) the channel does not change much and quantized
mean feedback receives 6 bits of channel information while
quantized feedback (Strategy 2) receives 6

D bits of channel
information. Quantized mean feedback therefore performs
better than quantized feedback for large a. As a decreases, the
quality of the feedback decreases and consequently the average
throughput offered by quantized mean feedback decreases.

An intuitive result emerges from the the behavior of the
throughput plots - when the channel changes rapidly (low a,
fast fading), it is better to have less feedback more frequently.
On the other hand, when the channel changes slowly (high a,
slow fading), it is more advantageous to have more feedback
information with a higher delay between updates.

VI. CONCLUSIONS

We explore the optimality of beamforming in a general
multiple antenna channel with perfect channel knowledge
at the receiver and partial/limited channel information at
the transmitter. Without restricting the kind of partial/limited
feedback or the type of channel distribution, we derive a
universal necessary and sufficient condition for beamforming
to achieve capacity. Using the optimality condition, we obtain
results on the optimality of beamforming for the quantized
mean feedback strategy. With numerical results, we show that
beamforming is optimal for quantized mean feedback when
the angular spread of the quantization regions and the mean

estimation error are small. Exploring the tradeoff between the
frequency and amount of feedback, we find that frequency
of feedback is more important in fast fading channels while
the amount of feedback is more important for slow fading
channels.

APPENDIX

A. Proof of Theorem 1.A

Let b be any given unit vector (the beamforming vector).
Let K be any arbitrary feasible input covariance matrix (K
is positive semi-definite and Tr [K] ≤ P ). We consider the
corresponding set of input covariance matrices defined by

{
(1− ρ)Pbb† + ρK, ∀ρ ∈ [0, 1]

}
. (14)

For each feasible K, we have a corresponding set of
matrices. The union of the sets associated with all feasible
K yields the entire domain of optimization - all possible
positive semi-definite matrices satisfying the power constraint
of equation (2).

Consider the objective function of the optimization problem
of equation (4). Given b, we can write the objective function
as (for some 0 ≤ ρ ≤ 1 and some K)

f (ρ) , EH|F
[
log

(
1 + H† (

Pbb† + ρ
(
K − Pbb†

))
H

)]
.

(15)
We note here that the point ρ = 0 corresponds to the
beamforming capacity, i.e., beamforming along b. Further, it
is easy to verify that the function f (ρ) is a concave function
in ρ.

Necessary Condition: The condition to be satisfied for
beamforming along b to be optimal is d

dρf (ρ) |ρ=0 ≤ 0 for
all K, i.e.,

max
K:Tr[K]≤P

(
d

dρ
f (ρ) |ρ=0

)
≤ 0. (16)

If this condition does not hold, then there exists an input
covariance matrix

(
(1− ρ) Pbb† + ρK

)
for some ρ 6= 0 and

some K 6= Pbb† that yields a higher capacity.
Sufficient Condition: If equation (16) is satisfied for all K,

then due to the concavity of f (ρ) in ρ, the point ρ = 0 is a
global maximum, i.e., beamforming along b yields the highest
capacity and is therefore optimal.

Therefore equation (16) is both a necessary and sufficient
condition for beamforming along b to be optimal.

Let K =
∑M

i=0 αisis
†
i , where {s1, · · · , sM} and

{α1, · · · , αM} are the eigenvectors and corresponding eigen-
values of K. Note that the αi are all nonnegative and sum to
P . The optimality of beamforming condition of equation (16)
can be simplified to

0 ≥ max
{αj}, {sj}

EH|F

[∑M
j=1 αjH†sjs

†
jH− P |H†b|2

1 + P |H†b|2
]

= max
{αj}, {sj}

M∑

j=1

αjs
†
jΛsj − EH|F

[
P |H†b|2

1 + P |H†b|2
]

= P

(
λmax (Λ)− EH|F

[ |H†b|2
1 + P |H†b|2

])
, (17)
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where Λ = EH|F
[

HH†
1+P |H†b|2

]
. Equation (17) follows from

the fact that a convex combination of terms is less than or
equal to the maximum term. Equation (17) can be rewritten
as

λmax (Λ) ≤ EH|F

[ |H†b|2
1 + P |H†b|2

]
(18)

Since b is a unit vector, we also have

λmax (Λ) ≥ b†Λb = EH|F

[ |H†b|2
1 + P |H†b|2

]
,

and consequently equation (18) reduces to an equality. Sub-
stituting H‖ = H†b in equation (18), we have the result of
Theorem 1.A.

