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Abstract

In this paper we consider the problem of maximizing sum rate of a multiple-antenna Gaussian

broadcast channel. It was recently found that dirty paper coding achieves the sum capacity of this

channel. However, obtaining the optimal transmission policy when employing dirty paper coding is a

computationally complex non-convex problem. We use duality to transform this problem into a well-

structured convex multiple access channel problem. We exploit the structure of this problem and derive a

simple and fast iterative algorithm that provides the optimum transmission policies for the multiple-access

channel, which can easily be mapped to the optimal broadcastchannel policies.

I. I NTRODUCTION

There has been a great interest in characterizing and computing the capacity region of downlink

channels in recent years. An achievable region for the multiple-antenna downlink channel was found in

[3], and this achievable region was shown to be sum rate optimal in [3], [8], [9], [11]. Unfortunately, the

sum capacity is not known in closed form in general and is onlyknown as the solution to a computationally
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complex non-convex optimization problem. Therefore, obtaining the optimal rates and transmission policy

is difficult. In the single transmit antenna channel, although the problem is still non-convex, it is easily

seen that it is optimal to transmit to only the user with the strongest channel. Such a policy is, however,

not the optimal policy when the transmitter has multiple antennas.

A duality technique presented in [6], [8] transforms the non-convex downlink problem into a convex

sum poweruplink (MAC) problem, which is much easier to solve. In this sum power uplink or sum power

MAC problem, the users in the system have a joint power constraint instead of the individual constraints

in the conventional MAC. As in the case of the conventional MAC, there exist standard interior point

convex optimization algorithms [2] that solve the sum powerMAC problem. A new interior point based

method has also been found in [10]. However, employing an interior point convex optimization algorithm

to tackle a well structured problem such as the sum capacity problem is often inefficient. In this paper, we

exploit the structure of the sum capacity problem to obtain asimple iterative algorithm for calculating sum

capacity. This algorithm is inspired by and is very similar to an iterative algorithm for the conventional

individual power constraint MAC problem by Yu, Rhee, Boyd and Cioffi [12].

This paper is structured as follows. In the next section, thesystem model is presented. In Section III,

expressions for the sum capacity of the downlink and dual uplink channels are stated. In Section IV, the

iterative water-filling algorithm for the multiple-accesschannel is analyzed, and then in Section V a new

iterative water-filling algorithm for the multiple-accesschannel with a sum power constraint is presented.

Finally, a proof of convergence is provided in Section VI andsome concluding remarks are furnished in

Section VII.

II. SYSTEM MODEL

We consider aK user MIMO Gaussian broadcast channel (abbreviated as MIMO BC) where the

transmitter hasM antennas and thej-th receiver hasrj antennas. This downlink channel is shown in

Figure 1 along with thedual uplink channel. The dual uplink channel is aK user multiple antenna uplink

channel (abbreviated as MIMO MAC) where each of the dual uplink channels is the conjugate transpose

of the corresponding downlink channel. The downlink and uplink channel are mathematically described

as:

yi = Hix + ni, i = 1, . . . , K Downlink channel (1)

yMAC =
K
∑

i=1

H
†
ixi + n Dual uplink channel (2)

whereH1, H2, . . . ,HK are the channel matrices (withHi ∈ C
ri×M ) of users 1 throughK respectively on
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Fig. 1. System models of the MIMO BC(left) and the MIMO MAC (right) channels

the downlink, the vectorx ∈ C
M×1 is the downlink transmitted signal, andx1, . . . ,xK (with xi ∈ C

ri×1)

are the transmitted signals in the uplink channel. The vectorsn1, . . . ,nK andn refer to additive Gaussian

noise with unit variance on each vector component. We assumethere is a sum power constraint ofP in

the MIMO BC and in the MIMO MAC. Though the computation of the sum capacity of the MIMO BC

is of interest, we work with the dual MAC, which is computationally much easier to solve, instead.

III. SUM RATE CAPACITY

In [3], [8], [9], [11], the sum rate capacity of the MIMO BC (denoted asCBC(H1, . . . ,HK , P )) was

shown to be achievable by dirty-paper coding [4]. From theseresults, the sum rate capacity can be written

in terms of the following maximization:

CBC(H1, . . . ,HK , P ) = max
Σi≥0,

P

K

i=1
Tr(Σi)≤P

log
∣

∣

∣I + H1Σ1H
†
1

∣

∣

∣+ (3)

log

∣

∣

∣I + H2(Σ1 + Σ2)H
†
2

∣

∣

∣

∣

∣

∣I + H2Σ1H
†
2

∣

∣

∣

+ · · · + log

∣

∣

∣I + HK(Σ1 + · · · + ΣK)H†
K

∣

∣

∣

∣

∣

∣I + HK(Σ1 + · · · + ΣK−1)H
†
K

∣

∣

∣

.

