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Aligned Image Sets Under Channel Uncertainty:
Settling Conjectures on the Collapse of Degrees
of Freedom Under Finite Precision CSIT
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Abstract— A conjecture made by Lapidoth et al at
Allerton 2005 (also an open problem presented at ITA 2006)
states that the degrees of freedom (DoF) of a two user broadcast
channel, where the transmitter is equipped with two antennas and
each user is equipped with one antenna, must collapse under finite
precision channel state information at the transmitter (CSIT).
That this conjecture, which predates interference alignment,
has remained unresolved, is emblematic of a pervasive lack
of understanding of the DoF of wireless networks—including
interference and X networks—under channel uncertainty at the
transmitter(s). In this paper, we prove that the conjecture is true
in all non-degenerate settings (e.g., where the probability density
function of unknown channel coefficients exists and is bounded).
The DoF collapse even when perfect channel knowledge for one
user is available to the transmitter. This also settles a related
recent conjecture by Tandon et al. The key to our proof is a
bound on the number of codewords that can cast the same image
(within noise distortion) at the undesired receiver whose channel
is subject to finite precision CSIT, while remaining resolvable
at the desired receiver whose channel is precisely known by the
transmitter. We are also able to generalize the result along two
directions. First, if the peak of the probability density function is
allowed to scale as O ((~/ P)%), representing the concentration of
probability density (improving CSIT) due to, e.g., quantized feed-
back at rate («/2) log(P), then the DoF is bounded above by 1+,
which is also achievable under quantized feedback. Second, we
generalize the result to arbitrary number of antennas at the trans-
mitter, arbitrary number of single-antenna users, and complex
channels. The generalization directly implies a collapse of DoF to
unity under non-degenerate channel uncertainty for the general
K -user interference and M x N user X networks as well.
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interference alignment,
transmitter.

of freedom,
channel state
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I. INTRODUCTION

INTERFERENCE alignment studies [1] have spurred much
interest in the degrees of freedom (DoF) of wireless
communication networks. While much progress has been
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made under the assumption of perfect channel knowledge,
the degrees of freedom under channel uncertainty at the
transmitters have remained mostly a mystery. A prime example
is the, heretofore unresolved, conjecture by Lapidoth, Shamai
and Wigger from the Allerton conference in 2005 [2], also
featured at the “Open Problems Session” at the Inaugural
Information Theory and its Applications (ITA) workshop in
2006 [3], which claims that the DoF collapse under finite
precision channel state information at the transmitter (CSIT).
Specifically, Lapidoth et al. conjecture that the DoF of
a 2 user multiple input single output (MISO) broadcast chan-
nel (BC) with 2 antennas at the transmitter and 1 antenna
at each of the receivers, must collapse to unity (same as
single user) if the probability distribution of the channel
realizations, from the transmitter’s perspective, is sufficiently
well behaved that the differential entropy rate is bounded away
from —oo. The condition excludes not only settings where
some or all channel coefficients are perfectly known, but also
scenarios where some channel coefficients are functions of
others, even if their values remain unknown. The best DoF
outer bound under such channel uncertainty, also obtained
by Lapidoth et al., is %. Deepening the mystery is the body
of evidence on both sides of the conjecture. On the one
hand, supporting evidence in favor of the collapse of DoF is
available if the channel is essentially degraded, i.e., the users’
channel vector directions are statistically indistinguishable
from the transmitters’ perspective [4], [5]. On the other hand,
the idea of blind interference alignment introduced by Jafar
in [6] shows that the 2 user MISO BC achieves % DoF
(which is also an outer bound, thus optimal), even without
knowledge of channel realizations at the transmitter, provided
that one user experiences time-selective fading and the other
user experiences frequency-selective fading. Since the time-
selective channel is assumed constant across frequency and the
frequency-selective channel is assumed constant across time,
it makes some channel coefficients functions of others (they
are equal if they belong to the same coherence time/bandwidth
interval), so that the model does not contradict the conjecture
of Lapidoth et al. Thus, quite remarkably, this conjecture of
Lapidoth, Shamai and Wigger, which predates interference
alignment in wireless networks, has remained unresolved for
nearly a decade.

Following in the footsteps of Lapidoth et al., subsequent
works have made similar, sometimes even stronger conjec-
tures, as well as partial attempts at proofs. For instance, the
collapse of DoF of the MISO BC was also conjectured by
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Weingarten, Shamai and Kramer in [7] under the finite state
compound setting. However, this conjecture turned out to be
too strong and was shown to be false by Gou, Jafar and
Wang in [8], and by Maddah-Ali in [9], who showed that,
once again, ‘3—‘ DoF are achievable (and optimal) for almost all
realizations of the finite state compound MISO BC, regardless
of how large (but finite) the number of states might be. Since
the differential entropy of the channel process is not defined
(approaches —oo) for the finite state compound setting, this
result also does not contradict the conjecture of Lapidoth et al.
A related refinement of the conjecture, informally noted
on several occasions (including by Shlomo Shamai at the
ITA 2006 presentation) and mentioned most recently (although
in the context of i.i.d. fading channels) by Tandon, Jafar,
Shamai and Poor in [10] — is that the DoF should collapse
even in the “PN” setting, where perfect (P) CSIT is available
for one of the two users, while no (N) CSIT is available for
the other user. A valiant attempt at proving this conjecture is
made in [11], but it turns out to be unsuccessful because it
relies critically on an incorrect use of the extremal inequality
of [12] under channel uncertainty.! Thus the “PN” conjecture
has also thus far remained unresolved.

That these conjectures remain unresolved, is emblematic
of a broader lack of understanding of the DoF of wireless
networks under non-degenerate forms of channel uncertainty.
For instance, by extension, under non-degenerate channel
uncertainty we also do not know the DoF of the vector
broadcast channel with more than 2 users, or the DoF of
interference networks, X networks, cellular, multi hop, or two-
way relay networks, with or without multiple antennas, or
any of a variety of settings with partial uncertainty, such as
mixed [15], [16] or alternating [10] channel uncertainty. Thus,
the resolution of these conjectures is likely to have a broad
impact on our understanding of the “robustness” of the DoF
of wireless networks. This is the motivation for our work in
this paper.

A. Overview of Contribution

The main contribution of this work is to prove the conjecture
of Lapidoth, Shamai and Wigger, thereby closing the ITA 2006
open problem, as well as the “PN” conjecture of Tandon et al.,
for all non-degenerate forms of finite precision CSIT, which
includes all settings where density functions of the unknown
channel realizations exist and are bounded. For all such set-
tings, we show that the DoF collapse to unity as conjectured.
Remarkably, this is the first result to show the total collapse of
DoF under channel uncertainty without making assumptions
of degradedness, or the (essentially) statistical equivalence of
users.

Our approach, which is reminiscent of Korner and Marton’s
work on the images of a set in [17], is based on estimating
the size of the images of the set of codewords as seen by the
two users. Specifically, we bound the expected number of

ISimilar problems arise in [13] and [14]. A simple counter example is the
MISO BC with finitely many channel states, where the same arguments as
used in these works would imply a collapse of DoF to 1, whereas this setting
is known to have % DoF as shown in [8] and [9].
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codewords that are resolvable at their desired receiver whose
images align (within bounded noise distortion) at the undesired
receiver under finite precision CSIT. We show that this quan-
tity is & O((log(P))") where n is the length of codewords,
and P is the power constraint which defines the DoF limit
as P — oo. This is negligible relative to the total number of
resolvable codewords, which is ~ O(P"d/ 2) when the desired
information is sent at rate %log(P), i.e., with DoF d > 0
(normalization by %log(P) is because we initially deal with
real channels). The difference between the entropy contributed
by any set of codewords at their desired receiver (desired DoF)
and the entropy contributed by the same set of codewords
at the undesired receiver (DoF consumed by interference)
tends to zero in the DoF sense. Under non-degenerate channel
uncertainty, it is not possible to utilize the DoF at the desired
receiver without sacrificing the same number of DoF at the
undesired receiver due to interference. Therefore, the DoF are
bounded above by unity, the same as with a single user.

We also generalize this result in several directions. First,
we extend it to include CSIT that improves as P — oo,
e.g., through quantized feedback at rate 5 log(P), so that the
probability density function of unknown channel coefficients
concentrates around the correct realizations. This refinement
of CSIT is captured by the growth in the peak value of the
probability density function. We show that if the peak of the
probability density function of unknown channel coefficients
grows no faster than O(P%), representing e.g., improving
channel quantization from feedback at rate 5 log(P), then
the total DoF are bounded above by 1 + a. Furthermore,
with quantized feedback of rate 5 log(P) this DoF bound is
achievable.

