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Abstract— In a K -user Gaussian interference channel, it has
been shown that if for each user the desired signal strength is no
less than the sum of the strengths of the strongest interference
from this user and the strongest interference to this user
(all values in decibel scale), then treating interference as noise
(TIN) is optimal from the perspective of generalized degrees of
freedom (GDoF) and achieves the entire channel capacity region
to within a constant gap. In this paper, we show that for such TIN-
optimal interference channels, even if the message set is expanded
to include an independent message from each transmitter to each
receiver, operating the new channel as the original interference
channel and treating interference as noise is still optimal for
the sum capacity up to a constant gap. Furthermore, we extend
the result to the sum-GDoF optimality of TIN in the general
setting of X channels with arbitrary numbers of transmitters
and receivers.

Index Terms— Gaussian networks, generalized degrees of
freedom (GDoF), sum capacity, treating interference as
noise (TIN), X channels.

I. INTRODUCTION

TREATING interference as noise (TIN) when it is
sufficiently weak is an attractive interference

management principle for wireless networks in practice
due to its simplicity and robustness. Remarkably, TIN is also
information-theoretically optimal when the interference is
sufficiently weak. This is established in [1]–[6] from an exact
capacity perspective, and in [7]–[12] from an approximate
capacity perspective. Each approach has its merits – the former
identifies relatively narrow regimes where TIN achieves exact
capacity, whereas the latter identifies significantly broader
regimes where TIN is approximately optimal. Most relevant
to this work are the results by Geng et al. in [12] where
it is shown that in a general K -user interference channel,
if for each user the desired signal strength is no less than
the sum of the strengths of the strongest interference from
this user and the strongest interference to this user (all values
in dB scale), then TIN achieves the entire generalized degrees
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of freedom (GDoF) region and is optimal for the whole
channel capacity region up to a constant gap of no more than
log2(3K ) bits per user.

In this paper we explore the sum-rate optimality of TIN
when the message set is expanded to include an independent
message from each transmitter to each receiver, i.e., the
X channel setting [13]–[15]. Related prior works on
the X setting in [16] and [17] have primarily focused
on the case with 2 transmitters and 2 receivers. In [16],
Huang, Cadambe and Jafar characterize the sum-GDoF for
the symmetric X channel and identify sufficient conditions
for TIN to achieve exact capacity in the asymmetric case.
In [17], Niesen and Maddah-Ali characterize the capacity for
the general asymmetric case within a constant gap subject to
an outage set.

The main contribution of this work is to show that, for
the K -user TIN-optimal interference channels identified by
Geng et al. in [12], even if the message set is expanded to also
include an independent message from each transmitter to each
receiver, operating as the original interference channel and
treating interference as noise at each receiver is still optimal
for the sum capacity up to a constant gap (see Theorem 2
in Section III). We also extend the optimality of TIN to the
general X channel with arbitrary numbers of transmitters and
receivers (see Theorem 3 in Section III). In each case, the
achievability argument follows directly from [12] because it
is based only on operating the target network as an interference
channel and treating interference as noise. The main difficulty
lies in deriving tight information theoretical outer bounds.
Recall that in [12], for interference channels, the converse is
based on reducing the channel to a cyclic network. Each such
reduction produces an outer bound and collectively these outer
bounds suffice for the GDoF characterization in the interfer-
ence channel setting. However, this is no longer true once the
message set is expanded. While one can similarly obtain outer
bounds on the sum rates of subsets of messages by considering
all cyclic subnetworks, it is not hard to verify that these bounds
do not suffice for our purpose. As illustrated in this work, to
obtain desired outer bounds, the genie signal provided to each
user should be chosen more judiciously. Notably, to complete
the generalization to X channels, especially for the case where
the number of receivers is larger than that of transmitters, due
to the added difficulty, we also resort to deterministic channel
models [16]–[22], in which certain combinatorial structure can
be exploited to simplify the proof. More specifically, we use
the fact that the sum capacity of Gaussian X channels is
upper bounded by that of their carefully chosen deterministic
counterparts up to a constant gap, which shares the same
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principle with [20]–[22]. Then by upper bounding the sum
capacity of the deterministic channel appropriately, we obtain
the desired converse for the original Gaussian channel.

II. PRELIMINARIES

A. Channel Model

Consider the wireless channel with M transmitters and
N receivers, which can be described by the following
input-output equations,1

Yk(t) =
M∑

i=1

h̃ki X̃ i (t) + Zk(t), ∀k ∈ [N], (1)

where h̃ki is the complex channel gain value from transmitter i
to receiver k. X̃i (t), Yk(t) and Zk(t) are the transmitted
symbol of transmitter i , the received signal of receiver k,
and the additive circularly symmetric complex Gaussian
noise with zero mean and unit variance seen by receiver k,
respectively, at each time index t . All the symbols are
complex. Each transmitter i is subject to the power constraint
E[|X̃i (t)|2] ≤ Pi .

Following similar approaches in [7] and [12], we translate
the standard channel model (1) into an equivalent normalized
form that is more conducive for GDoF studies. We define2

αki ! log(max{1, |h̃ki |2 Pi })
log P

, ∀i ∈ [M], ∀k ∈ [N], (2)

where P > 1 is a nominal power value.
Now according to (2), we represent the original channel

model (1) in the following form,

Yk(t) =
M∑

i=1

hki Xi (t) + Zk(t)

=
M∑

i=1

√
Pαki e jθki Xi (t) + Zk(t), ∀k ∈ [N], (3)

where Xi (t) = X̃i (t)/
√

Pi is the normalized transmit symbol
of transmitter i , subject to the unit power constraint,
i.e., E[|Xi (t)|2] ≤ 1.

√
Pαki and θki are the magnitude and

the phase, respectively, of the channel between transmitter i
and receiver k. The exponent αki is called the channel
strength level of the link between transmitter i and receiver k.
As in [7] and [12], for the GDoF metric, we preserve the
ratios αki as all SNRs approach infinity. In the rest of the
paper, we only consider the equivalent channel model in (3).

In the K -user interference channel where M = N = K ,
each transmitter intends to send one independent message to its
corresponding receiver. Because we wish to prove the negative
result that additional messages do not add to the sum-GDoF
in a TIN-optimal network, the strongest result corresponds to
the case where we include messages from every transmitter
to every receiver. Therefore, we will consider the X channel
setting. In the M × N X channel, transmitter i has message

1Throughout this paper, for any positive integer Z , [Z ] denotes the
set {1, 2, . . . , Z}.

2As noted in [12], avoiding negative αki does not impact the GDoF or the
constant gap result.

Wki intended for receiver k, and all the messages Wki are
independent, ∀i ∈ [M],∀k ∈ [N]. The size of the message set
{Wki } is denoted by |Wki |. For codewords spanning n channel

uses, the rates Rki = log |Wki |
n are achievable if the probability

of error of all messages can be made arbitrarily small
simultaneously by choosing an appropriately large n. The
channel capacity region C is the closure of the set of all
achievable rate tuples. Collecting the channel strength levels
and phases in the sets

α ! {αki }, θ ! {θki }, ∀i ∈ [M], ∀k ∈ [N], (4)

the capacity region is denoted as C(P,α, θ), which is a
function of α, θ , and P . The sum channel capacity is
defined as

C#,X ! max
C(P,α,θ)

M∑

i=1

N∑

k=1

Rki (5)

Then the GDoF region of the X channel as represented in (3)
is given by

D(α, θ) !
{
(d11, d12, . . . , dN M ) : dki = lim

P→∞
Rki

log P
,

∀i ∈ [M],∀k ∈ [N],
(R11, R12, . . . , RN M ) ∈ C(P,α, θ)

}
, (6)

and its sum-GDoF value is

d#,X ! max
D(α,θ)

M∑

i=1

N∑

k=1

dki (7)

B. On the Optimality of TIN for Interference Channels

Let us first review the optimality of TIN for the K -user
interference channel from the perspective of GDoF.

Theorem 1 [12, Th. 1]: In a K -user interference channel,
where the channel strength level from transmitter i to receiver
j is equal to α j i , ∀i, j ∈ [K ], if the following condition is
satisfied

αii ≥ max
j : j ̸=i

{α j i } + max
k:k ̸=i

{αik }, ∀i, j, k ∈ [K ], (8)

then power control and treating interference as noise achieves
the whole GDoF region. Moreover, the GDoF region is the set
of all K -tuples (d1, d2, . . . , dK ) satisfying

individual bounds : 0 ≤ di ≤ αii , ∀i ∈ [K ] (9)

cycle bounds :
m∑

j=1

di j ≤
m∑

j=1

(αi j i j − αi j−1i j ),

∀(i1, i2, . . . , im) ∈ $K ,

∀m ∈ {2, 3, . . . , K }, (10)

where $K is the set of all possible cyclic sequences of
all subsets of [K ] with cardinality no less than 2, and the
modulo-m arithmetic is implicitly used on user indices,
e.g., im = i0.

To help interpret the results in Theorem 1, consider a 3-user
interference channel as an example, where

$3 =
{
(1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)

}
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Note that each cyclic sequence in $K is essentially a
cyclically ordered subset of user indices, without repetitions.
Then according to Theorem 1, under the condition (8),
the GDoF region (d1, d2, d3) is fully characterized by the
following inequalities together

0 ≤ d1 ≤ α11

0 ≤ d2 ≤ α22

0 ≤ d3 ≤ α33

d1 + d2 ≤ (α11 + α22) − (α12 + α21)

d1 + d3 ≤ (α11 + α33) − (α13 + α31)

d2 + d3 ≤ (α22 + α33) − (α23 + α32)

d1 + d2 + d3 ≤ (α11 + α22 + α33) − (α12 + α23 + α31)

d1 + d2 + d3 ≤ (α11 + α22 + α33) − (α13 + α32 + α21)

which is achievable via power control and TIN.
Remark: Theorem 1 claims that in the K -user interference

channel, if for each user the desired signal strength is no less
than the sum of the strengths of the strongest interference from
this user and the strongest interference to this user (all values
in dB scale), then TIN is GDoF-optimal. Furthermore, it is
shown in [12] that under the same condition, TIN achieves
the entire channel capacity region to within a gap of no larger
than log2(3K ) bits per user. Note that the gap is bounded by
a constant for a fixed number of users, i.e., it does not depend
on the channel strength parameters αi j and P .