B. Proof of Corollary 1

Given a unit vector b, we have the following identity for
any positive semidefinite Hermitian matrix A:

λmax

((
I− bb†

)†
A

(
I− bb†

))

= max
v:‖v‖2=1

[
v†

(
I− bb†

)†
A

(
I− bb†

)
v
]

= max
α, β, b⊥:|α|2+|β|2=1, b†⊥b=0, ‖b⊥‖=1

[
(αb + βb⊥)†

× (
I− bb†

)†
A

(
I− bb†

)
(αb + βb⊥)

]

= max
β,b⊥:|β|≤1,b†⊥b=0, ‖b⊥‖=1

[
|β|2 b†⊥Ab⊥

]

= max
b⊥:b†⊥b=0, ‖b⊥‖=1

[
b†⊥Ab⊥

]
(19)

Let U = {u1 = b, u2, · · · , uM−1, uM} be any set of
orthonormal vectors.

1) Forward Part: (Equation (6) ⇒ Equations (7) and (8)):
Equation (6) can be equivalently written as

max
v:‖v‖=1

(
v†Λv

)
= b†Λb, (20)

where Λ = EH|F
[

HH†
1+P |H†b|2

]
and b is the beamforming

vector. Therefore b is an eigenvector of Λ and the correspond-
ing eigenvalue is EH|F

[
|H†b|2

1+P |H†b|2
]

= EH|F
[ |H‖|2

1+P |H‖|2
]
. We

have

Λb = EH|F

[ |H‖|2
1 + P |H‖|2

]
b. (21)

From equation (21), we can see that for any unit vector b⊥
orthogonal to b, we have b†⊥Λb = EH|F

[ |H‖|2
1+P |H‖|2

]
b†⊥b =

0. In particular, considering b⊥ = ui (with i ≥ 2) directly
yields Condition 1 (equation (7)) of Theorem 1.B.

Suppose, in the LHS of equation (20), we consider a smaller
constraint set consisting only of all unit vectors orthogonal to
b, we can write

max
b⊥:b†⊥b=0, ‖b⊥‖=1

EH|F
[
b†⊥Λb⊥

]
≤ EH|F

[ |H‖|2
1 + P |H‖|2

]
, (22)

which combined with equation (19) directly gives Condition
2 (equation (8)) of Theorem 1.B.

2) Reverse Part: (Equations (7) and (8) ⇒ Equation (6)):
Since any unit vector b⊥ orthogonal to b can be written as a
linear combination of {u2, · · · , uM}, Condition 1 yields

EH|F

[
b†⊥HH†b

1 + P |H‖|2
]

= 0 ∀ b⊥ s.t b⊥b = 0, ‖b⊥‖ = 1.

(23)
Further, applying equation (19) to (equation (8)) (Condition
2) yields

max
b⊥:b†⊥b=0, ‖b⊥‖=1

EH|F
[
b†⊥Λb⊥

]
≤ EH|F

[ |H‖|2
1 + P |H‖|2

]
. (24)

Consider the maximization max
v:‖v‖=1

(
v†Λv

)
, which can be

expanded as in equation (25) by substituting u = αb + βb⊥.
From equation (23), we can see that the last two terms in the
maximization in the RHS of equation (25) are zeros, yielding
equation (26). Using (24) in (26), we get equation (27). This
directly proves the general condition of Theorem 1.A.
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