Next, we go beyond 2 users and generalize the result to
the K user MISO broadcast channel where the transmitter
has K antennas and there are K users with a single antenna
each. We also go beyond the restriction to real channels and
generalize the results to complex channels. In all cases we
prove that the DoF collapse to unity under non-degenerate
channel uncertainty. Since the outer bound for this MISO
BC is also an outer bound for the MISO BC with fewer
than K antennas at the transmitter or fewer than K users,
our result also establishes the collapse of DoF to unity for
K user interference networks, and for M x N X channels,
under non-degenerate channel uncertainty. Remarkably, the
best known outer bounds for K user interference and M x N
user X networks under non-degenerate channel uncertainty
(except for essentially degraded settings) prior to this work
were % and % (same as with perfect CSIT). Thus,
this work on finite precision CSIT and the work of Cadambe
and Jafar in [18] where perfect CSIT was assumed, reveal
a surprising contrast between the two sides of the same
coin. In both cases the best previously known DoF outer
bound was K /2 and the best previously known DoF inner
bound was 1. Both works close this large gap. However,
whereas under perfect CSIT, Cadambe and Jafar close the
gap in the optimistic direction, showing that K /2 is opti-
mal, in this work under finite-precision CSIT, we close the
gap in the pessimistic direction, showing that 1 DoF is
optimal.
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B. Notation

We use the Landau O(-), o(-) and @ (-) notations as follows.
For functions f(x), g(x) from R to R, f(x) = O(g(x))
denotes that lim sup, _, o, |‘g(x)‘ < 00. f(x) = o(g(x)) denotes
that Tim sup, . L& = 0. f(x) = ©(g(x)) denotes that
there exists a positive finite constant, M, such that ﬁ glx) <
f(x) < Mg(x), Vx. We use P(-) to denote the probability
function Prob(-). We define |x| as the largest integer that
is smaller than or equal to x when x > 0, the smallest
integer that is larger than or equal to x when x < 0, and
x itself when x is an integer. The index set {1,2,---,n}
is represented compactly as [1 : nr] or simply [n] when it
would cause no confusion. X!*! represents the random vector
(X(1),X(2),---, X(s)) and {X']} represents the set {X(r) :
t € [s]}. The cardinality of a set A is denoted as |A|. The
support of a random variable is denoted as supp(X).

II. THE 2 USER MISO BC WITH PERFECT
CSIT FOR ONE USER

To prove the collapse of DoF in the strongest sense possible,
let us first enhance the 2 user MISO BC by allowing perfect
CSIT for user 1. Consider the vector broadcast channel with
2 users where the transmitter is equipped with 2 antennas, each
user is equipped with 1 receive antenna, and there are 2 inde-
pendent messages W1, W» that originate at the transmitter and
are desired by users 1 and 2, respectively. The transmission
takes place over n channel uses. The channel state information
at the transmitter (CSIT) is denoted as 7, and includes perfect
channel state information for the channel vector of user 1 but
not for the channel vector of user 2. In the terminology of
Tandon et al. [10], this is the PN setting, although not restricted
to any statistical equivalence assumptions.

The best outer bound for the DoF of the PN setting based
on known results so far is % which is obtained from the finite
state compound model by Weingarten, Shamai and Kramer
in [7] and is applicable to finite precision CSIT as well.
While Weingarten et al. conjectured that their outer bound
was loose even in the finite state compound setting, predicting
a collapse of DoF, this conjecture was shown to be false by
Gou, Jafar and Wang in [8], who showed that % DoF are
achievable under the finite state compound model, through
the DoF tuple (di,d>) = (1,0.5). The key to achievability
is to split user 1’s 1 DoF into two parts that carry 0.5 DoF
each. These parts align at user 2, consuming half the available
signal space of user 2, while remaining resolvable at user 1.
User 2’s signal, carrying 0.5 DoF, is then sent in the null space
of user 1’s channel, and is resolvable from the 0.5 dimensional
interference-free space at user 2. Note that zero forcing at
user 1 is possible because perfect CSIT for user 1 is assumed
to be available.

The % DoF outer bound is also applicable in the blind
interference alignment setting (BIA) introduced by Jafar in [6],
where user 1 experiences time or frequency selective fading
but user 2 experiences a relatively flat fading channel. Here
also the outer bound is shown to be achievable through the
pair (dy,d>) = (1,0.5). The key is to send two symbols for
user 1, one from each antenna, repeated over two channel
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realizations where the channel of user 1 changes but the chan-
nel of user 2 remains the same. Thus, user 1 sees two linear
combinations of the two symbols from which both symbols
can be resolved, whereas user 2 only sees the same linear
combination over both channel uses. Thus the interference
occupies only 0.5 DoF at user 2. The remaining 0.5 DoF
at user 2 is utilized by sending his desired signal, carrying
0.5 DoF, into the null space of user 1.

The finite state compound setting and the blind interference
alignment setting reveal some of the challenges of proving the
collapse of DoF for the PN setting. Any attempt at proving a
collapse of DoF must carefully exclude such scenarios from
the channel model. With this cautionary note, we are now
ready to introduce the channel model for our problem.

A. General Channel Model

Following [2], we will start with the real channel model,
where all symbols take only real values. The extension to
complex channels is cumbersome but conceptually straight-
forward, and will be presented in Section VII for the sake of
completeness.

The channel is described as follows:

[lfl(t)}:[{in(t) C:;lz(f)i|[?§1(f)i|+[%1(l)} 0
Ya(1) G () Ga(t) ][ X20) Z,(t)

G®)

where all symbols are real. At time 7 € N, Y (¢) is the symbol
received by user k, Zk(t) ~ N(0,1) is the real additive
white Gaussian noise (AWGN), Xj (t) is the symbol sent
from transmit antenna k, and ij (t) is the channel fading
coefficient between the j* transmit antenna and user k. The
channel coefficients are not restricted to i.i.d. realizations, but
are assumed to be drawn from a continuous distribution such
that the joint density of G(r) exists. The transmitter is subject
to the power constraint:

IYAERO? + K = P =0(B), @)

t=1

To avoid degenerate situations we will assume that the
range of values of each of the elements G; ; is bounded away
from zero and infinity, as is the determinant of the overall
channel matrix — i.e., IGij ®]1, det(f}(t)) are all ®(1). Stated
explicitly, there exists positive finite constant M, such that

% <16 (1)), det(G (1)) < M 3)

Note that this is not a major restriction because by choosing
the bounding constants large enough, the omitted neighbor-
hoods can be reduced to a probability measure less than e for
arbitrarily small €, and thus has only a vanishing impact on
the DoF.

B. Canonical Form

For the purpose of deriving a DoF outer bound it suffices
to work with a simplified channel with fewer parameters.
(See Appendix B for justification). The simplified form of the
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Xi(t) > = Yi(t) = Xa(t) + Z1(t)

X0 Yalt) = GUOX1 () + Xalt) + Zo(t)

Fig. 1. Canonical form of the 2 user MISO BC with perfect CSIT for user 1.
channel model, shown in Fig. 1 has outputs Y;(7), Y2(z) € R,
and inputs X(¢), X2(¢) € R, so that:

ION AR P SION B RA10) @
Ya(1) G@) 1 ][ X200) Z(t)
The channel coefficient G(¢) is also bounded away from zero
and infinity, i.e., there exists finite positive M, such that

|G(1)| € (ﬁ, M). The new power constraint is expressed as

n

N0 + (Xa0)°] = P, )

t=1

where P = G)(IN’). Further, for notational convenience let us
define the set of admissible inputs.