III. RESULTS

The main result of this paper is the following theorem.
Theorem 2: In a K -user interference channel, where the

channel strength level from transmitter i to receiver j is equal
to α j i , ∀i, j ∈ [K ], when the following condition is satisfied,

αii ≥ max
j : j ̸=i

{α j i } + max
k:k ̸=i

{αik }, ∀i, j, k ∈ [K ] (11)

then even if the message set is increased to the X channel
setting, operating the new channel as the original interference
channel and treating interference as noise at each receiver still
achieves the sum-GDoF. Furthermore, the same scheme is also
optimal for the sum channel capacity up to a constant gap of
no more than K log2[K (K + 1)] bits.

The proof of Theorem 2 is presented in Section IV-A.
While the K -user interference channel is naturally

associated with a K × K X channel setting, the X channel
setting also allows for unequal numbers of transmitters and
receivers. A natural question is whether such a generalization
of the TIN-optimality result is possible for the X channel
with M ̸= N . The following theorem provides such a
generalization.

Theorem 3: In an M × N X channel, where the channel
strength level from transmitter i to receiver j is equal to
α j i and κ ! min{M, N}, if there exist two permutations
$T and $R for the transmitter and receiver indices,
respectively, such that

α$R
i $T

i
≥ max

j : j ̸=i
{α$R

j $T
i
} + max

k:k ̸=i
{α$R

i $T
k
},

∀i ∈ [κ], ∀ j ∈ [N], ∀k ∈ [M], (12)

Fig. 1. A 3-user interference channel, where the value on each link denotes
its channel strength level.

Fig. 2. A 3 × 3 X channel, which has the same channel strength levels as
the 3-user interference channel in Fig. 1.

where $T
i ($R

i ) denotes the i -th element in the permutation of
transmitters (receivers) $T ($R), then operating the channel
as a κ-user interference channel, in which each transmitter $T

i
intends to deliver an independent message to receiver $R

i ,
i ∈ [κ], and treating interference as noise at each receiver is
sum-GDoF optimal.3

The proof of Theorem 3 is given in Section IV-B.
Example 1: First, consider the 3-user interference channel

illustrated in Fig. 1, where the value on each link denotes
its channel strength level. In this interference channel, trans-
mitter i intends to send an independent message Wi to its
desired receiver i , ∀i ∈ {1, 2, 3}. Hence there are 3 messages
in this setting. It’s easy to check that the TIN-optimality
condition (11) is satisfied for each user. Then according
to Theorem 1, it is not hard to verify that the sum-GDoF
value of this interference channel is

d#,I C = d1 + d2 + d3 = 2.5

which is achieved by power control and TIN.
Next, let us expand the set of messages to the X channel

setting, where each transmitter intends to send an independent
message to each receiver as shown in Fig. 2. Therefore, there
are totally 9 messages in this X channel. Theorem 2 claims
that for this 3 × 3 X channel, the sum-GDoF value is still

d#,X =
3∑

i=1

3∑

k=1

dki = 2.5

which can be achieved by setting Wki = φ for i ̸= k and
∀i, k ∈ {1, 2, 3}, sending only {W11, W22, W33} through the
channel and treating interference as noise at each receiver.

3Based on the proof in Section IV-B, it is not hard to verify that the same
TIN scheme is also optimal to achieve the sum channel capacity to within a
constant gap.
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Fig. 3. A 4 × 3 X channel, which is obtained by adding another transmitter
to the X channel in Fig. 2.

Finally, after adding another transmitter as depicted
in Fig. 3, the number of the messages increases to 12 in this
4 × 3 X channel. It’s easy to verify that (12) holds. Then
according to Theorem 3, for this X channel and its reciprocal
channel, the same TIN scheme is still optimal in terms of the
sum-GDoF, whose value remains 2.5.

IV. PROOFS

A. Proof for Theorem 2

In the following, we first consider the sum-GDoF of the
K × K X channel. Then we use the insight gained in the
GDoF study to derive the constant gap result for the sum
channel capacity.

1) Proof for the Sum-GDoF: The proof consists of
two steps. First, we show that when the condition (11) is
satisfied, for all individual and cycle bounds of a TIN-optimal
K -user interference channel (see Theorem 1), if each
di (∀i ∈ [K ]) is replaced by d̂i = ∑K

j=1 di j , these bounds
still hold for its counterpart X channel. Next, based on the
first step, we prove that under the condition (11), the K -user
interference channel and its counterpart X channel have the
same sum-GDoF. Therefore, according to Theorem 1, we
establish that power control and TIN achieves the sum-GDoF
of the K × K X channel when the condition (11) holds.

Let’s start with the first step. In the following, we first give
an example of the 3 × 3 X channel to show how to obtain the
outer bounds corresponding to the individual and cycle bounds
in Theorem 1, where each di is replaced by d̂i = ∑3

j=1 di j ,
∀i ∈ {1, 2, 3}. Then we generalize the proof to the
K × K X channel.

Example 2: Consider a 3-user TIN-optimal interference
channel. According to Theorem 1, we can obtain the entire
GDoF region, which is characterized by certain individual and
cycle bounds. To extend the result to the X channel setting,
each of these bounds will be extended. To illustrate the key
ideas in this example, we consider the following two bounds,

d3 ≤ α33 (13)

d1 + d2 ≤ (α11 + α22) − (α12 + α21) (14)

and intend to prove that in the counterpart 3×3 X channel, if
we replace each di by d̂i = ∑3

j=1 di j , ∀i ∈ {1, 2, 3}, the above

Fig. 4. The subnetwork with 3 transmitters, 2 receivers and 6 messages.

two bounds still hold, i.e.,

d̂3 = d31 + d32 + d33 ≤ α33 (15)

d̂1 + d̂2 = d11 + d12 + d13 + d21 + d22 + d23

≤ (α11 + α22) − (α12 + α21) (16)

All the remaining bounds can be extended to the X channel
similarly.

To prove (15), we just need to consider the multiple-access
channel (MAC) consisting of all the transmitters and the
receiver 3, then we have

R31 + R32 + R33 ≤ log2(1 + Pα31 + Pα32 + Pα33) (17)

Because (11) is satisfied, i.e., α33 ≥ α32 and α33 ≥ α31, in the
GDoF sense we have

d̂3 = d31 + d32 + d33 ≤ α33 (18)

To prove (16), consider the subnetwork consisting of all the
transmitters and the receivers 1 and 2 as illustrated in Fig. 4,
where we have eliminated the third receiver and its desired
messages W31, W32, W33. This cannot hurt the rates of the
remaining messages, so the outer bound arguments remain
valid. Define

S1(t) = h21 X1(t) + Z2(t) (19)

S2(t) = h12 X2(t) + Z1(t) (20)

For the receiver 1, we provide Sn
1 , W21 and W23 through a

genie. From Fano’s inequality, we have

n(R11 + R12 + R13 − ϵ)

≤ I (W11, W12, W13; Y n
1 , Sn

1 , W21, W23) (21)

= I (W11, W12, W13; Y n
1 , Sn

1 |W21, W23) (22)

= I (W11, W12, W13; Sn
1 |W21, W23)

+ I (W11, W12, W13; Y n
1 |Sn

1 , W21, W23) (23)

= h(Sn
1 |W21, W23) − h(Sn

1 |W21, W23, W11, W12, W13)

+ h(Y n
1 |Sn

1 , W21, W23)

− h(Y n
1 |Sn

1 , W21, W23, W11, W12, W13) (24)

≤ h(Sn
1 |W21, W23) − h(Sn

1 |W21, W23, W11, W12, W13, Xn
1 )

+ h(Y n
1 |Sn

1 , W21, W23)

− h(Y n
1 |Sn

1 , W21, W23, W11, W12, W13, Xn
1 , Xn

3 ) (25)

≤ h(Sn
1 |W21) − h(Zn

2 ) + h(Y n
1 |Sn

1 ) − h(Sn
2 |W12) (26)

where (22) follows because all the messages are independent,
(25) holds since adding conditioning does not increase
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entropy and (26) holds because dropping conditioning (in the
first and third terms) does not reduce entropy.