The maximization is performed over downlink covariance matrices Σ1, . . . ,ΣK , each of which is a

M × M positive semi-definite matrix. In this paper we are interested in finding the covariance matrices

that achieve this maximum. It is easily seen that the objective (3) is not a concave function of the

covariance matrices. Thus, numerically finding the maximumis a non-trivial problem. However, in [8], a

duality is established between the uplink and downlink where it is shown that the dirty paper region for
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the MIMO BC is equal to the capacity region of the dual MIMO MAC(described in (2)). This implies

that the sum capacity of the MIMO BC is equal to the sum capacity of the dual MIMO MAC (denoted

asCMAC(H1, . . . ,HK , P )), i.e.

CBC(H1, . . . ,HK , P ) = CMAC(H†
1, . . . ,H

†
K , P ). (4)

The sum rate capacity of the MIMO MAC is given by the followingexpression [8]:

CMAC(H†
1, . . . ,H

†
K , P ) = max

Qi≥0,
P

K

i=1
Tr(Qi)≤P

log

∣

∣

∣

∣

∣

I +
K
∑

i=1

H
†
iQiHi

∣

∣

∣

∣

∣

, (5)

where the maximization is performed over uplink covariancematricesQ1, . . . ,QK (Qi is an ri × ri

positive semi-definite matrix), subject to the same power constraintP . The objective in (5) is a concave

function of the covariance matrices. Furthermore, in [8, Equations 8-10], a transformation is provided

(this mapping is reproduced in Appendix I for convenience) that maps from uplink covariance matrices

to the downlink covariance matrices (i.e. fromQ1, . . . ,QK to Σ1, . . . ,ΣK) that achieve the same rates

and use the same sum power. Therefore, finding the optimal uplink covariance matrices leads directly to

the optimal downlink covariance matrices.

In this paper, we develop a specialized algorithm that efficiently computes (5). This algorithm converges,

and utilizes the water-filling structure of the optimal solution, first identified for the individual power

constraint MAC in [12].

IV. I TERATIVE WATER-FILLING WITH INDIVIDUAL POWER CONSTRAINTS

The iterative water-filling algorithm for the conventionalMIMO MAC problem was obtained by Yu,

Rhee, Boyd, and Cioffi in [12]. This algorithm finds the sum capacity of a MIMO MAC with individual

power constraintsP1, . . . , PK on each user, which is equal to:

CMAC(H†
1, . . . ,H

†
K , P1, . . . , PK) = max

{Qi≥0, Tr(Qi)≤Pi}
log

∣

∣

∣

∣

∣

I +

K
∑

i=1

H
†
iQiHi

∣

∣

∣

∣

∣

. (6)

This differs from (5) only in the power constraint structure. Notice that the objective is a concave function

of the covariance matrices, and that the constraints in (6) are separable because there is an individual trace

constraint oneachcovariance matrix. In such situations, it is generally sufficient to optimize with respect

to the first variable while holding all other variables constant, then optimize with respect to the second

variable, etc., in order to reach a globally optimum point. This is referred to as the block-coordinate

ascent algorithm and convergence can be shown under relatively general conditions [1, Section 2.7]. If
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we define the functionf(·) as

f(Q1, . . . ,QK) , log

∣

∣

∣

∣

∣

I +
K
∑

i=1

H
†
iQiHi

∣

∣

∣

∣

∣

, (7)

then in the(l + 1)-th iteration of the block-coordinate ascent algorithm,

Q
(l+1)
j , arg max

Qj≥0, Tr(Qj)≤Pj

f(Q
(l)
1 , . . . ,Q

(l)
j−1,Qj ,Q

(l)
j+1, . . . ,Q

(l)
K ) (8)

for j = (l mod K) + 1 and Q
(l+1)
j = Q

(l)
j for all other j. Notice that only one of the covariances is

updated in each iteration.