1 n
AT O X 1 - D I @) + (Xa(0))!] < P)
t=1

C. Messages, Rates, Capacity, DoF

The messages Wi, Wy are jointly encoded at the trans-
mitter for transmission over n channel uses at rates Ri, Ro,
respectively, into a 2"R1+"R2 » n codebook matrix over the
input alphabet. The codebook is denoted by C(n, (R1, R2), P).
For given power constraint parameter P, the rate vector
(R1, R») is said to be achievable if there exists a sequence
of codebooks C(n, (R, R2), P), indexed by n, such that the
probability that all messages are correctly decoded by their
desired receivers approaches 1 as n approaches infinity. The
closure of achievable rate vectors is the capacity region C(P).
The DoF pair (d1, d>) is said to be achievable if there exist
(R1(P), R2(P)) € C(P) such that

Ri(P)
= lim +——,
P—o00 il()g(P)

Ry (P)

dy h = lim ————
P=o0 5 log(P)

The closure of all achievable DoF tuples (d1, d») is called the
DoF region, D. The sum-DoF value is defined as

Dy = max (d| +dp)

(d1,dr)€D

D. Non-Degenerate Channel Uncertainty

Let us denote by 7, all available channel state information
at the transmitter. Then, non-degenerate channel uncertainty
corresponds to the assumption that the conditional probabil-
ity density functions of channel coefficients exist and are
bounded, as explained next.
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1) Peak of Density Function Is Bounded for Fixed P: For
the G;; the transmiters are only aware of the joint probability
density function (PDF). Vk € [2 : K], define the set of channel
coefficient variables

{G][c”]} = {Gri(t):ie[l:k—1],1t €[n]}

Define {G"} = Uiepixg G Finite precision CSIT cor-
responds to the existence of bounded density functions.
Precisely, the finite precision CSIT model assumes that there
exists a finite positive constant fiax,

0 < fmax <00

such that Vn € N, and for all finite cardinality disjoint subsets
{G1}, {Ga} of {GI"]},

V{G1} C (G}, {G2} C (G}, {G1}N{G2) =2,
HG1}| < 00, [{G2}] < o0

the conditional PDF

fouT.6,(81lt, 82) < fRGVI,

The condition implies that a zero measure set cannot carry a
non-zero probability. So it precludes scenarios where, e.g., the
channel is perfectly known or when one channel coefficient is
a function of the rest. In all such cases, a zero measure set
carries a non-zero probability, thus precluding the existence
of a bounded constant fmax as defined above. This restriction
essentially accomplishes the same goal as the restriction by
Lapidoth et al. [2] that the differential entropy should be
greater than —oo.

For example, if conditioned on the available CSIT 7, the
channel realizations are independent, then we can simply
choose fmax as the peak value of the marginal density
functions.

2) Peak of Density Function Is Allowed to Scale With P:
To model CSIT that improves as a function of P, we allow
Jmax (P) to scale as O((\/F)“) for some a € [0, 1].

fmax(P) = O(P%) (6)

The case studied by Lapidoth et al. in [2], where the density
does not depend on P, is represented here by setting a = 0.
The positive values of o allow us to address settings where
the CSIT improves with P, e.g., due to quantized channel
feedback of rate 5 log(P), so that the weight of the dis-
tribution is increasingly concentrated around the true chan-
nel realizations. Note that the maximum value of a is
unity, because a feedback rate of %log(P), implying 1
real DoF worth of feedback, is sufficient to approach per-
fect CSIT performance over channels that take only real
values [19], [20].

Since the receivers have full channel state information,
T is globally known. For compact notation, we will suppress
the conditioning, writing fgn (g[”]) directly instead.

E. K User Extension

Extending beyond the 2 user case, the simplified channel
model in the K user setting is described as follows.

Yi(t) = X1() + Z1(1) (N
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(1) = X1 (t) + Z1(2)

Ya(t) = Ga1(t)X1(t)
+ Xa(t) + Za(t)

Y3(t) = Ga1(t) X1 ()
+ Gaa(8) Xa(t)
+ X(t) + Zs(t)

Fig. 2. Canonical form of the 3 user MISO BC with Graded Channel
Uncertainty.
Y2(t) = Ga1(0)X1(t) + X2(1) + Z2(1) ®)

Yg() = G1(0)X1(t) + Gga(t) Xo(t) + - -
+Ggk-1)O)Xg-1(t) + Xk () + Zg () (9)

where the inputs, X;(r) € R, are subject to the power
constraint

3 (1@OF + 000+ + Kk @)) £ P (10)
t=1

The G;; () terms are known to the transmitter only up to finite
precision and are assumed to be bounded away from O and
infinity. Further, the density of the kX’ users’ unknown channel

coefficients, k > 1, is bounded by fmax x(P) = O (PQTk)

III. RESULTS

We state the main result in its most general form, for K
users. The 2 user case, corresponds to setting as £ a.

Theorem 1: For the K user MISO BC with non-degenerate
channel uncertainty, the sum-GDoF are bounded above as

Dy <l+ax+a3+---+oagk (11)

A. Settling the Conjecture by Lapidoth et al. in [2]

The 2 user setting studied by Lapidoth et al., where the
joint pdf is fixed, i.e., it does not depend on P, is captured
here when o = 0 (equivalently, oo = 0). When a = 0,
the sum-GDoF are bounded above by unity, thus settling
the conjecture of Lapidoth et al. for non-degenerate channel
uncertainty models.

B. Settling the “PN” Conjecture

Since we allow perfect CSIT for one user, and one may
assume (as a special case of our result) that the channels are
i.i.d., the collapse of DoF for o = 0, also proves the conjecture
of Tandon et al. for the 2 user setting.
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C. Interference and X Networks

Consider any one-hop wireless network where all receivers
are equipped with a single antenna each. This includes all
interference and X networks. Allowing the transmitters to
cooperate produces a MISO BC setting. Since cooperation
cannot hurt, the outer bound for the MISO BC under non-
degenerate channel uncertainty applies to interference and
X networks as well. In all cases, the DoF collapse to unity.

D. Limited Rate Feedback (a. > 0)

Consider the 2 user setting, with & = a> > 0. This case is
interesting because it has direct implications to the achievable
DoF under limited rate quantized channel state feedback for
the channel vector of user 2. If the feedback link has a DoF,
i.e., the feedback rate scales as 5 log(P) bits per channel use,
then this corresponds to ~ P2 channel quantization levels,
so that the size of a quantization interval scales as —~— and

/P

the channel density restricted to a quantization interval, i.e.,
fom (g™ T) scales as P%. Theorem 1 tells us that in this
case the GDoF are bounded above as Dy < 1 + «. It is also
easy to see that under such quantized feedback, the DoF tuple
(d1,d2) = (1,a) is achievable, simply by best-effort zero-
forcing at the transmitter and treating residual interference as
noise at the receiver 2. Thus, Dy = 1 4 a is the optimal sum-
DoF value if the quantized channel state feedback is limited to
rate %log(P). This generalizes the results from [19] and [20]
where it was shown that in order to achieve the same DoF as
with perfect CSIT, i.e., Dy = 2, the quantized feedback rate
should scale as % log(P), i.e., carry one full degree of freedom
(oo = 1). The bound for the K user extension is similarly tight
as well.

IV. ALIGNED IMAGE SETS UNDER
CHANNEL UNCERTAINTY

The main idea we want to illustrate intuitively in this section
is a geometric notion of aligned images of codewords—loosely
related to Korner and Marton’s work on the images of a set
in [17] but under a much more specialized setting—which is
the key to our proof. As the proof in Section V will show, the
problem boils down to the difference of two terms when only
information to user 1 is being transmitted,

h(YMG1Y — h(r) G

Dy < 1+ limsuplim sup
5 log(P)

P—oo n—00

(12)

The first term, h(Yl["]|G[”]), we wish to maximize because it
represents the rate of desired information being sent to user 1.
The second, A(YY"|G™) = n(GMx!" 4+ xI1 4z Gty
we wish to minimize, because it represents the interference
seen by user 2, due to the information being sent to user 1.
If GI"l was perfectly available to the transmitter, then Xg"]
could be chosen to cancel Gl X E"] thus eliminating interfer-
ence entirely at user 2. With only statistical knowledge of G,
zero forcing is not possible. Indeed, the purpose of Xg"] is
mainly to align interference into as small a space as possible.
However, instead of consolidating interference in the sense
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of vector space dimensions, as is typically the case in DoF
studies involving interference alignment, here the goal is for
Xg’] to minimize the size of the image, as seen by user 2, of
the codewords that carry information for user 1. This is the
new perspective that is the key to the proof.

A. Toy Setting to Introduce Aligned Image Sets

For illustrative purposes, let us start with a rather extreme
over-simplification, by considering the case with n = 1
channel use, ignoring noise, and using the log of the cardinality
of the codewords as a surrogate for the entropy. With this
simplification, the quantity that we are interested in is the
difference:

log [supp(X1)| — log [supp(G X1 + X?2)| (13)

averaged over G. Recall that by |[supp(A)| is meant the
cardinality of the set of values taken by the random variable A.