Due to symmetry, for the receiver 2, we similarly obtain

n (R21 + R22 + R23 − ϵ)

≤ h(Sn
2 |W12) − h(Zn

1 ) + h(Y n
2 |Sn

2 ) − h(Sn
1 |W21) (27)

Thus the sum rate is bounded as follows.

n(
2∑

i=1

3∑

j=1

Rij − 2ϵ)

≤ h(Y n
1 |Sn

1 ) + h(Y n
2 |Sn

2 ) − h(Zn
1 ) − h(Zn

2 ) (28)

≤
n∑

t=1

[
h(Y1(t)|S1(t)) + h(Y2(t)|S2(t)) − h(Z1(t))

− h(Z2(t))
]

(29)

where the second inequality follows from the chain rule and
the fact that dropping conditioning does not reduce entropy.
Finally, because the circularly symmetric complex Gaussian
distribution maximizes conditional differential entropy for a
given covariance constraint, we obtain

2∑

i=1

3∑

j=1

Rij − 2ϵ

≤ log2

(
1 + Pα13 + Pα12 + Pα11

1 + Pα21

)

+ log2

(
1 + Pα23 + Pα21 + Pα22

1 + Pα12

)
(30)

Due to the condition (11), in the GDoF sense we obtain

d̂1 + d̂2 ≤ (α11 + α22) − (α12 + α21) (31)

which is the desired extension, (16), to the X channel setting
of the original bound, (14), for the interference channel. "

Now let us consider the proof for the general
K × K X channel. For the individual bounds in the K -user
interference channel

di ≤ αii , ∀i ∈ [K ], (32)

in its counterpart X channel, the corresponding bound comes
from the MAC consisting of all the transmitters and the
receiver i ,

K∑

j=1

Rij ≤ log2(1 +
K∑

j=1

Pαi j ) (33)

According to (11), in the GDoF sense we have

d̂i =
K∑

j=1

di j ≤ αii (34)

For any cycle bound in the interference channel
m∑

j=1

di j ≤
m∑

j=1

(αi j i j − αi j−1 i j ),

∀(i1, i2, . . . , im) ∈ $K , ∀m ∈ {2, 3, . . . , K }, (35)

Fig. 5. A K × m X channel (K ≥ m).

consider the subnetwork consisting of all the transmitters and
the receivers {i1, i2, . . . , im} as shown in Fig. 5. Eliminate all
other receivers and their desired messages, which cannot hurt
the rates of the remaining messages. For such a K ×m X chan-
nel, define W ! {Wi j ik }, W∗

i j
! {Wi j i1 , Wi j i2 , . . . , Wi j iK },

W†
ik

! {Wi1ik , Wi2 ik , . . . , Wim ik }, and Wc
S ! W\WS , where

∀ j ∈ [m], ∀k ∈ [K ], and S is any subset of message
indices. In words, the sets W , W∗

i j
, and W†

ik
represent all the

messages delivered in this K ×m X channel, all the messages
intended to receiver i j , and all the messages coming from
transmitter ik , respectively, and Wc

S is the complement of WS
in W . For instance, when j, k ∈ {1, 2} and S = {i1i1, i1i2},
then WS = {Wi1 i1 , Wi1 i2} and Wc

S = {Wi2 i1 , Wi2 i2}.
Modulo-m arithmetic is used on the receiver indices, e.g.,
i0 = im . Lastly, to complete the setup, define

Si j (t) = hi j−1 i j Xi j (t) + Zi j−1(t), ∀ j ∈ [m] (36)

For the receiver i1, we provide Sn
i1

, Wc
i2i2

\W∗
i1

through a
genie. From Fano’s inequality, we have

n(
K∑

k=1

Ri1ik − ϵ)

≤ I (W∗
i1 ; Y n

i1 , Sn
i1 ,W

c
i2 i2 \W

∗
i1) (37)

= I (W∗
i1 ; Y n

i1 , Sn
i1 |W

c
i2i2 \W

∗
i1 ) (38)

= I (W∗
i1 ; Sn

i1 |W
c
i2 i2 \W

∗
i1 ) + I (W∗

i1 ; Y n
i1 |S

n
i1 ,W

c
i2 i2 \W

∗
i1 )

(39)

= h(Sn
i1 |W

c
i2i2 \W

∗
i1 ) − h(Sn

i1 |W
c
i2 i2)

+ h(Y n
i1 |S

n
i1 ,W

c
i2 i2 \W

∗
i1 ) − h(Y n

i1 |S
n
i1 ,W

c
i2 i2) (40)

≤ h(Sn
i1 |W

†
i1
\Wi1 i1 ) − h(Zn

i0) + h(Y n
i1 |S

n
i1 )

− h(Sn
i2 |W

†
i2
\Wi2 i2 ) (41)

where (38) follows because all the messages are independent,
and in (41) we use the fact that dropping conditioning does
not reduce entropy.

Similarly, for other receivers i j , ∀ j ∈ {2, 3, . . . , m − 1}, by
providing Sn

i j
, Wc

i j+1 i j+1
\W∗

i j
through a genie we have

n(
K∑

k=1

Ri j ik − ϵ) ≤ h(Sn
i j
|W†

i j
\Wi j i j ) − h(Zn

i j−1
)

+ h(Y n
i j
|Sn

i j
) − h(Sn

i j+1
|W†

i j+1
\Wi j+1 i j+1 ) (42)
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Finally, for the receiver im , we provide Sn
im , Wc

i1 i1
\W∗

im
through a genie and obtain

n(
K∑

k=1

Rim ik − ϵ) ≤ h(Sn
im |W†

im \Wim im ) − h(Zn
im−1

)

+ h(Y n
im |Sn

im ) − h(Sn
i1 |W

†
i1
\Wi1 i1) (43)

Then taking the sum of n(
∑K

k=1 Ri j ik − ϵ) for all j ∈ [m],
we have

n(
m∑

j=1

K∑

k=1

Ri j ik − mϵ) ≤
m∑

j=1

[
h(Y n

i j
|Sn

i j
) − h(Zn

i j
)
]

(44)

≤
n∑

t=1

m∑

j=1

[
h(Yi j (t)|Si j (t)) − h(Zi j (t))

]
(45)

where (45) follows the chain rule and the fact that dropping
conditioning does not reduce entropy. Once again, using the
fact that the circularly symmetric complex Gaussian distrib-
ution maximizes conditional differential entropy for a given
covariance constraint and the condition (11), we can obtain
the following desired outer bound in the GDoF sense, through
the same set of manipulations as in Example 2,

m∑

j=1

d̂i j =
m∑

j=1

K∑

k=1

di j ik ≤
m∑

j=1

(αi j i j − αi j−1i j ) (46)

Now we can proceed to the second step to prove that under
the condition (11), the K -user interference channel and its
counterpart K × K X channel have the same sum-GDoF.
According to Theorem 1, for the K -user interference channel,
under the condition (11), to obtain its sum-GDoF d#,I C , we
need to solve the following linear programming (LP) problem

max
K∑

i=1

di (47)

s.t. 0 ≤ di ≤ αii , ∀i ∈ [K ] (48)
m∑

j=1

di j ≤
m∑

j=1

(αi j i j − αi j−1 i j ),

∀(i1, i2, . . . , im) ∈ $K , ∀m ∈ {2, 3, . . . , K } (49)

To get the sum-GDoF of its counterpart X channel d#,X ,
we consider a similar LP problem. Note for this LP problem
with the objective function

∑K
i=1 d̂i , from the first step, we

know that at least it needs to follow two similar constraints
to (48) and (49), in which each di is just replaced by d̂i .
Thus we have d#,I C ≥ d#,X . Obviously, in any case, the
sum-GDoF of the K -user interference channel must be less
than or equal to that of its counterpart X channel, i.e.,
d#,I C ≤ d#,X . Therefore, under the condition (11), we
have established that the K -user interference channel and its
counterpart X channel have the same sum-GDoF.

2) Proof for the Constant Gap of Sum Capacity: Based
on the insight gained in the above GDoF study, for the
TIN-optimal K × K X channel, we intend to characterize
the sum channel capacity to within a constant gap of no
more than K log2[K (K + 1)] bits. To this end, first recall the
achievability proof in [12]. By operating the K ×K X channel
as an interference channel, in which each transmitter i sends

one independent message Wi to its corresponding receiver i
(∀i ∈ [K ]), power control and TIN can achieve the following
rate tuples (R1,TIN, R2,TIN, . . . , RK ,TIN) satisfying

0 ≤ Ri,TIN ≤ max
{

0,αii log2 P + log2

(
1
K

)}
, ∀i ∈ [K ],

(50)
m∑

j=1

Ri j ,TIN ≤ max
{

0,
m∑

j=1

[
(αi j i j − αi j−1 i j ) log2 P

+ log2

(
1
K

)]}
, (51)

for all cyclic sequences (i1, i2, . . . , im) ∈ $K ,
∀m ∈ {2, 3, . . . , K }.

Next, consider the converse. Define R̂i ! ∑K
j=1 Rij . Start

with the individual bounds,

R̂i ≤ log2

(
1 +

K∑

j=1

Pαi j

)
(52)

≤ log2

[
(K + 1)Pαii

]
(53)

= αii log2 P + log2(K + 1) (54)

Then for the cycle bounds, from (45), it is easy to obtain
m∑

j=1

R̂i j ≤
m∑

j=1

log2

[
(K + 1)Pαi j i j

Pαi j−1 i j

]
(55)

=
m∑

j=1

[
(αi j i j − αi j−1i j ) log2 P + log2(K + 1)

]

(56)

for all cyclic sequences (i1, i2, . . . , im) ∈ $K ,
∀m ∈ {2, 3, . . . , K }.

Compare (50) with (54). Denote the difference between the
achievable rate in (50) and the outer bound in (54) as δR̂i

.
Consider the following two cases,

• αii log2 P + log2(
1
K ) > 0: In this case, we have

δR̂i
=

[
αii log2 P + log2(K + 1)

]

− max
{

0,αii log2 P + log2

(
1
K

)}

=
[
αii log2 P + log2(K + 1)

]

−
[
αii log2 P + log2

(
1
K

)]

= log2[K (K + 1)]
• αii log2 P + log2(

1
K ) ≤ 0: In this case, we have

δR̂i
=

[
αii log2 P + log2(K + 1)

]

− max
{

0,αii log2 P + log2

(
1
K

)}

= αii log2 P + log2(K + 1)

≤ log2 K + log2(K + 1)

= log2[K (K + 1)]
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In both cases, we obtain

δR̂i
≤ log2[K (K + 1)], ∀i ∈ [K ] (57)

Similarly, denote the difference between the achievable rate
in (51) and the outer bound in (56) as δ∑m

j=1 R̂i j
. Comparing

(51) with (56), we always have

δ∑m
j=1 R̂i j

≤ m log2[K (K + 1)] (58)

for all cyclic sequences (i1, i2, . . . , im) ∈ $K ,
∀m ∈ {2, 3, . . . , K }.