The key to the iterative water-filling algorithm is noticingthat f(Q1, . . . ,QK) can be rewritten as:

f(Q1, . . . ,QK) = log

∣

∣

∣

∣

∣

∣

I +
∑

i6=j

H
†
iQiHi + H

†
jQjHj

∣

∣

∣

∣

∣

∣

= log

∣

∣

∣

∣

∣

∣

I +
∑

i6=j

H
†
iQiHi

∣

∣

∣

∣

∣

∣

+

log

∣

∣

∣

∣

∣

∣

∣

I +



I +
∑

i6=j

H
†
iQiHi





−1/2

H
†
jQjHj



I +
∑

i6=j

H
†
iQiHi





−1/2
∣

∣

∣

∣

∣

∣

∣

for any j. Thus, the iteration in (8) can be rewritten as:

Q
(l+1)
j = arg max

Qj≥0, Tr(Qj)≤Pj

log
∣

∣

∣I + G
†
jQjGj

∣

∣

∣ (9)

whereGj = Hj

(

I +
∑

i6=j H
†
iQ

(l)
i Hi

)−1/2
. This maximization is clearly equal to the expression for the

capacity of a point-to-point MIMO channel with channel matrix Gj and power constraintPj . It is well

known that the capacity of such a MIMO channel is achieved by choosing the input covariance along

the eigenvectors of the channel matrix and by water-filling on the eigenvalues of the channel matrix [7].

Thus,Q(l+1)
j should be chosen as awater-fill of the channelGj , i.e. the eigenvectors ofQ(l+1)

j should

equal the left eigenvectors ofGj , with the eigenvectors chosen by the water-filling procedure.

At each step of the algorithm, exactly one user optimizes hiscovariance matrix while treating the

signals from all other users as noise. In the next step, the next user (in numerical order) optimizes his

covariance while treating all other signals, including theupdated covariance of the previous user, as

noise. This intuitively appealing algorithm can easily be shown to satisfy the conditions of [1, Section

2.7] and thus provably converges. Furthermore, the optimization in each step of the algorithm simplifies

to water-filling over an effective channel, which is computationally efficiently.
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If we let Q∗
1, . . . ,Q

∗
K denote the optimal covariances, notice that

f(Q∗
1, . . . ,Q

∗
K) = max

Qj≥0,Tr(Qj)≤Pj

f(Q∗
1, . . . ,Q

∗
j−1,Qj ,Q

∗
j+1, . . . ,Q

∗
K). (10)

Thus,Q∗
1 is a water-fill of the noise and the signals from all other users, and simultaneouslyQ∗

2 is a

water-fill of the noise and the signals from all other users, and so on. Thus, the sum capacity achieving

covariance matrices simultaneously water-fill each of their respective effective channels (which for User

j depends on the covariance matrices of all other users) [12],with the water-filling levels (i.e. the

eigenvectors) of each user determined by the power constraints Pj . In the next section, we will see that

similar intuition describes the sum capacity achieving covariance matrices in the MIMO MAC when there

is a sum power constraint instead of individual power constraints.

V. SUM POWER ITERATIVE WATER-FILLING

In the previous section we described an iterative water-filling algorithm that computes the sum capacity

of a MIMO MAC subject to individual power constraints. We areinstead concerned with computing the

sum capacity, along with the corresponding optimal covariance matrices, of a MIMO BC. As stated earlier,

this is equivalent to computing the sum capacity (and the corresponding optimal covariance matrices) of

a MIMO MAC subject to a sum power constraint, i.e. computing:

CMAC(H†
1, . . . ,H

†
K , P ) = max

{Qi≥0,
P

K

i=1
Tr(Qi)≤P}

log

∣

∣

∣

∣

∣

I +
K
∑

i=1

H
†
iQiHi

∣

∣

∣

∣

∣

. (11)

If we let Q∗
1, . . . ,Q

∗
K denote a set of covariance matrices that achieve the above maximum, it is easy

to see that similar to the individual power constraint problem, each covariance must be a water-fill of

the noise and signals from all other users. More precisely, this means that for everyj, the eigenvectors

of Q∗
j are aligned with the left eigenvectors ofHj

(

I +
∑

i6=j H
†
iQ

∗
i Hi

)−1/2
. However, since there is

a sumpower constraint on the covariances, the water level of all users must be equal. This is akin to

saying that no advantage will be gained by transferring power from one user with a higher water-filling

level to another user with a lower water-filling level. In theindividual power constraint channel, since

each user’s water-filling level was determined by his own power constraint, the covariances of each user

could be updated one at a time. With a sum power constraint, however, we must update all covariances

simultaneouslyto maintain a constant water-level.