The codebook is the set of (X, X;) values. Note that
[supp(X1)|, the number of distinct values of X7, is the number
of distinct “codewords” that can be seen by user 1, who (once
noise is ignored) only sees Y| = Xj, so that his “rate” is
log |supp(X1)|. Given the set of X; values, we would like
to associate each X; value with a corresponding X, value,
such that the number of distinct values of Y = GX| + X3 is
minimized. In other words, we wish to minimize the image of
the set of codewords as seen by user 2, by choosing X»> to be
a suitable function of X.

Consider two codewords (Xi,X2) = (x1,x2) and
(X1, X2) = (x1,x5). If x; # x| then these codewords are
distinct from user 1’s perspective, and thus capable of carrying
information to user 1 via the transmitter’s choice to transmit
one or the other. Suppose the channel is G. Then for these
two codewords to “align” where they cause interference, they
must have the same image as seen by user 2. This gives us
the condition for aligned images that is central to this work.

Gx1 +x2 = Gx| + x5 (14)
xh—x

=G =- (372) (15)
xl — X1

In other words, G must be the negative of the slope of the
line connecting the codeword (x1, x2) to the codeword (x|, x5)
in the X, X» plane. For a given channel realization G, all
codewords that align with (xg, x2) (i.e., whose images align
with the image of (xy,x2)) as seen by user 2, must lie on
the same line that passes through (x1, x2) and has slope —G.
Conversely, all codewords that lie on this line have images that
align with the image of (xj, xp) at user 2. For any codeword
that does not lie on this line, there is a parallel line with the
same slope, —G, that represents the set of codewords whose
images align with the image of that codeword. Thus, these
lines of the same slope, —G, partition the set of codewords into
equivalence classes, such that codewords that lie on the same
line have the same image at user 2. Also note that a different
channel realization, G’, gives rise to a different equivalent
class partition, corresponding to lines with slope —G’. This
is illustrated in Fig. 3. Since the X, values are functions of
X1 values, in the figure we label the codewords only on the
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$,(6")

Su(G)

v v A X1—>

Fig. 3. Two codewords, corresponding to X1 = v and X; = y, and their
equivalence classes, S, and S, containing all codewords (X1, X7) that have
the same image at user 2 as the codewords corresponding to X| = v and
X1 =y, respectively. The partitioning into equivalence classes depends on
the channel realization. The figure shows the distinct equivalence classes for
two channel realizations, G and G’.

X1 axis. So, for example, the codeword (X1, X2) = (v, X2(v))
is simply referred to as the codeword v. This codeword belongs
to the equivalence class S, (G) under the channel realization G
and to the equivalence class S,(G’) under the channel real-
ization G’. Also, note that two codewords that belong to the
same equivalence class under one channel realization, cannot
belong to the same equivalence class under any other channel
realization. For instance, codewords A and v belong to the
same equivalence class S, (G) under channel realization G,
but they belong to different equivalence classes, S, (G’) and
S, (G"), under a different channel realization G’.

B. Sketch of Proof

Staying with the intuitive character of this section, let us
conclude with an outline which will be useful to navigate the
structure of the proof that appears in the subsequent section.

From the perspective of DoF studies, the presence of noise
essentially imposes a resolution threshold, e.g., d, such that
the codewords with images that differ by less than o, are
unresolvable. As the first step of the proof, this effect is
captured by discretizing the input and output alphabet and
eliminating noise, as is done in a variety of deterministic
channel models that have been used for DoF studies [21]-[23],
so that instead of differential entropies we now need to deal
only with entropies H(Y"|G")) and H(V)"|G"™). Here
X R X> represent the discretized inputs, )71, Y, the discretized
outputs, and Y = X;.

The next step is to note that we are only interested
in the maximum value of the difference H (171["]|G["]) —
H (1_’2["]|G["]). It then follows that without loss of gener-
ality, )_(g” can be made a function of X 5"], and there-

fore ¥}"! becomes a function of ¥, G"l. This implies
that H(Y" |Gy = m @, 6" = HEMGM) +
H(Y l[n]|l?2[n], G"1). Thus, the difference of entropies is equal
o HEMM, Gy = H (M, G,
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Now, conditioned on )72["],G["], the set of feasible val-
ues of )_(En] is an aligned image set S(G[”]), i.e., all these
X" produce the same value of ¥."! for the given channel
realization G,

Since entropy is maximized by a uniform distribution,

HEMZ, Gy < Egl [log |:|S)‘(%nl (G[”])I]]

< log (Eq» [157(G"1])

where the last step uses Jensen’s inequality. Thus, the dif-
ference of entropies is bounded by the log of the expected
cardinality of the aligned image sets.

The most critical step of the proof then is to bound the
expected cardinality of aligned image sets. This is done by
bounding the probability that two given X 5"] are in the same
aligned image set, i.e., the probability of the set of channels
for which the two produce the same image 172[”]. Recall that for
two codewords to belong to the same aligned set in the absence
of noise, the channel realization over each channel use must be
the slope of the vector connecting the corresponding codeword
vectors. The blurring of ¢ around the two codewords also
blurs the slope of the line connecting them, but by no more
than £J/A, where A is the distance (difference in magnitudes)
between the two codeword symbols over that channel use.
Thus, the probability that the given two codewords that are
resolvable at user 1 cast the same image at user 2 is bounded
above by ~ fmax%. The power constraint of P implies that
there are at most ~ /P /d resolvable codeword symbols per
channel use. Summing over all possible resolvable codeword
symbols, gives us ~ fax ZAe[O:ﬁ/é] %‘5 = fmax0 log(P) +
o(log(P)), per channel use, so that the average cardinality
of an aligned image set, E|S (G[”]l, turns out to be bounded

above by & (fmaxdlog(P))", and log (E |:|S)‘([n] (G["])|]) is
1

bounded above by & nlog(fmaxd) + nlog(log(P)).

Since fmax = O(P%), normalizing by 5 log(P) and sending
first n and then P to infinity sends this term to o. Thus,
combining with (12) produces the sum-DoF outer bound value
1 4+ a, giving us the result of Theorem 1. Note that in the
DoF limit, 6 = ©(1), and it will be useful to think of it
as 1 for simplicity, so that the inputs and outputs are restricted
to integer values. With this sketch as the preamble, we now
proceed to the actual proof.

V. PROOF OF THEOREM 1 FOR K = 2 USERS

For ease of exposition, the proof is divided into several
key steps. The first step is the discretization of the channel
to capture the effect of noise. This leads to a deterministic
channel model. The DoF of the deterministic channel model
will be shown to be an outer bound to the DoF of the canonical
channel model, which in turn is an outer bound on the DoF
of the general channel model.

1) Deterministic Channel Model

The deterministic channel model has inputs Xi(r),
X, (t) € Z and outputs Y (), Y (t) € Z, defined as

Yi(t) = X1() }
() = LGOX1(1)] + X2(t)

(16)
a7
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with the discretization of inputs subject to the power
constraint

X1(t), X2(t) € {0, 1, -, [/P]}, Vi e N (18)

and the set of inputs that satisfy the power constraints
defined as

= ((xP XYy e 2 s 7 X (1), Xa()

€ {0,1,---,[VP), Viell:nl) (19)

The bounded density assumptions on the unknown chan-
nel coefficients sequence G™ are the same as before.
Lemma 1: The DoF of the canonical channel model are

bounded above by the DoF of the deterministic channel
model. The proof of Lemma 1 appears in Appendix
and follows along the lines of similar proofs by
Bresler and Tse in [22].

2) Difference of Entropies Representing Desired Signal
and Interference Dimensions
Starting from Fano’s inequality, we proceed as follows.

nR

nk»

< I(Wy; Y Wa, G + o(n) (20)
= H(I"|Wa, G + o(n) 1)
< I(Wa: TJ1G™) + 0(n) (22)
= H(IGMX |+ x5 GIMy
—H @ \W2, G™) + o(n) (23)
< S log(P) — H(¥}"| W2, G
+n o(log(P)) + o(n) 24)
= n(R; + R»)
n -
< 5 loa(P) + [H (¥{" W2, G"))
—H (7" |W2, G"™)] + n o(log(P)) + o(n)
= Dz
< 1+ lim sup lim sup
P—o0 n—>o0
LH (YW, Gy — H (V)| W2, GI")]
X
5 log(P)
(25)

IA

I 4+ limsuplimsup max
P—oo n—oo wpe[l:27R2]

JHEGM) - HAGMXY + X6
5 log(P)

=1+Dy (26)

so that what remains is to bound the difference of
entropy terms:

Da £ lim sup lim sup

max
PR, X
(R, X e
JHEMG) - HAGMX) + X6
5 log(P)

P—oo n—>o0

27)
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Note that in (24) we bounded H (| G X" |+ X1 G 1)
as follows.