According to (57) and (58), we can characterize the sum
channel capacity to within a constant gap of no more than
K log2[K (K +1)] bits, which is only dependent on the number
of users K .

B. Proof for Theorem 3

It is easy to verify that when M ≥ N , by defining
d̂i = ∑M

j=1 di j (∀i ∈ [N]) and following the same argument
as in the proof of Theorem 2, we can complete the
proof. Therefore, hereafter we only consider the case where
κ = M < N .

Without loss of generality, we assume that in the
two permutations $T and $R which satisfy the condition (12),
$T

i = i , ∀i ∈ [M] and $R
j = j , ∀ j ∈ [N], i.e., the following

condition is satisfied,

αii ≥ max
j : j ̸=i

{α j i } + max
k:k ̸=i

{αik }, ∀i, k ∈ [M],∀ j ∈ [N] (59)

In this case, similar to the proof of Theorem 2, the key step
is to show that when (59) holds, for each individual bound
and cycle bound in the M-user interference channel consisting
of transmitters i ∈ [M] and receivers j ∈ [M], if each
di (∀i ∈ [M]) is replaced by4 d̄i = ∑N

j=1 d j i , the resulting
bounds hold in the M × N X channel. Then based on the same
argument of Theorem 2, we can prove the optimality of TIN
for the sum-GDoF of the M × N X channel where M < N .

For the individual bounds, consider the degraded broadcast
channel (BC) comprised of the transmitter i (∀i ∈ [M])
and all the receivers, eliminating all other transmitters and
their messages. Since (59) is satisfied, the receiver i is the
strongest receiver, and can decode all the messages from the
transmitter i . Thus in the GDoF sense we have

d̄i =
N∑

j=1

d j i ≤ αii , ∀i ∈ [M] (60)

Now the only task left is to prove that in the X channel
setting, by replacing di with d̄i , all the cycle bounds still hold.
Before exploring the proof details, let’s see an intuitive sketch
of proof first for a 2 × 4 X channel as illustrated in Fig. 6.
For this X channel, when (59) is satisfied, we intend to prove

d̄1 + d̄2 ≤ (α11 + α22) − (α12 + α21)

4It is noteworthy that in the case of M < N , d̄i = ∑N
j=1 d j i (∀i ∈ [M]) is

different from d̂i = ∑M
j=1 di j (∀i ∈ [N ]) we defined in the case of M ≥ N .

It is easy to find that in the M × N X channel where M < N , to recover
the corresponding individual and cycle bounds of the M-user interference
channel, d̄i = ∑N

j=1 d j i (∀i ∈ [M]) is the natural choice.

Fig. 6. A 2 × 4 X channel.

An Intuitive Sketch of Proof for the Above Cycle Bound:
In this 2 ×4 X channel, we assume α31 ≥ α41 and α42 ≥ α32.
The proof for all the other cases follows similarly. Define the
message set W̃ ! {Wki }, ∀i ∈ {1, 2}, ∀k ∈ {1, 2, 3, 4}. Also
define

S1(t) = h21 X1(t) + Z2(t)

S2(t) = h12 X2(t) + Z1(t)

For the receiver 1, we provide Sn
1 and W21 through a genie.

From Fano’s inequality, we obtain

n(R11 + R12 − ϵ)

≤ I (W11, W12; Y n
1 , Sn

1 , W21) (61)

= I (W11, W12; Y n
1 , Sn

1 |W21) (62)

= h(Y n
1 , Sn

1 |W21) − h(Y n
1 , Sn

1 |W21, W11, W12) (63)

= h(Sn
1 |W21) + h(Y n

1 |Sn
1 , W21) − h(Y n

1 |W21, W11, W12)

− h(Sn
1 |Y n

1 , W21, W11, W12) (64)

≤ h(Sn
1 |W21) + h(Y n

1 |Sn
1 ) − h(Y n

1 |W21, W11, W12)

− h(Sn
1 |Y n

1 , W21, W11, W12, W31, W41) (65)

= h(Sn
1 |W21) + h(Y n

1 |Sn
1 ) − h(Y n

1 |W21, W11, W12)

− h(Sn
1 |Y n

1 , W21, W11, W12, W31, W41, Xn
1 ) (66)

= h(Sn
1 |W21) + h(Y n

1 |Sn
1 )

− h(Y n
1 |W21, W11, W12) − h(Zn

2 ) (67)

≤ h(Sn
1 |W21) + h(Y n

1 |Sn
1 ) − h(Y n

3 |W̃c
{31,41})

− h(Sn
2 |W12) − h(Zn

2 ) − n o(log(P)) (68)

where (62) holds since W21 is independent of W11 and W12,
(65) follows that dropping conditioning (in the second term)
does not reduce entropy and adding conditioning (in the last
term) does not increase entropy, (66) holds since we can
reconstruct Xn

1 from W11, W21, W31 and W41, and in (68)
W̃c

{31,41} denotes the complement of {W31, W41} in W̃ . The
last inequality in (68) is the key step of the proof. Intuitively,
it is due to the fact that out of the α11 log(P) bit levels of Y1
that are above the noise floor, S2 is contained in the lowest
α12 log(P) bit levels of Y1, whereas only the top α31 log(P) bit
levels are seen by the receiver 3. Since α11 ≥ α12 +α31, these
bit levels do not overlap, i.e., they can be recovered from Y1
within a bounded entropy gap. As shown later, this argument
becomes evident in a deterministic approach.
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Yi (t) =
M∑

k=1

hik Xk(t) + Zi (t)

=
M∑

k=1

[(
h R

ik X R
k (t) − hI

ik X I
k (t)

)
+ j

(
hI

ik X R
k (t) + h R

ik X I
k (t)

)]
+ Zi (t), ∀i ∈ [N] (73)

Ŷi (t) =
M∑

k=1

[(
⌊sign(X̄ R

k (t))h R
ik

m R
ik∑

b=1

X̄ R
k,b(t)2

−b⌋ − ⌊sign(X̄ I
k (t))hI

ik

m I
ik∑

b=1

X̄ I
k,b(t)2

−b⌋
)

+ j
(⌊sign(X̄ R

k (t))hI
ik

m I
ik∑

b=1

X̄ R
k,b(t)2

−b⌋ + ⌊sign(X̄ I
k (t))h R

ik

m R
ik∑

b=1

X̄ I
k,b(t)2

−b⌋)
]
, ∀i ∈ [N] (74)

Next, consider the degraded BC comprised of the
transmitter 1 and the receivers 3 and 4. Since α31 ≥ α41,
we have

n(R31 + R41 − ϵ) ≤ I (W31, W41; Y n
3 |W̃c

{31,41}) (69)

= h(Y n
3 |W̃c

{31,41}) − h(Zn
3 ) (70)

Adding (68) and (70), we obtain

n(R11 + R12 + R31 + R41 − 2ϵ)

≤ h(Sn
1 |W21) + h(Y n

1 |Sn
1 ) − h(Sn

2 |W12) − n o(log(P))

(71)

Similarly, we have

n(R21 + R22 + R32 + R42 − 2ϵ)

≤ h(Sn
2 |W12) + h(Y n

2 |Sn
2 ) − h(Sn

1 |W21) − n o(log(P))

(72)

Finally, through adding (71) and (72) together and some
other manipulations, we can obtain the desired outer bound,

n(R# − 4ϵ) ≤ h(Y n
1 |Sn

1 ) + h(Y n
2 |Sn

2 ) − n o(log(P))

⇒ d̄1 + d̄2 ≤ (α11 + α22) − (α12 + α21)

In the following, in order to make the intuitive justification
of the key step (68) rigorous, we take a deterministic
approach [16]–[22]. We first show that the sum capacity of the
original complex Gaussian X channel is upper bounded by that
of one suitably-chosen deterministic channel up to a constant
gap. Then by upper bounding that deterministic channel, we
obtain the desired converse of the original Gaussian channel
as well. Such a deterministic approach has been shown
instrumental to provide approximate capacity characterization
for various Gaussian networks, e.g., the 2-user interference
channel [20], K -user interference channel [21] and
K × K × K networks [22]. Also, several deterministic models
have been introduced in previous works [17], [19], [21].
The one adopted in the following is mainly inspired by the
Avestimehr-Diggavi-Tse linear deterministic model and the
truncated deterministic model in [19].

Recall the original complex Gaussian M × N X channel.
Denote

Xk(t) = X R
k (t) + j X I

k (t)

hik =
√

Pαik e jθik = h R
ik + jh I

ik

The input-output relationship can be written as the
equation (73) given at the top of this page, where
E[|Xi (t)|2] ≤ 1 and Zi (t) ∼ CN (0, 1). To facilitate the
following deterministic approach, by scaling the output, we
may set

E[|Xi (t)|2] ≤ 2, Zi (t) ∼ CN (0, 2),

which does not affect the channel capacity of the Gaussian
model (73).