Motivated by the individual power algorithm, we propose thefollowing algorithm in which allK

covariances are simultaneously updated during each step, based on the covariance matrices from the

previous step. This is a natural extension of the per-user sequential update described in Section IV. At
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each iteration step we generate an effective channel foreachuser based on the covariances of all other

users. In order to maintain a common water-level, we simultaneously water-fill across allK effective

channels, i.e. we maximize the sum of rates on theK effective channels. The(l + 1)-th iteration of the

algorithm is described by the following:

1) Generate effective channelsGj = Hj(I +
∑

i6=j H
†
iQ

(l)
i Hi)

−1/2 for j = 1, . . . , K.

2) Treating these effective channels as parallel, non-interfering channels, obtain the new covariance

matrices{Q(l+1)
i }K

i=1 by water-filling with total powerP :

{Q
(l+1)
i }K

i=1 = arg max
Qi≥0,

P

K

i=1
Tr(Qi)≤P

K
∑

i=1

log
∣

∣

∣I + G
†
iQiGi

∣

∣

∣ .

This maximization is equivalent to water-filling the block diagonal channel with diagonals equal

to G1, . . . ,GK . If the SVD of GjG
†
j is written asGjG

†
j = UjDjU

†
j with Uj unitary andDj

square and diagonal, then the new covariance matrices are given by:

Q
(l+1)
j = UjΛjU

†
j (12)

whereΛj =
[

µI− (Dj)
−1
]+

and the operation[A]+ denotes a component-wise minimum with

zero. Here the water-filling levelµ is chosen such that
∑K

i=1 Tr(Λi) = P .

Perhaps surprisingly, this algorithm does not always lead to an increase in the objective function and

does not always converge to the optimum whenK > 2. Even though the algorithm converges to the

maximum sum rate for a two-user channel, the algorithm needsto be modified to guarantee convergence

when there are more than two users. In the following section we discuss the modification and the proof

of convergence.

VI. CONVERGENCEPROOF

In this section we show that the sum power iterative water-filling algorithm converges whenK = 2,

but does not always converge whenK > 2. For K > 2, we describe a modified version of the algorithm

that provably converges to the optimum.

A. Two User Analysis

In order to prove convergence of the algorithm forK = 2, let us consider the following optimization

problem:

max
Tr(A1+A2)≤P, Tr(B1+B2)≤P

1

2
log
∣

∣

∣I + H
†
1A1H1 + H

†
2B2H2

∣

∣

∣

+
1

2
log
∣

∣

∣I + H
†
1B1H1 + H

†
2A2H2

∣

∣

∣ . (13)
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We first show that the solutions to the original sum rate maximization problem in (11) and (13) are the

same. If we letA1 = B1 = Q1 andA2 = B2 = Q2, we see that any sum rate achievable in (11) is also

achievable in the modified sum rate in (13). Also, since thelog(det(·)) function is concave we have

log
∣

∣

∣I + H
†
1Q1H1 + H

†
2Q2H2

∣

∣

∣ ≥

1

2
log
∣

∣

∣
I + H

†
1A1H1 + H

†
2B2H2

∣

∣

∣
+

1

2
log
∣

∣

∣
I + H

†
1B1H1 + H

†
2A2H2

∣

∣

∣

if we let Q1 = 1
2(A1 + B1) andQ2 = 1

2(A2 + B2). Since Tr(Q1) + Tr(Q2) = 1
2Tr(A1 + A2 + B1 +

B2) ≤ P , any sum rate achievable in (13) is also achievable in the original (11). Thus, every set of

maximizing covariances(A1,A2,B1,B2) map directly to a set of maximizing(Q1,Q2). Therefore, we

can equivalently solve (13) to find the uplink covariances that maximize the sum-rate expression in (11).

Now notice that the maximization in (13) has separable constraints on(A1,A2) and (B1,B2). Thus,

we can use the block coordinate ascent method in which we maximize with respect to(A1,A2), then

with respect to(B1,B2), and so on. The maximization of (13) with respect to(A1,A2) can be written

as:

max
Tr(A1+A2)≤P

log
∣

∣

∣I + G
†
1A1G1

∣

∣

∣+ log
∣

∣

∣I + G
†
2A2G2

∣

∣

∣ (14)

whereG1 = H1(I + H
†
2B2H2)

−1/2 andG2 = H2(I + H
†
1B1H1)

−1/2. Clearly, this is equivalent to the

iterative water-filling step described in the previous section whereB1,B2 play the role of the covariance

matrices from the previous step. Similarly, when maximizing with respect toB1,B2, the covariances

A1,A2 are the covariance matrices from the previous step. Therefore, performing the cyclic coordinate

ascent algorithm on (13) is exactly equivalent to the sum power iterative water-filling algorithm described

in Section V.