< D HIGOXi0O] +X2(0IG(@)  (28)

t=1

> Elog (1GOI+DIVPI+ D) 29)
t=1

IA

% log(P) + n o(log(P)) (30)

where (29) follows from the observation that for a given
G(r) value, |G™ J + X can take at most (1 +
G()(1 + [vVP)) Values (all integers) and the entropy
of a variable that can take finitely many values is at most
the log of the number of values.

Functional Dependence X" (X!

Next we show that one can assume that X 5"] is a function
of X" Given the sets of codeword vectors {X\"},
{)_(g”}, define £ as the mapping from )_(E”] to )_(g”, i.e.,

= 31)

In general, because the mapping may be random, £ is a
random variable. Because conditioning cannot increase
entropy,

H (LG"ME |+ £(&hI6™)

> H (LG[”])'(E"]J + L& G
> min H( "oL=1L)
Le{L}
(32)

Let L, € L be the mapping that minimizes the entropy
term. Then, choosing

KPR = Lo(x™) (33)
we have
Dy < @A

£ lim sup lim sup ma
P—00 n—o00 ]P(X[”J) Xl”](x[”])

(X[’ll Xan)EX[nJ

H(X et —H(GMxM) + X (xiMy Gy
"log(P)

(34)

because the choice of the mapping function does not
affect the positive entropy term, and it minimizes the
negative entropy term. Henceforth, because )_(g’] is a
function of X E"], we will refer to codewords only
through X En] values.

Definition of Aligned Image Sets

The aligned image set containing the codeword
" e supp(X E”]) for channel realization G is defined

as the set of all codewords that cast the same image as

ol at user 2.
Spim (G[n])
{)c1 € supp(X["]) LG n]J + X["](xgn])
= [G") 4+ XV ) (35)

Since we will need the average (over GI"ly of the
cardinality of an aligned image set, E|S;m (G[”])I, it is
worthwhile to point out that the cardinality | Sy (Gl
as a function of G, is a bounded simple function,
and therefore measurable.? It is bounded because its
values are restricted to natural numbers not greater than
(1 + [v/P1)?. To verify that it is a simple function,
it suffices to show that the sets where some specific

codewords like v{"] and vg’] align, are measurable sets.

Si2 = (G2 |G|+ X5 @]

= (G5 + XD ") (36)
— U {{G[n] . LG["]‘—)P]J — A["]}
Al e7in]

where Bl = Al"l 4 )_(5"] (\7%”]) - )_(5"] (Eg’]). So, S12 is
a countable union of intersections of open intervals and
closed intervals in R which makes it a measurable
set.3 Thus, [ S50 (G[”])l is a simple function.

5) Bounding Difference of Entropies, @A, in Terms of
Size of Aligned Image Sets

HXMGM) = H XY, Sgm (GM)IGM)
= H(Sgm(G"HIGM)
S0, 6
= H(LG["]XE"]J + XpxIhIG)
+H(i["]|s_ n (G[n]) G[”])

IA

H(LG[n]X['l]J &Izl gt
+E [log(IS g (G ] (38)
H(GME | + XX 6
+1og (E[Isgm@"™I]) @9

where (38) follows because uniform distribution maxi-
mizes entropy, and (39) follows from Jensen’s inequality.
Rearranging terms, we note that

IA

Da < lim sup lim sup max
P—oo  n—oo P(X\"h x3(x[M)

(Xl"J X[”J)Exlnj

log (E | [Sgim (G|
x ( [%log(P) ]) “0)

ZA simple function is a finite sum of indicator functions of measurable
sets [24].

3Note that |Gv| = m, corresponds to G € [m/v, (m + 1)/v), which is
the intersection of an open interval and a closed interval. Also recall that a
closed or open subset of R s Lebesgue measurable, and countable unions
and intersections of Lebesgue measurable sets are Lebesgue measurable.
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6) Bounding the Probability of Image Alignment
Given two codewords i{"] and v let us bound the
probability that their images align at user 2. Note that
for )EE"] € Spim (G[”]) we must have

LG[n])EEn]J — G = )'(gn](‘—)[n]) - }-(gn](ﬂn])
:>G[n](f£n]—17[n]) c )‘(gn]()zgn])
—XP ) + Al @
where A_11)(t) € (=1,1),Vr € [1 : n]. Thus, for all

t € [1: n]such that x1(¢) # v(t), the value of G(r) must
. cp- . 2

lie within an interval of length no more than HO=0
Since the maximum value of the joint probability den-

sity function of {G(¢) : such that x{(¢) # v(t),t € [ :

n]} is bounded by fmza;:' 1E O < frE,’;L we can

bound the probability that the images of two codewords
align as follows.

P € Sy (GI")

2
<fix |l =F—==
s O = O]

7) Bounding the Average Size of Aligned Image Sets

E Usﬁm(G["])H

(42)

= > (A e smG™) (43)
dMerximy
—1+ > P (;z{”] € Som (G["])) (44)
e ity
j%’”#glnl
< 14 2 fmax)"
1
<2l meser @
i{nle{)}gnl}t:)?l(t)#ﬁ(t)
i{n]#ﬁ[”]
n VP )
< 14 Q2 fnax)" 1 = 46
< T+ Qfaa)" [T 1+ A (46)
=1 Az=1
n
< 1+ Q)" [ (2l0aWP) +3) @D
=1
Since this is true for all 7! e {X!"])
_ [n]
¢
n
< 1+ Q)" (2l0gW/P)+3)" 48)
8) Combining the Bounds to Complete the Proof
Combining (40) and (48) we have
Dp < lim sup lim sup
P00 n—00
n
log (1+ 2 fumw)" (2102(v/P) +3) )
) Zlog(P)
. log( fiax) . log(log(P))
= limsup +———— + limsup —————
P—oo 7 log(P) P—>oo 5 log(P)
<a (49)
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where (49) follows because fmax = O(P%). Finally
combining (49) with (26) and (34) we have the desired
outer bound

Ds <l+4a (50)

O

VI. PROOF OF THEOREM 1 FOR K USERS

The generalization of the proof to the K user setting is, for
the most part, straightforward based on the 2 user case studied
earlier. To avoid repetition our presentation will only briefly
summarize the aspects that follow directly and use detailed
exposition for only those aspects that require special attention.
We divide the proof into a similar set of steps for ease of
reference with the 2 user case.

1) Deterministic Channel Model

As in the 2 user case, the deterministic channel model
is described as:
k—1
Vi = D LG (X)) + Xi(0)

i=1

&1V

where the integer inputs satisfy the following per-symbol
power constraint

Xe(0) €{0,1,--- , [VP1}, Vke[l:K] (52)

As before, let us define X" as the set of codewords
that satisfy the power constraint. We have the following
bound.

Lemma 2: The DoF of the canonical model are
bounded above by the DoF of the deterministic model.
We omit the proof of Lemma 2 since it is a straightfor-
ward extension of the 2 user proof which was already
presented in much detail.

2) Difference of Entropy Terms
For the k" user we bound the rate as

nRi < I(Wi; Y"|G", Wei1, Wesa, -+, W) + o(n)
< HE"G", Wit -+, Wk)
_H(Yk[n”Gn» Wk’ Wk+1’ ) WK) + 0(”1)

(53)

where G”" includes all channel realizations. Adding the
rate bounds we obtain

K K
n vaid|
n};Rk < Elog(P)-f-; (H(Yk’i1|G", Wi, W)

—HEMG" Wy, ,WK))
+n o(log(P)) + o(n)

K
n
—log(P
2 og( )+];|:w;e{urf?}ii[kzk]

x (H(Yk[’j]l|c;", Wi = w;, ¥i € [k : KJ)

(54)

IA

—HT"G", Wi = w;, Vi € [k: K]))]

+n o(log(P)) + o(n) (35)
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In DoF terms,

Dy <1+ Z Da &
kel2:K]

(56)
So we need to bound each of the following difference
of entropy terms, Vk € [2: K]

ﬁA,k £ lim sup lim sup
P—oo N>

max
px,.. k)
& &l )
5 HEM G — H MGy
5 log(P)

(57)

We will bound these terms one at a time. The remainder
of the proof will show that Da x < ax.