In this paper, we consider the deterministic model (74)
in top of this page, where ⌊x⌋ is the truncation function
which maps x to its integer part, m R

ik ! ⌊log2 |h R
ik |⌋,

mI
ik ! ⌊log2 |hI

ik |⌋, the real and imaginary parts of the
input signal X̄i (t) = X̄ R

i (t) + j X̄ I
i (t) both satisfy the

unit peak power constraint, and X̄ R
i,b(t) (X̄ I

i,b(t)) is the b-
th bit in the fractional part of |X̄ R

i (t)| (|X̄ I
i,b(t)|) in the

binary expansion.5 In the following, to distinguish the deter-
ministic model in (74) from others, we call it the trun-
cated binary-expansion deterministic model. The following
lemma shows that the sum capacity of the Gaussian X
channel in (73) is upper bounded by that of the trun-
cated binary-expansion deterministic model in (74) up to a
constant gap.

Lemma 1: The sum capacity of the complex
Gaussian M × N X channel is upper bounded by the
sum capacity of its corresponding truncated binary-expansion
deterministic model up to a constant gap.

The proof for the above lemma follows [20] and is relegated
to Appendix A for completeness.

Now define mij ! ⌊ 1
2 log2 Pαi j ⌋. Since P > 1 and

αii ≥ αi j + αki , ∀i /∈ { j, k}, we have

⌊αii

2
log2 P⌋ ≥ ⌊ (αi j + αki )

2
log2 P⌋ (75)

⇒ ⌊αii

2
log2 P⌋ ≥ ⌊αi j

2
log2 P⌋ + ⌊αki

2
log2 P⌋ (76)

⇒ mii ≥ mij + mki ∀i, j, k, i /∈ { j, k} (77)

5We can write the real-valued signal |X̄ R
i | (|X̄ R

i | ≤ 1) in terms of its binary
expansion as

|X̄ R
i | =

∞∑

b=1

X̄ R
i,b2−b = 0.X̄ R

i,1 X̄ R
i,2 X̄ R

i,3 ...
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In order to convey the key ingredients of the proof
more clearly, next we give an example for the real
Gaussian 2 × 4 X channel, and then generalize the proof to
the complex Gaussian M × N (M < N) X channel.

Example 3: Consider the real Gaussian X channel with
2 transmitters and 4 receivers, where (59) is satisfied. In this
example we still assume α31 ≥ α41 and α42 ≥ α32.
As previously mentioned, the proof for all the other cases
follows similarly. Also define the message set W̃ ! {Wki },
∀i ∈ {1, 2}, ∀k ∈ {1, 2, 3, 4}.

Recall that for this 2×4 X channel, we intend to prove the
following cycle bound

d̄1 + d̄2 ≤ 1
2

[
(α11 + α22) − (α12 + α21)

]

where the factor 1
2 is due to the fact that the Gaussian X

channel is real-valued.
We start with the corresponding truncated binary-expansion

deterministic model. Define

Ŝ1(t) = ⌊sign(X̄1(t))h21

m21∑

b=1

X̄1,b(t)2−b⌋ (78)

Ŝ2(t) = ⌊sign(X̄2(t))h12

m12∑

b=1

X̄2,b(t)2−b⌋. (79)

Also define

X̄31,S(t) = sign(X̄1(t))
m31∑

b=1

X̄1,b(t)2−b (80)

Thus the output of the receiver 1 can be written as

Ŷ1(t) = ⌊sign(X̄1(t))h11

m11∑

b=1

X̄1,b(t)2−b⌋

+ ⌊sign(X̄2(t))h12

m12∑

b=1

X̄2,b(t)2−b⌋ (81)

= ⌊sign(X̄1(t))h11

m31∑

b=1

X̄1,b(t)2−b⌋ + Ĉ1(t)

+ ⌊sign(X̄1(t))h11

m11∑

b=m31+1

X̄1,b(t)2−b⌋ + Ŝ2(t)

(82)

= ⌊h11 X̄31,S(t)⌋︸ ︷︷ ︸
Ŷ1,u (t)

+Ĉ1(t)

+ ⌊sign(X̄1(t))h11

m11∑

b=m31+1

X̄1,b(t)2−b⌋ + Ŝ2(t)

︸ ︷︷ ︸
Ŷ1,l (t)

(83)

where Ĉ1(t) may take a value from {−1, 0, 1}.

For the receiver 1, we have

n(R11 + R12 − ϵ)

≤ I (W11, W12; Ŷ n
1,u, Ŷ n

1,l , Ĉn
1 , Ŝn

1 |W21) (84)

= H (Ŷ n
1,u, Ŷ n

1,l , Ĉn
1 , Ŝn

1 |W21)

− H (Ŷ n
1,u, Ŷ n

1,l, Ĉn
1 , Ŝn

1 |W21, W11, W12) (85)

= H (Ŝn
1 |W21) + H (Ŷ n

1,u, Ŷ n
1,l , Ĉn

1 |Ŝn
1 , W21)

− H (Ŷ n
1,u, Ŷ n

1,l, Ĉn
1 |W21, W11, W12)

− H (Sn
1 |Ŷ n

1,u, Ŷ n
1,l , Ĉn

1 , W21, W11, W12) (86)

≤ H (Ŝn
1 |W21) + H (Ŷ n

1,u, Ŷ n
1,l , Ĉn

1 , |Ŝn
1 )

− H (Ŷ n
1,u, Ŷ n

1,l, Ĉn
1 , |W21, W11, W12) (87)

where (87) follows that dropping conditioning does not reduce
entropy. Now consider the last term in (87),

H (Ŷ n
1,u, Ŷ n

1,l , Ĉn
1 |W21, W11, W12)

= H (Ŷ n
1,u|W21, W11, W12)

+ H (Ŷ n
1,l, Ĉn

1 |Ŷ n
1,u, W21, W11, W12) (88)

= H (X̄n
31,S|W21, W11, W12)

+ H (Ŷ n
1,l, Ĉn

1 |Ŷ n
1,u, W21, W11, W12) (89)

≥ H (X̄n
31,S|W̃c

{31,41}) + H (Ŝn
2 |Ŷ n

1,u, W21, W11, W12) (90)

= H (Ŷ n
3 |W̃c

{31,41}) + H (Ŝn
2 |W12) (91)

where (89) holds since the function f : X̄31,S → Ŷ1,u is
bijective when m11 ≥ m31, and (91) follows that conditioning
on the messages W̃c

{31,41}, the function f : X̄31,S → Ŷ3 is
bijective. Note that the equations (88)-(91) correspond to the
key step (68) in the intuitive proof given before.

Plugging (91) into (87), we have

n(R11 + R12 − ϵ) ≤ H (Ŝn
1 |W21) + H (Ŷ n

1,u, Ŷ n
1,l , Ĉn

1 |Ŝn
1 )

− H (Ŝn
2 |W12) − H (Ŷ n

3 |W̃c
{31,41}) (92)

Then, consider the degraded BC comprised of the
transmitter 1 and the receivers 3 and 4. Since m31 ≥ m41,
we have

n(R31 + R41 − ϵ) ≤ I (W31, W41; Ŷ n
3 |W̃c

{31,41}) (93)

= H (Ŷ n
3 |W̃c

{31,41}) (94)

Combining (92) and (94), we obtain

n(R11 + R12 + R31 + R41 − 2ϵ)

≤ H (Ŝn
1 |W21) + H (Ŷ n

1,u, Ŷ n
1,l , Ĉn

1 |Ŝn
1 ) − H (Ŝn

2 |W12) (95)

Similarly, by considering the receiver 2 and the degraded
BC comprised of the transmitter 2 and the receivers 3 and 4,
we obtain

n(R21 + R22 + R32 + R42 − 2ϵ)

≤ H (Ŝn
2 |W12) + H (Ŷ n

2,u, Ŷ n
2,l , Ĉn

2 |Ŝn
2 ) − H (Ŝn

1 |W21) (96)
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Adding (95) and (96), the sum capacity of this deterministic
2 × 4 X channel is upper bounded by

n(R#,D − 4ϵ)
≤ H (Ŷ n

1,u, Ŷ n
1,l , Ĉn

1 |Ŝn
1 ) + H (Ŷ n

2,u, Ŷ n
2,l , Ĉn

2 |Ŝn
2 ) (97)

≤
n∑

t=1

[
H (Ŷ1,u(t)|Ŝ1(t)) + H (Ŷ1,l(t)|Ŝ1(t)) + H (Ĉ1(t))

+ H (Ŷ2,u(t)|Ŝ2(t)) + H (Ŷ2,l(t)|Ŝ2(t)) + H (Ĉ2(t))
]

(98)

where the last inequality follows from the chain rule and the
fact that dropping conditioning does not reduce entropy.

Next, for the term H (Ŷ1,u(t)|Ŝ1(t)) + H (Ŷ1,l(t)|Ŝ1(t)), we
consider two cases,

• m21 ≥ m31:

H (Ŷ1,u(t)|Ŝ1(t)) + H (Ŷ1,l(t)|Ŝ1(t))
≤ 0 + (m11 − m21) + constant (99)
= (m11 − m21) + constant (100)

where (99) follows that conditioning on Ŝ1, out
of the received signal Ŷ1,l , both the signals from
transmitter 1 and 2 have at most m11−m21 bit levels, and
the signs of the signals and carry-overs due to the sum of
two such signals can only induce a loss of constant bits.