Furthermore, notice that each iteration is equal to the calculation of the capacity of a point-to-point

MIMO channel. Water-Filling is known to be optimal in this setting, and in Appendix II we show that the

water-filling solution is also the unique solution. Therefore, by [13, pg. 228] [1, Chapter 2.7], the block

coordinate ascent algorithm converges because at each stepof the algorithm there is a unique maximizing

solution. Thus, the iterative water-filling algorithm given in Section V converges to the maximum sum

rate whenK = 2.

B. More Than Two Users

If there are more than two users, the original algorithm is easily shown by example not to always

converge. Thus, the algorithm needs to be slightly modified in order to guarantee convergence. For
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simplicity, we consider three users and then generalize. Similar to the previous section, consider the

following maximization:

max
1

3
log
∣

∣

∣I + H
†
1A1H1 + H

†
2B2H2 + H

†
3C3H3

∣

∣

∣

+
1

3
log
∣

∣

∣I + H
†
1C1H1 + H

†
2A2H2 + H

†
3B3H3

∣

∣

∣

+
1

3
log
∣

∣

∣I + H
†
1B1H1 + H

†
2C2H2 + H

†
3A3H3

∣

∣

∣ (15)

subject to the constraints Tr(A1 +A2 +A3) ≤ P , Tr(B1 +B2 +B3) ≤ P , and Tr(C1 +C2 +C3) ≤ P .

By the same argument used for the two user case, any set of covariances is a solution to the original

optimization problem in (11) if and only if it is a solution tothe above problem (withAi = Bi = Ci

for i = 1, 2, 3). In order to maximize (15), we can again use the cyclic coordinate ascent algorithm. We

first maximize with respect to(A1,A2,A3), then with respect to(B1,B2,B3), and so on. As before,

convergence is guaranteed by [1, Section 2.7]. In the two user case, the cyclic coordinate ascent method

applied to the modified optimization problem yields the sameiterative water-filling algorithm proposed

in Section V where the effective user of each channel was based on the covariance matrices from the

previous step. If there are more than two users, however, theeffective channel of each user depends

on covariances which are up toK − 1 steps old, instead of just one step old. It is easily seen thatthe

effective channel of Userj in the n-th step is:

G
(n)
j = Hj

(

I +
K−1
∑

i=1

H
†
[j+i]K

Q
(n−K+i)
[j+i]K

H[j+i]K

)−1/2

(16)

where [x]K = x + lK where l is an integer such that1 ≤ x + lK ≤ K. For the three user case, the

update ofQ(n)
1 depends onQ(n−2)

2 andQ
(n−1)
3 , Q

(n)
2 depends onQ(n−2)

3 andQ
(n−1)
1 , andQ

(n)
3 depends

on Q
(n−2)
1 andQ

(n−1)
2 . Thus, the previousK − 1 states of the algorithm must be stored. If (16) is used

to generate each effective channel in step 1 of the sum power iterative water-filling algorithm in Section

V, then the algorithm provably converges to the optimum due to the convergence of the block coordinate

ascent method.

C. Numerical Results

In Figures 2 and 3, plots of sum rate vs. iteration number are provided for a randomly chosen 10 user

channel with 4 transmit and receive antennas. In Fig. 2 the original algorithm converges to the optimum,

and is seen to converge considerably faster than the modified, provably convergent algorithm. Given that

the original algorithm converges in this scenario, it is notsurprising that its convergence rate is much
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Fig. 2. Algorithm comparison for convergent scenario
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Fig. 3. Algorithm comparison for divergent scenario

faster. The modified algorithm is intuitively slower because updates are based on covariance matrices

from up toK − 1 iterates ago, as opposed to only the previous iterate. In Fig. 3, however, the original

algorithm diverges, and oscillates between two sub-optimal points. In general, it is not difficult to find

similar examples of divergence for a large number of users. When convergence speed is of concern, it

appears to be beneficial to use the original algorithm for thefirst few iterations (or until sum rate is
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decreased in the next iteration) and then use the modified algorithm thereafter. The modified algorithm

converges from any starting point, and thus convergence is still guaranteed.

VII. C ONCLUSIONS

In this paper we proposed an algorithm to find the sum capacityachieving transmission strategies for

the multiple antenna broadcast channel. We use the fact thatthe Gaussian broadcast and multiple-access

channels are duals in the sense that their capacity regions,and therefore their sum capacities, are equal.