G[”])

For a given channel realization for user k 1, Gl i 1, there
k ) that cast the
same image in )_’k[’i]l. Thus, given the channel for user
k — 1, the mapping from )7,([1]1 to one of these vec-

Functional Dependence ¥"'(Y["],

[n] In]
are multiple vectors (X 1> X 2

tors ()_(En], )_(g’], ce )_(,E"]) is random. Let us denote it
by L, i.e.,
Gt Xy = oML G ) (58)
Now note that
HIMG" = HEMG", L) (59)
> Lrg{ig} HIMG", L=L1) (60)

Let a minimizing mapping be L,. Fix this as the
deterministic mapping,

(Xl 5 [”]’ e ’)_(][(n]) = Lo(yk[’i]la G][:ﬂl) (61)

This implicitly allows the transmitter to have full
knowledge of the channel vector of user k — 1.
We note that the choice of mapping does not affect
IG[”]) but it mini-

|G[”]), so that we can bound DA,k as

the posmve entropy term H (Y

mizes H (Y
follows.

Dak < Dak

£ lim sup lim sup
P—oo n—o0 P(y

max
(G, p M Gl
Bpryxi,... X[”J)EX[”J
HEIIGM) — HEMGM)
7 log(P)

(62)

Henceforth, note that Y, " is a function of ¥ k["]l , Gl
Define Aligned Image Sets

For channel realization G
set S};k[}i]

, define the aligned image
(G™1) as the set of all Yk['i]l that have the same
1

image in 1_’[”], ie.,
Sy (G £ (5, e (7)) Mo, 6

_ Y['l] (y[n] [n])}

k—1>° (63)

5)

6)

Bounding Difference of Entropies in Terms of Size
of Aligned Image Sets

HEy"16M)

_ H(Y[”] Y[”]|G[”]) (64)
= HEAMG"y + H M 7™, 6"y (65)
_ H(Y[n]|G[n])+H(S (G[n])|G[n]) (66)
< HFM|GM) + E [log ‘syk[,i]l @[] ©n
< H(Yk[n”G[n]) + logE [‘S};k[ri]l (G['l])H (68)

where we used Jensen’s inequality in (68). Rearranging
terms, we note that

Dy & < lim sup lim sup
P—oco n—o0 P(y
(Xl"J . X[”J)Exlnj
X k—1
5 log(P)
Bounding the Probability of Image Alignment

ma X
)1]) y (y Gln ])

(69)

Given the channel, G,[c'ﬂl, of user k — 1 and two
realizations of I_’k[”]l, say y* and )7[”], which map to
X, Gl = & and XM, 6 =
Vj e [1: ] let us bound the probability that they

produce the same image Y, k[n]. For notational compact-
ness let us define Gy (r) = 1,Vk € [1 : K],Vt €

[1: n]. Note that for )7/["] IS Sy[n] (G[”]) we must have,
VvVt € [1:n]
D LGKOx ()] = D LG ()% (1)]
jellk] jell:k]

So we have,

LGrj= ) (D)X j+ (1) ()] = LGrj(1) (D (1) (1)

= D> (IGyOF5®0] = Gy 0)x (1))
Jelkkl,j#j* (1)

= G (0) (¥ (1) = Tj () )

e > (lG®F 0] - LGy ()x' (1))

JELLk], j#j*(1)

+A(_1,1) (70)
where A(_1,1) € (=1, 1), and we define
j (t) = arg max |x i) —x;@)] (71)

Thus, for all # € [1 : n] such that x/j*(t)(t) # Xjr(n) (1),
the value of Gyj+(;)(f) must lie within an interval of

length no more than ————=———. Therefore, the prob-
‘ je(0)—% *(z))

ability that the images due to yI™ and y
user k, is bounded as follows.

P (" € S5m(G™) < S
t:);/j*(t) (t);ﬁ)?j*(,) (]

2
X = —
X7 o0y (1) = Xy (1)

o align at
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It will be useful to express the bound in terms of
y'(t), ¥(¢). To this end, let us proceed as follows.

() = ¥ (1)
k—1

= > (LGr-1,;0x" ()] — LGr—1,j ()%, (1)])

j=1
k—1
e > (LGk-1.j() (¥'j() — £;(1)]) + (=K., K)
j=1
ly'() = 5|

k—1
X/ o (1) (£) — % jo(0) ()] Z |Gr—1,j ()| + K
j=I
. 1 _ 211Gk
o (8) = £y @]~ 1Y (1) = 50| — K
whenever |y/(f) — ¥(t)| > K. Therefore,

P ()7’[”] € Ssin (G["]))

IA

i !
A | R+
O et Y

where

k—1

I1 2> G, 0

1 (DA e (1) T=]

" & max | 1,

7) Bounding the Average Size of Aligned Image Sets
E [ Sgl] ( Gn):l

= > p(Y"esuEn) (712)
e
n
< 2" (faae)" [ | > 1

=1 \y ():y' () —5(1) 1=K

1
+ > _
_ _ ") — (D] — K
}’/(I)IK<|y/([)_y(t)|SQy(t) Iy ( ) )’( )l
(73)
(74)

< &' (fmaxs)" (108(V/P) + o(log(P)))

where Qy(t) < f«/ﬁ Zje[l;k_1](|Gk—l,j(t)| + K).
8) Combining the Bounds to Complete the Proof
Combining (74) and (69) we have

D Ak < limsup lim sup

P00 n—00
10g ( (2 fmax1)" (02(v/P) + 0l0g(P)))")
X
5 log(P)
< ak (75)
Finally, combining (56), (62) and (75) we have the
result,
Dy <l+m+ - +ak (76)
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VII. EXTENSION TO COMPLEX CHANNELS

The channel model for the complex setting is the identical
to the real setting described in Section II-E, except that all
symbols are complex and instead of (6), the DoF are defined as

Ri(P) Ra(P)
= lim , dy= lim
P—oo log(P) P—oo log(P)

d

The deterministic channel model is described similar to the
real setting as;

k—1

Ve = D 1GL(0Xi(1)] + Xi(1)

i=1

7

where the real and imaginary parts of the inputs, i.e. Xir(1)
and Xy (¢) are integers and satisfy the following per-symbol
power constraint

Xer(t) € {0,1,---, [VP1}, Vkel[l:K]
X @) €{0,1,---,[v/P]}, Vkell:K]

(78)
(79)

Similar to the real setting, Vk € [2 : K], define the set of
channel coefficient variables

(G{") = (Guir(@) i € [1:k— 11,1 € [n])

U{Grs() i e[l :k—11,1€[n]} (80)

where Gy r(t), Gii,(t) are the real and imaginary parts of
Gyi(t), respectively. Define {G"l} = Uke[l:K] G,En]. Similar
to the real setting, Vn € N, and
V{Gi} c (G},

{G1}N{Gr} = o,

{G2) C {G"y,
{G1}| < 00, [{Ga}] < o0

the conditional PDF

fe,T.6,(g117, 82) < fIGUI

Furthermore, similar to the K user real setting where we
allow fiax.k(P) to scale as O((ﬁ)“k) for some a; € [0, 1],
here also we allow the density functions of each user to
scale at different rates, representing different amounts of
CSIT feedback, so that for the unknown channel coefficients
associated with user k we have peak density constraint,
fmax,k(P) = O(V P%).

The generalization of the proof to the complex channel
coefficients setting is, for the most part, straightforward based
on the K user case studied earlier. To avoid repetition, here
we focus only on the differences.

In DoF terms,

Dy < 1+ Z Dk (81)
ke[2:K1
We need to bound each of the following difference of

entropy terms, Vk € [2 : K]

max
Pex,.. k)
(xi,. xUh e gin
HEIIGM) — HEMGM)
nlog(P)

ﬁA,k £ lim sup lim sup
P—oo N>

(82)
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We will bound these terms one at a time. The remainder
of the proof will show that @A,k < ag. Note that, the
functional dependence part which claims that I_’k["] is a function
of Yk['i]l, G, aligned image sets and bounding difference of
entropies in terms of size of aligned image sets are also the
same as the real setting.