• m21 < m31: Similarly, we have

H (Ŷ1,u(t)|Ŝ1(t)) + H (Ŷ1,l(t)|Ŝ1(t))
≤ (m31 − m21) + (m11 − m31) + constant (101)
= (m11 − m21) + constant (102)

Due to symmetry, we always have

H (Ŷ2,u(t)|Ŝ2(t)) + H (Ŷ2,l(t)|Ŝ2(t))
≤ (m22 − m12) + constant (103)

Therefore,

n(R#,D − 4ϵ)

≤
n∑

t=1

[
(m11 − m21) + (m22 − m12) + constant

]
(104)

According to Lemma 1, for the sum capacity of the original
Gaussian X channel R#,G , we have

R#,G ≤ R#,D + constant (105)
≤ (m11 − m21) + (m22 − m12) + constant (106)

≤ 1
2

[
(α11 − α21) + (α22 − α12)

]
log2 P + constant

(107)

Finally, we obtain the desired GDoF cycle bound,

d̄1 + d̄2 ≤ 1
2

[
(α11 − α21) + (α22 − α12)

]
. (108)

"
Equipped with the bounding techniques in the above

example, we can extend the proof to the complex Gaussian
M × N (M < N) X channels. To obtain an arbitrary desired
cycle bound

m∑

j=1

d̄i j ≤
m∑

j=1

(αi j i j − αi j−1i j ),

∀(i1, i2, . . . , im) ∈ $M , ∀m ∈ {2, 3, . . . , M}, (109)

Fig. 7. An m × N X channel (m < N ).

consider the subnetwork consisting of all the receivers and
the transmitters {i1, i2, . . . , im} in Fig. 7, eliminating all
other transmitters and their messages. Note that in Fig. 7,
for the receivers other than i1, i2, . . . , im , they are labelled
as im+1, im+2, . . . , iN , respectively, and the index ordering of
these receivers does not affect the desired outer bound in (109).
Define the message set W̃ ! {Wik i j }, ∀ j ∈ [m], ∀k ∈ [N].
Also define W ! {Wik i j }, W∗

ik
! {Wik i1 , Wik i2 , . . . , Wik im },

and Wi ′j
! {Wim+1 i j , Wim+2 i j , . . . , WiN i j }, ∀ j, k ∈ [m].

Similarly, Wc
S denotes W\WS , where S is a subset of

message indices.
To simplify the proof, we construct the following channel as

shown in Fig. 8, which upper bounds the sum channel capacity
of the original complex Gaussian X channel in Fig. 7:

• Step 1: We start with an m × m X channel with channel
coefficients hik i j , ∀k, j ∈ [m].

• Step 2: For each transmitter i j , ∀ j ∈ [m], we create
another N − m virtual receivers. The virtual receiver
R′

ik i j
, ∀k ∈ {m + 1, m + 2, . . . , N}, only connects to

the transmitter i j with the channel coefficient hik i j and
desires the message Wik i j from the transmitter i j . Note
now there are m × N messages totally in the network.

• Step 3: For each receiver ik , k ∈ [m], we can rotate
its channel output by multiplying it with e− jθik ik to
make the link from transmitter ik to receiver ik real-
valued, which does not affect the capacity of this channel.
Similarly, for each virtual receiver R′

ik i j
, j ∈ [m],

k ∈ {m + 1, m + 2, . . . , N}, we can rotate its channel
output by multiplying it with e− jθik i j to make its only
connected link real-valued, which again does not affect
the channel capacity. Therefore, without loss of general-
ity, we can assume that in Fig. 8, all the links in red are
real-valued.

• Step 4: The input signal Xi j (t) satisfies the power con-
straint E[|Xi j (t)|2] ≤ 2, ∀ j ∈ [m], and the AWGN seen
at all the receivers are independent and with zero mean
and variance 2.

Then combining with Lemma 1, to obtain the desired cycle
bound in (109), we only need to consider the truncated binary-
expansion deterministic model of the constructed channel
in Fig. 8.
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Fig. 8. The constructed channel which upper-bounds the sum channel
capacity of the m × N X channel in Fig. 7. The red links are real-valued
by rotating the phase of the received signal at the corresponding receivers.

For the receivers i j , ∀ j ∈ [m], the channel output can be
written in the matrix form (110), as shown at the bottom of
this page.

While for the virtual receivers, the channel output is given
by the following equations

Ŷik i j (t) =

⎛

⎜⎝
⌊sign(X̄ R

i j
(t))h R

ik i j

∑m R
ik i j

b=1 X̄ R
i j ,b

(t)2−b⌋

⌊sign(X̄ I
i j
(t))h R

ik i j

∑m R
ik i j

b=1 X̄ I
i j ,b

(t)2−b⌋

⎞

⎟⎠,

∀ j ∈ [m], ∀k ∈ {m + 1, m + 2, . . . , N}. (111)

Next, we present a lemma that will be used later.
Lemma 2: For any j ∈ [m], define Ŝi j (t) and Ŝ′

i j
(t)

as (112) and (113), as shown at the bottom of this page,
respectively, where the modulo-m arithmetic is implicitly used

on the user indices, e.g., i0 = im . Then f : Ŝi j (t) → Ŝ′
i j
(t) is

bijective.
The proof of Lemma 2 is presented in Appendix B.
Assume that in Fig. 8, R′

i∗1 i1
is the strongest virtual

receiver connected to transmitter i1, i.e., |hi∗1 i1 | =
max j∈{m+1,...,N}{|hi j i1 |}. In the truncated binary-expansion
deterministic model, the output of receiver i1 can be rewritten
as (114)-(116), as shown in top of the next page, where
Ĉ R

i1
(t) and Ĉ I

i1
(t) can both take values from {−1, 0, 1}. Define

X̄ R
i∗1 i1,S(t) = sign(X̄ R

i1 (t))

m R
i∗1 i1∑

b=1

X̄ R
i1,b(t)2

−b (117)

X̄ I
i∗1 i1,S(t) = sign(X̄ I

i1 (t))

m R
i∗1 i1∑

b=1

X̄ I
i1,b(t)2

−b (118)

Also define the sum of the terms in (115) and (116) as Ŷi1,l(t)
(see equation (119), as shown in top of the next page).

Then we have

Ŷi1 (t) = Ŷi1,u(t) + Ŷi1,l(t) + Ĉi1 (t) (120)

For the receiver i1, starting from Fano’s inequality, we
obtain

n(
m∑

j=1

Ri1 i j − ϵ)

≤ I (W∗
i1 ; Ŷ n

i1,u, Ŷ n
i1,l , Ĉn

i1 , Ŝn
i1 |W

c
i2i2 \W

∗
i1 ) (121)

= H (Ŷ n
i1,u, Ŷ n

i1,l, Ĉn
i1 , Ŝn

i1 |W
c
i2 i2 \W

∗
i1)

− H (Ŷ n
i1,u, Ŷ n

i1,l , Ĉn
i1 , Ŝn

i1 |W
c
i2i2 ) (122)

= H (Ŝn
i1 |W

c
i2 i2 \W

∗
i1) + H (Ŷ n

i1,u, Ŷ n
i1,l , Ĉn

i1 |Ŝ
n
i1 ,W

c
i2 i2 \W

∗
i1 )

− H (Ŷ n
i1,u, Ŷ n

i1,l , Ĉn
i1 |W

c
i2 i2 )

− H (Ŝn
i1 |Ŷ

n
i1,u, Ŷ n

i1,l , Ĉn
i1 ,W

c
i2 i2 ) (123)

≤ H (Ŝn
i1 |Wi2 i1 , Wi3 i1 , . . . , Wim i1 ) + H (Ŷ n

i1,u, Ŷ n
i1,l, Ĉn

i1 |Ŝ
n
i1)

− H (Ŷ n
i1,u, Ŷ n

i1,l , Ĉn
i1 |W

c
i2 i2 ) (124)

Ŷi j (t) =
(

Ŷ R
i j

(t)

Ŷ I
i j
(t)

)

=

⎛

⎜⎝
⌊sign(X̄ R

i j
(t))h R

i j i j

∑m R
i j i j

b=1 X̄ R
i j ,b

(t)2−b⌋

⌊sign(X̄ I
i j
(t))h R

i j i j

∑m R
i j i j

b=1 X̄ I
i j ,b

(t)2−b⌋

⎞

⎟⎠

+
m∑

k=1,k ̸= j

⎛

⎜⎝
⌊sign(X̄ R

ik
(t))h R

i j ik

∑m R
i j ik

b=1 X̄ R
ik ,b(t)2

−b⌋ − ⌊sign(X̄ I
ik
(t))hI

i j ik

∑m I
i j ik

b=1 X̄ I
ik ,b(t)2

−b⌋

⌊sign(X̄ R
ik
(t))hI

i j ik

∑m I
i j ik

b=1 X̄ R
ik ,b(t)2

−b⌋ + ⌊sign(X̄ I
ik
(t))h R

i j ik

∑m R
i j ik

b=1 X̄ I
ik ,b(t)2

−b⌋

⎞

⎟⎠ (110)

Ŝi j (t) =

⎛

⎜⎝
sign(X̄ R

i j
(t))

∑max{m R
i j−1 i j

,m I
i j−1 i j

}
b=1 X̄ R

i j ,b
(t)2−b

sign(X̄ I
i j
(t))

∑max{m R
i j−1 i j

,m I
i j−1 i j

}
b=1 X̄ I

i j ,b
(t)2−b

⎞

⎟⎠, (112)

Ŝ′
i j
(t) =

⎛

⎜⎝
⌊sign(X̄ R

i j
(t))h R

i j−1 i j

∑m R
i j−1 i j

b=1 X̄ R
i j ,b

(t)2−b⌋ − ⌊sign(X̄ I
i j
(t))hI

i j−1 i j

∑m I
i j−1 i j

b=1 X̄ I
i j ,b

(t)2−b⌋

⌊sign(X̄ R
i j
(t))hI

i j−1 i j

∑m I
i j−1 i j

b=1 X̄ R
i j ,b

(t)2−b⌋ + ⌊sign(X̄ I
i j
(t))h R

i j−1 i j

∑m R
i j−1 i j

b=1 X̄ I
i j ,b

(t)2−b⌋

⎞

⎟⎠ (113)
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Ŷi1 (t) =

⎛

⎜⎝
⌊sign(X̄ R

i1
(t))h R

i1 i1

∑m R
i∗1 i1

b=1 X̄ R
i1,b(t)2

−b⌋

⌊sign(X̄ I
i1
(t))h R

i1 i1

∑m R
i∗1 i1

b=1 X̄ I
i1,b(t)2

−b⌋

⎞

⎟⎠

︸ ︷︷ ︸
Ŷi1 ,u (t)