Our algorithm computes the sum capacity achieving strategyfor the dual multiple-access channel, which

can easily be converted to the equivalent optimal strategies for the broadcast channel. The algorithm

exploits the inherent structure of the multiple-access channel and employs a simple iterative water-filling

procedure that provably converges to the optimum.

APPENDIX I

MAC-BC TRANSFORMATION

In this appendix, we restate the mapping from uplink covariance matrices to downlink matrices. Given

uplink covariancesQ1, . . . ,QK , the transformation in [8, Equations 8-10] outputs downlink covariance

matricesΣ1, . . . ,ΣK that achieve the same rates (on a user-by-user basis, and thus also in terms of sum

rate) using the same sum power, i.e. with
∑K

i=1 Tr(Qi) =
∑K

i=1 Tr(Σi). For convenience, we first define

the following two quantities:

Aj , I + Hj

(

j−1
∑

l=1

Σl

)

H
†
j , Bj , I +

K
∑

l=j+1

H
†
l QlHl (17)

for j = 1, . . . , K. Furthermore, assume the matrixB−1/2
j H

†
jA

−1/2
j can be decomposed via the SVD as

B
−1/2
j H

†
jA

−1/2
j = FjDjG

†
j , whereDj is a square and diagonal matrix1. Then, the equivalent downlink

covariance matrices can be computed via the following transformation:

Σj = B
−1/2
j FjG

†
jA

1/2
j QjA

1/2
j GjF

†
jB

−1/2
j , (18)

beginning withj = 1. See [8] for a derivation and more detail.

1Note that the standard SVD command in MATLAB does not return asquare and diagonalDj . This is accomplished by

using the “0” option in the SVD command in MATLAB, and is referred to as the “economy size” decomposition.
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APPENDIX II

UNIQUENESS OFWATER-FILLING SOLUTION

In this appendix we show that there is a unique solution to thefollowing problem:

max
Q≥0, Tr(Q)≤P

log
∣

∣

∣I + HQH†
∣

∣

∣ (19)

for any non-zeroH ∈ C
N×M for arbitrary M, N . This proof is identical to the proof of optimality of

water-filling in [7, Section 3.2], with the addition of a simple proof of uniqueness.

SinceH†H ∈ C
M×M is Hermitian and positive semi-definite, we can diagonalizeit and writeH†H =

UDU† whereU is unitary andD is diagonal with non-negative entries. Using the identity|I + AB| =

|I + BA|, we can rewrite the objective function as

log
∣

∣

∣I + HQH†
∣

∣

∣ = log
∣

∣

∣I + QH†H

∣

∣

∣ = log
∣

∣

∣I + QUDU†
∣

∣

∣ = log
∣

∣

∣I + U†QUD

∣

∣

∣ . (20)

Let Q̃ = U†QU. Clearly Q = UQ̃U†. Since Tr(AB) = Tr(BA) andU is unitary, we have Tr(Q̃) =

Tr(U†QU) = Tr(QUU†) = Tr(Q). Furthermore,Q̃ ≥ 0 if and only if Q ≥ 0. Therefore, the

maximization can equivalently be carried out overQ̃, i.e.:

max
Q̃≥0, Tr(Q̃)≤P

log
∣

∣

∣I + Q̃D

∣

∣

∣ . (21)

with D ∈ RM×M diagonal and non-negative. In addition, any solution to (19) corresponds to a solution

of (21) via the invertible mapping̃Q = U†QU. Thus, if the maximization in (19) has multiple solutions,

the maximization in (21) must also have multiple solutions.Therefore, it is sufficient to show that (21)

has a unique solution, which we prove next.

First notice that Haddamard’s inequality [5] gives the following upper bound
∣

∣

∣I + Q̃D

∣

∣

∣ ≤
∏K

i=1(1 +

QiiDii), which is achievable if and only ifQ is diagonal. Since Tr(Q) =
∑K

i=1 Qii ≤ P andQii ≥ 0

for i = 1, . . . , K by the positive semi-definite condition, for any feasible non-diagonalQ there exists

a diagonalQ corresponding to a strictly larger objective value. Therefore, the optimal solution must be

diagonal. IfQ is diagonal, the objective function is equal to
∑M

i=1 log(1+QiiDii). Since we can ignore

entries ofD that are zero and the assumption thatH is not the zeroes matrix insures that at least one

diagonal entry ofD is non-zero, we can without loss of generality assumeDii > 0 for i = 1, . . . , M .

Therefore, the objective is a strictly concave function ofQ11, . . . ,QMM , and thus (21) has a unique

solution.
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