Dy & =< lim sup lim sup ma
P—oo n—oo P(yIM Gl y”](y el

(X[’l], ) ,Xan)EXan

log (E stl (G[”])H)
X k—1
nlog(P)
Now we bound the probability of alignment of images. For

notational compactness let us define Gy (t) = 1,Vk € [1 :
K1,Vt € [1:n]. Define

(83)

jr) & argjer[rlli)il]max(bc_/j(,),le —Xj(),Rls

X o0 — %joal). (84)

Without loss of generality assume, |x_/j*(,),R — Xj*(1),Rl =
X j%(r).1 — Xj*(r).1]. Note that for y’ "e Sy[n](G[”]) we must
have, 3 (120Gt (05} ()] = 3 1 LGl (D5 (1) ) for all
t e[l:n].

R LG OF O] = D Gy (1))
jellk] jellk]

= > LGLir(O%().8 — Grjr (O} (0).1]

jellk]
— D LGk rOX juy.r — Grjr (DX jo).1)
jellk]

= LGrjr(OXj>@).8 = Grj1 (DX j=(1).1]

—LGij*r (DX jx(t), R — Grj*1 ()X j=(r),1]

+ D (GKrOTj¢).8 — Grjt(OFj).1]
JELIkLj#7*(6) )

—LGrir(DX j1).R — Gkj1 (DX j1),1])

= Gij*r(1)(Xj*(1),R

=X jx0),R) — Grj=1 (1) (X (), — X' j*(2),1)

+ 2
JELlk], j#j*(1)

—LGkir()X 1),k — Gkjr (DX j),1]) + A=1,1)

where A(_1 1) € (=1, 1). Similarly we have,

3D LGKOF 0] — D LGy ()X ()]}

jellk] jellk]
> LGrirF )1 + Gijr (D&
jellk]
— D LGk rOX jy.1 + Gajr (DX 0).R)
jellk]
= |Grj*r(O)Xj*(1),1 + Grj*1 ()X j*(1),R]
—LGrjr(OX jx 1), 1 + Grjx1 ()X j*(1),R]
+ D> (GKROT .1 + Grjr (D% ).r)
JELLkL j#j* (1)
—LGrirOx 1), 1 + Gij1 ()X j1),R])

(85)

(LGir(DXj(r),R — Grj1 ()X (1),1]

(86)
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= Gijr(O)E ()1 — X j2(0),1)
+Grjx1(t)(Xj*r), R — X' j*(1),R)
+ Z (LGkjr(X(1),1 + Grj1 ()X j (1), R]
JeEll:k], j#j*(1)

—Gjr(OX j(1y.1 + Gt (OX iy .r]) + A1y (87)

Thus, for all # € [1 : n] such that x_/j*(,)jR(t) # Xjr(r),R(1)
the value of Gyj+)r(t) and Gyj=(7(t) must lie within an
interval of length no more than — 4 . Therefore,

)X/j*m,k—’?j*(r),k)
the probability that the images due to 3! and y’ ]
user k, is bounded as follows.

align at

IP( " e S5 J(G[n]))

2n
= max,k H

£ix ey R (D FEF ) R ()

16

e 5. |2
X (), R — Xj*(1),R
(88)

It will be useful to express the bound in terms of
Y r(@), ¥r(t),y';(t) and, y;(r). To this end, let us proceed
as follows.

Y r(t) — TR (1) (89)

1

(LGr=1,j,R X" j(1),r — Gk—1,j,1 ()X j(1).1]
|

~
|

~.
Il

—1Gi—1,,,ROXj(1).r — Gk—1,j,1 ()X 1),1])
1 —_

(Gr—1,1,R () (X' ).k = Xj(1).R)
1

—Gr1,j,10) (¥ jy.r = Xj0).1)) + Ary

V() = 31(t)
1

(LGk=1,j,R(X" j(t).1 + Gr—1,j,1 ()X j 1), R ]
1

—Gr=1,j,rR OXj(1),1 + Gr—1,j,1(1)%j1),R])

~
|

~.
Il

(90)
oD

~
|

~.
Il

k-1
Z Gi1,7.R(0) (X j0y.1 — Xjo).1)
j=1

+Gi—1,j,1(0) (X' j, R — Xj0),R)) + A—ki) (92)

So,

max(|y'g (1) = eI, [y 1(6) = $1(1)])
< | ey, R(E) — Xy, R ()

k—1 k—1
< 1D 1Gko1j kO + D GO ¢ + K
j=1 j=1

1
X/ 0y, R(E) — % j2 (1), R () |2
(142165001 + 241G, Ol
<
~ A R® = RO = K}y (6) — 31(0)] — K}
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whenever min(|y'z(t) — Fr(®)I, Y/, (t) — 31 () > K.
Therefore,

P (3" € S5 (GI™))

=< §2n (fmax,k)zn H

ty (0)—50)|> K
1

@ — 50— K} (1570 — 510 — K}

where
g A max | 1, H
e’ i, R (D FX (1), R (1)
k—1 k—1 2
16 111G, kO + D 1Gi1,j.1(0)]
j=1 j=1
E [Sgl] (G")] 93)
= Z P ();/[n] S Sy[n] (Gn)) (94)
yMerlt)
n
< 27" (faax) ™ [ ] > 1

=L \y Ry g(O—-Fr(DI<K

+ 2

Y RO <]y g () =TI 0y, r ()

L 1
IY'r() = YR = K

n

<[] 2

=1 \y 1 (1Y 1 (051 (1) <K

+1 >

Y@K <y [ ()=51(1)]=Qy.1 (1)

v 1
Iy (@) = yi()] — K

2n
< 8" (fmax)" (I0g(V/P) + o(log(P))) 95)

where maX(Qy,R(t), Qy,l(t)) =< f«/ﬁ Zje[l:k—l]
(IGr-1,j, R + |Gr-1,j,1(t)] + K). Now, combining
(95) and (83) we have
ﬁA,k < lim sup lim sup
P—oo n—o00
10g ( (2 fmax0)?" (log(+/P) + o(log(P)))*")
* nlog(P)
< ok (96)

Finally, combining (81), (83) and (96) we have the result,

Dy <l+4ar+---+ag 97)
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VIII. DISCUSSION

Since CSIT is almost never available with infinite precision,
the collapse of DoF under finite precision channel uncertainty
is a sobering result that stands in stark contrast against the
tremendous DoF gains shown to be possible with perfect
channel knowledge [18], [25]. However, as evident from the
conjecture of Lapidoth, Shamai and Wigger, the pessimistic
outcome is not unexpected. In terms of practical implications,
just like the extremely positive DoF results, the extremely
negative DoF results should be taken with a grain of salt.
The collapse of DoF under finite precision CSIT is very much
due to the asymptotic nature of the DoF metric, and may not
be directly representative of finite SNR scenarios which are
of primary concern in practice. From a technical perspective,
the new outer bound technique offers hope for new insights
through the studies of more general forms of CSIT, such as
finite precision versions of delayed [26], mixed [15], [16],
topological [27], blind [6] and alternating [10] CSIT.

APPENDIX

The proof is in two parts. First we prove that we can
limit the inputs and outputs to integer values without reduc-
ing the DoF. Then, we will show that the long-term (per-
codeword) power constraints can be replaced with short-
term (per-symbol) power constraints without reducing the
DoF. The proofs follow along the lines of similar proofs by
Bresler and Tse in [22], are specialized to the broadcast setting,
and fill in several details that are omitted in [22].

A. Integer Inputs and Outputs

Given codebooks with real codewords, (X En], Xgl]) e R" x
R”™ for the canonical channel model, we show that the deter-
ministic channel model with integer inputs | X E”]J ,1X gnlj , and
outputs

1?1(1) 2 1X1(1))
() £ (GO X1(1)]] + [ X2(0)]

achieves the same DoF. Thus, removing noise and limiting the
inputs to integer values, as done in the deterministic model,
does not reduce DoF relative to the original canonical channel
model.