+
(

Ĉ R
i1

(t)
Ĉ I

i1
(t)

)

︸ ︷︷ ︸
Ĉi1 (t)

(114)

+

⎛

⎜⎜⎝

⌊sign(X̄ R
i1
(t))h R

i1 i1

∑m R
i1 i1

b=m R
i∗1 i1

+1
X̄ R

i1,b(t)2
−b⌋

⌊sign(X̄ I
i1
(t))h R

i1 i1

∑m R
i1 i1

b=m R
i∗1 i1

+1
X̄ I

i1,b(t)2
−b⌋

⎞

⎟⎟⎠ (115)

+
m∑

k=2

⎛

⎝ ⌊sign(X̄ R
ik
(t))h R

i1 ik

∑m R
i1 ik

b=1 X̄ R
ik ,b(t)2

−b⌋ − ⌊sign(X̄ I
ik
(t))hI

i1 ik

∑m I
i1 ik

b=1 X̄ I
ik ,b(t)2

−b⌋
⌊sign(X̄ R

ik
(t))hI

i1 ik

∑m I
i1 ik

b=1 X̄ R
ik ,b(t)2

−b⌋ + ⌊sign(X̄ I
ik
(t))h R

i1 ik

∑m R
i1 ik

b=1 X̄ I
ik ,b(t)2

−b⌋

⎞

⎠ (116)

Ŷi1,l(t) =

⎛

⎜⎜⎝

⌊sign(X̄ R
i1
(t))h R

i1 i1

∑m R
i1 i1

b=m R
i∗1 i1

+1
X̄ R

i1,b(t)2
−b⌋

⌊sign(X̄ I
i1
(t))h R

i1 i1

∑m R
i1 i1

b=m R
i∗1 i1

+1
X̄ I

i1,b(t)2
−b⌋

⎞

⎟⎟⎠

+
m∑

k=2

⎛

⎝ ⌊sign(X̄ R
ik
(t))h R

i1 ik

∑m R
i1 ik

b=1 X̄ R
ik ,b(t)2

−b⌋ − ⌊sign(X̄ I
ik
(t))hI

i1 ik

∑m I
i1 ik

b=1 X̄ I
ik ,b(t)2

−b⌋
⌊sign(X̄ R

ik
(t))hI

i1 ik

∑m I
i1 ik

b=1 X̄ R
ik ,b(t)2

−b⌋ + ⌊sign(X̄ I
ik
(t))h R

i1 ik

∑m R
i1 ik

b=1 X̄ I
ik ,b(t)2

−b⌋

⎞

⎠ (119)

where the last inequality follows from the fact that dropping
conditioning does not reduce entropy.

Now consider the last term in (124),

H (Ŷ n
i1,u, Ŷ n

i1,l , Ĉn
i1 |W

c
i2i2 )

= H (Ŷ n
i1,u |Wc

i2i2 ) + H (Ŷ n
i1,l , Ĉn

i1 |Ŷ
n
i1,u,Wc

i2 i2 ) (125)

≥ H (Ŷ n
i1,u |Wc

i2i2 ) + H (Ŝ′n
i2 |Ŷ n

i1,u,Wc
i2 i2 ) (126)

= H (X̄ R n
i∗1 i1,S, X̄ I n

i∗1 i1,S |Wc
i2i2 ) + H (Ŝn

i2 |Ŷ
n
i1,u,Wc

i2 i2 ) (127)

≥ H (Ŷ n
i∗1 i1

|W̃\Wi ′1
) + H (Ŝn

i2 |Wi1 i2 , Wi3 i2 , . . . , Wim i2 )

(128)

where (127) follows Lemma 2, i.e., both functions f : Ŷi1,u →
X̄ R

i∗1 i1,S × X̄ I
i∗1 i1,S and f : Ŝ′

i2
→ Ŝi2 are bijective.

Plugging (128) into (124), we have

n(
m∑

j=1

Ri1i j − ϵ) ≤ H (Ŝn
i1 |Wi2 i1 , Wi3 i1 , . . . , Wim i1)

+H (Ŷ n
i1,u, Ŷ n

i1,l, Ĉn
i1 |Ŝ

n
i1) − H (Ŝn

i2 |Wi1i2 , Wi3 i2 , . . . , Wim i2 )

−H (Ŷ n
i∗1 i1

|W̃\Wi ′1
) (129)

Then consider the degraded BC comprised of the
transmitter i1 and the virtual receivers {R′

im+1i1
,

R′
im+2 i1

, . . . , R′
iN i1

}. Since R′
i∗1 i1

is the strongest receiver
which can decode all the messages from the transmitter i1 to
its connected virtual receivers, we have

n(
N∑

j=m+1

Ri j i1 − ϵ)

≤ I (Wi ′1
; Ŷ n

i∗1 i1
|W̃\Wi ′1

) (130)

= H (Ŷ n
i∗1 i1

|W̃\Wi ′1
) (131)

Adding (129) and (131), we have

n(
m∑

j=1

Ri1i j +
N∑

j=m+1

Ri j i1 − 2ϵ)

≤ H (Ŝn
i1 |Wi2 i1 , Wi3 i1 , . . . , Wim i1 ) + H (Ŷ n

i1,u, Ŷ n
i1,l , Ĉn

i1 |Ŝ
n
i1 )

− H (Ŝn
i2 |Wi1 i2 , Wi3 i2 , . . . , Wim i2 ) (132)

Similarly, for k ∈ {2, 3, . . . , m − 1} we obtain

n(
m∑

j=1

Rik i j +
N∑

j=m+1

Ri j ik − 2ϵ)

≤ H (Ŝn
ik |Wi1ik , . . . , Wik−1 ik , Wik+1 ik , . . . , Wim ik )

+ H (Ŷ n
ik ,u, Ŷ n

ik ,l , Ĉn
ik |Ŝ

n
ik )

− H (Ŝn
ik+1

|Wi1 ik+1 , . . . , Wik ik+1 , Wik+2 ik+1 ..., Wim ik+1 )

(133)

And from the receiver im and the degraded BC comprised of
the transmitter im and all its connected virtual receivers, we
have

n(
m∑

j=1

Rim i j +
N∑

j=m+1

Ri j im − 2ϵ)

≤ H (Ŝn
im |Wi1 im , Wi2 im ..., Wim−1im )

+ H (Ŷ n
im ,u, Ŷ n

im ,l, Ĉn
im |Ŝn

im )

− H (Ŝn
i1 |Wi2 i1 , Wi3 i1 ..., Wim i1 ) (134)
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Adding all the terms in (132), (133) and (134) together and
applying the same argument used in Example 3, we have

n(R#,D − 2mϵ)

≤
m∑

k=1

H (Ŷ n
ik ,u, Ŷ n

ik ,l, Ĉn
ik |Ŝ

n
ik ) (135)

≤
m∑

k=1

n∑

t=1

[
H (Ŷik ,u(t)|Ŝik (t)) + H (Ŷik ,l(t)|Ŝik (t))

+ H (Ĉik (t))
]

(136)

≤ n
m∑

k=1

[
2(mik ik − mik−1 ik ) + constant

]
(137)

≤ n
m∑

k=1

[
(αik ik − αik−1 ik ) log2 P + constant

]
(138)

where (137) holds since mik i j −1 ≤ max{m R
ik i j

, mI
ik i j

} ≤ mik i j ,
and also note the modulo-m arithmetic is implicitly used on
user indices, e.g., i0 = im .

Finally according to Lemma 1, we can obtain the desired
GDoF cycle bound for the original complex Gaussian X
channel through some simple manipulations,

m∑

j=1

d̄i j ≤
m∑

j=1

(αi j i j − αi j−1i j ) (139)

and hence complete the whole proof.

V. CONCLUSION

In this paper, we extend the optimality of TIN to more
general classes of message sets. The main result is that for
the TIN-optimal K -user interference channel, even if the
message set expands to include the X setting where each
transmitter has one independent message to each receiver,
operating the new channel as the original interference channal
and treating interference as noise at each receiver is still
optimal to achieve the sum channel capacity to within a con-
stant gap. Furthermore, the optimality of TIN for the general
M × N X channel is also demonstrated.

We conclude with a comment on the necessity of the
optimality conditions. In [12] it is conjectured that (8) is
also necessary for TIN to be optimal for the entire GDoF
region except for a set of channel gain values with measure
zero. However, note that no claim is made for the necessity
of condition (8) for the optimality of TIN for sum-GDoF.
In fact it is easy to see that (8) is not necessary for the
sum-GDoF optimality of TIN. For example, consider the
2-user interference channel with α11 > α12 + α21 > α22,
which violates (8), and whose optimal sum-GDoF value,
α11 (as shown in [7]), is trivially achieved by activating only
user 1. It also should be noted that even in the 2×2 X channel,
when α11 > α12 + α21 > α22, using the bounding techniques
presented in this paper it is not hard to prove that the optimal
sum-GDoF value is still α11. Similarly, since our focus is only
on sum-GDoF, the optimality conditions are only sufficient,
but not necessary.

APPENDIX A
PROOF OF LEMMA 1

We begin with the general complex Gaussian
M × N X channel, and convert it to the corresponding
truncated binary-expansion deterministic channel step-by-step.
In each step, we show that only a loss of constant bits is intro-
duced. Here we follow the similar steps used in [20]. For the
sake of simplicity, we define W⋆

i ! {Wi1, Wi2, . . . , Wi M }, and
we suppress the time index t if no confusion would be caused.

• Step 1: Average power constraint to peak power
constraint. Recall that in the original complex Gaussian
channels, by scaling the output, we set

E[|Xi (t)|2] ≤ 2, Zi (t) ∼ CN (0, 2)

Then for each input Xi = X R
i + j X I

i , we truncate both
the real and imaginary parts to satisfy the peak power
constraint of 1. Define the part of input X R

i that exceeds
the peak power constraint as

X̃ R
i = ⌊X R

i ⌋ = sign(X R
i )

0∑

b=−∞
X R

i,b2−b

and the remaining signal as

X̄ R
i = X R

i − X̃ R
i = sign(X R

i )
∞∑

b=1

X R
i,b2−b

For the imaginary part of the input, we have the similar
definitions for X I

i with I replacing R. Then X̄ R
i and X̄ I

i
satisfy the unit peak power constraint. Also define

X̄i = X̄ R
i + j X̄ I

i (140)

X̃i = X̃ R
i + j X̃ I

i (141)

Letting Ȳi be the output of receiver i due to the truncated
input X̄i , and Ỹi be the difference between Yi and Ȳi , for
each receiver i ∈ [N] we have

I (W⋆
i ; Y n

i ) ≤ I (W⋆
i ; Ȳ n

i , Ỹ n
i ) (142)

= I (W⋆
i ; Ȳ n

i ) + I (W⋆
i ; Ỹ n

i |Ȳ n
i ) (143)

≤ I (W⋆
i ; Ȳ n

i ) + H (Ỹ n
i ) (144)

≤ I (W⋆
i ; Ȳ n

i ) +
M∑

k=1

H (X̃n
k ) (145)

≤ I (W⋆
i ; Ȳ n

i ) + n × constant (146)

The last inequality follows from [20, Lemma 6],
which says that for sufficiently large n, the entropy
of X̃n

k (the part of input Xn
k exceeding the unit peak

power constraint) is no larger than a constant number
multiplied by n.

• Step 2: Truncate signals at noise level and remove
noise. Recall ⌊log2 |h R

ik |⌋ = m R
ik and ⌊log2 |hI

ik |⌋ = mI
ik .

We have (147) at the top of next page. Next, define εi
as the difference between Ȳi and Ŷi as shown in (148)
in next page, where frac(x) denotes the fractional part
of x . Also note

|h R
ik

∞∑

b=m R
ik +1

X R
k,b2−b| ≤ 2m R

ik +12−(m R
ik ) = 2
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Ŷi =
M∑

k=1

[
(⌊sign(X R

k )h R
ik

m R
ik∑

b=1

X R
k,b2−b⌋ − ⌊sign(X I

k )hI
ik

m I
ik∑

b=1

X I
k,b2−b⌋)

+ j (⌊sign(X R
k )hI

ik

m I
ik∑

b=1

X R
k,b2−b⌋ + ⌊sign(X I

k )h R
ik

m R
ik∑

b=1

X I
k,b2−b⌋)

]
(147)

εi = Ȳi − Ŷi

=
M∑

k=1

{[
sign(X R

k )h R
ik

∞∑

b=m R
ik +1

X R
k,b2−b − sign(X I

k )hI
ik

∞∑

b=m I
ik+1

X I
k,b2−b

+ frac(sign(X R
k )h R

ik

m R
ik∑

b=1

X R
k,b2−b) − frac(sign(X I

k )hI
ik

m I
ik∑

b=1

X I
k,b2−b)

]

+ j
[
sign(X R

k )hI
ik

∞∑

b=m I
ik +1

X R
k,b2−b + sign(X I

k )h R
ik

∞∑

b=m R
ik +1

X I
k,b2−b

+ frac(sign(X R
k )hI

ik

m I
ik∑

b=1

X R
k,b2−b) + frac(sign(X I

k )h R
ik

m R
ik∑

b=1

X I
k,b2−b)

]}
+ Zi

=
M∑

k=1

X̂k + Zi (148)

Similarly, we have

|hI
ik

∞∑

b=m I
ik +1

X I
k,b2−b| ≤ 2

|hI
ik

∞∑

b=m I
ik +1

X R
k,b2−b| ≤ 2

|h R
ik

∞∑

b=m R
ik +1

X I
k,b2−b| ≤ 2

Finally, we obtain

I (W⋆
i ; Ȳ n

i )
≤ I (W⋆

i ; Ŷ n
i , εn

i ) (149)

= I (W⋆
i ; Ŷ n

i ) + I (W⋆
i ; εn

i |Ŷ n
i ) (150)

= I (W⋆
i ; Ŷ n

i ) + h(εn
i |Ŷ n

i ) − h(εn
i |Ŷ n

i ,W⋆
i ) (151)

≤ I (W⋆
i ; Ŷ n

i ) + h(εn
i ) − h(Zn

i ) (152)
= I (W⋆

i ; Ŷ n
i ) + I (X̂n

1 , X̂n
2 , . . . , X̂n

M ; εn
i ) (153)

≤ I (W⋆
i ; Ŷ n

i ) + n × constant (154)

where the last inequality is due to the fact that
X̂1, X̂2, . . . , X̂ M 1→ εi forms a complex Gaussian
MAC with a finite SNR independent of P for each
transmitter [20]. "

APPENDIX B
PROOF OF LEMMA 2

For notation brevity, we define

X̆ R ! sign(X̄ R
i j
(t))

max{m R
i j−1 i j

,m I
i j−1 i j

}
∑

b=1

X̄ R
i j ,b(t)2

−b (155)

X̆ I ! sign(X̄ I
i j
(t))

max{m R
i j−1 i j

,m I
i j−1 i j

}
∑

b=1

X̄ I
i j ,b(t)2

−b (156)

S̆R ! ⌊sign(X̄ R
i j
(t))h R

i j−1 i j

m R
i j−1 i j∑

b=1

X̄ R
i j ,b(t)2

−b⌋
︸ ︷︷ ︸

S̆R,1

− ⌊sign(X̄ I
i j
(t))hI

i j−1 i j

m I
i j−1 i j∑

b=1

X̄ I
i j ,b(t)2

−b⌋
︸ ︷︷ ︸

S̆R,2

(157)

S̆I ! ⌊sign(X̄ R
i j
(t))hI

i j−1 i j

m I
i j−1 i j∑

b=1

X̄ R
i j ,b(t)2

−b⌋
︸ ︷︷ ︸

S̆I,1

+ ⌊sign(X̄ I
i j
(t))h R

i j−1 i j

m R
i j−1 i j∑

b=1

X̄ I
i j ,b(t)2

−b⌋
︸ ︷︷ ︸

S̆I,2

(158)

Note (X̆ R, X̆ I ) and (S̆R, S̆I ) can be seen as the input and
output of the deterministic channel, respectively. Obviously,
given one input (X̆ R, X̆ I ), we can only produce one output
(S̆R, S̆I ). Next, we prove the other direction by contradiction.
We assume there exist two different inputs (X̆∗

R, X̆∗
I ) and

(X̆∗∗
R , X̆∗∗

I ) that can generate the same output, i.e., (S̆∗
R, S̆∗

I ) =
(S̆∗∗

R , S̆∗∗
I ). In the following, without loss of generality, we

assume

|h R
i j−1i j

| ≥ |hI
i j−1i j

| ⇒ m R
i j−1i j

≥ mI
i j−1i j

. (159)
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We first consider the case where sign(h R
i j−1 i j

) =
sign(hI

i j−1i j
). For the term S̆R , we have the following subcases:

• S̆∗
R,1 = S̆∗∗

R,1 and S̆∗
R,2 = S̆∗∗

R,2. In this case, for the term
S̆I , if |h R

i j−1i j
| > |hI

i j−1 i j
|, since (X̆∗

R, X̆∗
I ) and (X̆∗∗

R , X̆∗∗
I )

are different, we have S̆∗
I,1 = S̆∗∗

I,1 and S̆∗
I,2 ̸= S̆∗∗

I,2, which
contradicts the assumption that (X̆∗

R, X̆∗
I ) and (X̆∗∗

R , X̆∗∗
I )

generate the same output; if |h R
i j−1i j

| = |hI
i j−1i j

|, since

(X̆∗
R, X̆∗

I ) and (X̆∗∗
R , X̆∗∗

I ) generate the same (S̆R, S̆I ),
we have (X̆∗

R, X̆∗
I ) = (X̆∗∗

R , X̆∗∗
I ), which contradicts the

assumption that (X̆∗
R, X̆∗

I ) and (X̆∗∗
R , X̆∗∗

I ) are different.
• S̆∗

R,1 > S̆∗∗
R,1 and S̆∗

R,2 > S̆∗∗
R,2. In this case, for the

term S̆I , we have S̆∗
I,1 ≥ S̆∗∗

I,1 and S̆∗
I,2 > S̆∗∗

I,2, which
contradicts the assumption that (X̆∗

R, X̆∗
I ) and (X̆∗∗

R , X̆∗∗
I )

generate the same output.
• S̆∗

R,1 < S̆∗∗
R,1 and S̆∗

R,2 < S̆∗∗
R,2. In this case, for the

term S̆I , we have S̆∗
I,1 ≤ S̆∗∗

I,1 and S̆∗
I,2 < S̆∗∗

I,2, which
contradicts the assumption that (X̆∗

R, X̆∗
I ) and (X̆∗∗

R , X̆∗∗
I )

generate the same output.
For the other case where sign(h R

i j−1i j
) = −sign(hI

i j−1 i j
),

we can follow the above argument to get the same
conclusion. "
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