Define EE"] = Xgn] - LXEH]J + ZEn]. Taking a similar

approach to [22, Lemma 5] we have,

(98)
99)

1w v{" G

= 1(Wy; Y[ 4 El"GinTy (100)
< 1(wy; ¥, g Gy (101)
< I(Wi; YIIGM + 1wy EMGL Yy 02)
< 1(Wy: Y|G4+ n(EP G

—h(EY|GM, 7, X1 (103)
< IWp; YMIGM) + h(EY |G —n(zyy  (104)
< 1(Wi: 711G + S log(2) (105)
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so that the difference between [(Wy; Yl[”]|G[”]) and

I1(Wr; Y 1["]|G[”]) approaches 0 when normalized by 75 log(P),
as first n and then P is sent to infinity.
Similarly, by defining E'! = Gnx!" — LG” LXE”]H +

Xg"] — LX%"]J + 7" we have,

1(Wa: 1,16

— 1(W; V)" + EM| G
I(Wa; YIMIGI) + h(EY |Gy — n(ZL™)
1(W: ¥} G

(106)

IA

IA

. 1
+> Ego |:§10g ((G(t)—i— 1)+ 1)} (107)
t=1

so that the difference between [(Wy; Yz["] |Gy and
I (Wy; ?z["]IG[”]) approaches 0 when normalized by 75 log(P),
as first n and then P is sent to infinity.. Thus, the deterministic

channel with inputs (| X E"]J, LX%"]J), outputs (I:/l["], 172["]), and
per-codeword power constraints,

LS (10 + (x20))?) < P (108)
n
=1

achieves at least the same DoF as the original canonical
channel model.
B. Per-Symbol Power Constraints

Given codewords (LXE”]J, LX%"]J) for the deterministic

channel with outputs (I:’I[”], ;2["]), such that the codewords
satisfy per-codeword power constraints, define V¢ € [1 : n]

X1(1) = [X1(1)] mod [vP] (109)
X2(1) = [X2(1)) mod [vP] (110)
Yi(t) = X1 (1) (111)
Ya(t) = [G(O)X1 (1)) + X2(t) (112)
Xi(t) = [X1(0)] — X1(t) (113)
Xa(t) = [ X2()] — X2(0) (114)
Yi(6) = Yi(1) — Y1 (1) (115)
V2(t) = Ya(t) — Yo (1) (116)

Since Xi(r), X2(t) € {0,1,---,[+/P]}, the new code-

words ()_(["],)_(gn]) satisfy per-symbol power constraints.
Now let us compare the rates achieved on the channel

(LXEn] I Xé”] ] ) — (;1[”], 172[”]2 to tk_1e rates achieved on the
new channel (XE"], Xé’”) — (Yl[n]’ Yz[n])'

1(w: ¥{"G

= 1(Wy; Y/ 4 MGy (117)
< I(Wy; Y™yl Giny (118)
< 1(Wy; Y61y + H (M 6y (119)
n
< 1wy YIGMY + > H(¥ (1) (120)
t=1
B n
< 1w PG + 3" H (X)) (121)

t=1
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Similarly

[(Wy; Y| Gl

= [(Wy: 7)1+ 7| Gy (122)
< I(Wp; Y1, 1M Gy (123)
< [(Wy; TG + H (7Y G (124)
n
< I(Wa: V|G + " H ()| G (1)) (125)
t=1
n
= I(Wy: TG + D" H(LG (@) 1X1 (1))
t=1
(126)

+LX2(0)] = LG X1(1)] = X2(0)|G (1))

= 1(Wy: VYIGM") + > H(IG() X1 ()] + X2 (1)

t=1

+ D HAW®IG®) (127)
t=1
< I(Wy: PG + " H(LGHX1(1)]IG(1)
t=1
+ D HX0) + D HA®)) (128)
t=1 t=1

n n
< IWo: VNG + 3" H(X (1) + D H(Xa (1)
=1 =1
+nlog(3)

where A(t) € {—1,0, 1}. To complete the proof we only need
to show that >/, H(X;(r)) < n o(log(P)), i.e., these terms
can contribute no more than 0 in the DoF sense. We will use
the fact that any integer number X can be written as QL%J —
Q1(x < 0)+(X mod Q) where Q = [/P] is also an integer

value.

H(X1(1)

(129)

- H (Q {éLxl(t)JJ - QI(1X:1(1)] < 0)) (130)
- H( éLXl(t)J — (X1 (1)] < 0)) (13D
; H( ém(m ) FHAXI 0] <0)  (132)
< H( éLXI(f)J )+1 (133)
Define i i
2
() = 2X1OD (134)
nP

where the expectation is over messages, i.e., the choice of
codewords, so that

Do) <1 (135)
t=1
Let pp £ P(|X(t)] = k), so that
> Kpi < p(tnP (136)

k=—00
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Next let us bound the probability p,, of | X(¢)] falling within
the m' quantization interval.

(m+1)0—1
pm® D e Ymel (137)
k=mQ
o<
min(m?, (m + 1)?) Q2
(m+1)0—1
x> K, ¥m e Z/{0,-1) (138)
k=mQ
np(t)
vm € 7/{0, -1} (139
S e Ty YmET/0.-1 (39)
m

min(m2, (m + 1)?)

In the following derivation we will make use of the fact that
pm log (/%) is an increasing function of p,, when p,, < 1/e,
so for these p;, values one can replace p,, with p to obtain an
outer bound. Further, we will use the fact that the maximum
value of p,, log (i) is eln;@)

We bound the entropy term in (133) as follows

(o)

- 1
Z p~m 10g (.._)
Pm

m=—00

~ 1 - 1
> mlog (N—) + D pmlog (~—)
mef(0,—1,1} Pm 1 Pm

-k

(141)

MQOI,VL 1?1 )
~ 1
t2 dmlog (_) (142)
~k 1 pm
m:pmf_
me{0,—1,1}
1 1
me{0,71,1}eln(2) el eln(2)
m¢{0,—1,1}
~ 1
~k 1 pm
m:pmgf
me{0,—1,1}
3@ S, (o
2 log (—— ) (144
S em@ T em@) T nzzz il Pl UD)
3+4/np(@) &, log(m)
< 2TNIPR) L At
eln(2) + np()mzzlz m2
1 |
Fenp(nylos (—) ) (145)
np(t) mz=2m2
3+4 t
= ﬂ + 6np(t)
eln(2)
1
Fanpylog (—) (146)
np(t)
3 4+ 4max(1, np(t)) 2
: 6np(t) + ——— 147
- eln(2) " np()+eln(2) (147)
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where in (145) we used the facts that > >, k’fﬂ# <15
and >, # < 1. In (147) we used the property that the
maximum value of the function x log (%) is #(2)

Substituting into (133), summing over all ¢ € [1 : n], and
using (135) we have

S HE&(0)
=1
5n 4 " | ] n
+ eln(2) T eIn(2) gll( +np(t)) + ngp(t)
13
< n o(log(P)) (149)

The same arguments show that >, H()A(z(t)) <no(log(P))
as well. Thus, we conclude that the deterministic channel
with per-symbol power constraints, achieves at least the same
DoF as the deterministic channel with per-codeword power
constraints.

Define

X1(0) = G X1 (1) + Gra() X2(1) (150)

det(G(2)) \ -
- ==Y 151
X2(1) ( o )Xz(f) (151)

G21 (1)

G@t) = = 152
() G (152)
P = 2M? + M*P (153)

Note that P = ©(P), and G(r) is bounded away from zero
and infinity, as 5> < |G(1)| < M?, ¥t € N.

(X1(1)* + (X2(0))*

det @)\
Gii(1)

< | (G11(1)* + (G12(0))* +(

x ((X1(1))* + (X2(0))*)
< @M% + MY (X1 (1)) + (X2(1))?)

(154)
(155)

In addition to the channel vector for user 1, let us allow the
CSIT to include the determinant of the channel matrix. This
cannot reduce capacity, so it can only make the outer bound
stronger.

Gi1(1), G12(), det(G(t)) € T, Vt e N (156)

Note that for continuous distributions, G(¢) is not a function
of 7. With the available CSIT, suppose the transmitter sets:

( Gnw

X1 (1) (7(1&(&0))))(20) (157)
- Gu®

Xo(r) = (7(1&(@([))))(2(0

Substituting into (1) we obtain the canonical channel
model (4). Noting that the transformation from X{(¢), X»(7) to
X1(t), X»(¢) is invertible and that the new power constraint (5)
allows all feasible X1(r), X2(¢), it is evident that the capacity
of the channel in its canonical form cannot be smaller than

~ 1
X = —
1) Gii(t)

(158)
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that of the original channel. Thus, the canonical channel
transformation is valid for our DoF outer bound. (]

Remark: It is not necessary to provide side information of
the determinant of the channel matrix to the transmitter. One
could also normalize the desired channel coefficient values to
unity by scaling the received signals at the receivers, which
would only scale the noise variance by a bounded amount that
is inconsequential for DoF. We choose to provide the determi-
nant as side information to the transmitter, because for a pes-
simistic outer bound that shows the collapse of DoF, including
more CSIT only makes the result stronger. It shows that even
this additional CSIT cannot prevent the collapse of DoF.
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