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Abstract—In the private information retrieval (PIR) problem
a user wishes to retrieve, as efficiently as possible, one out of K
messages from N non-communicating databases (each holds all
K messages) while revealing nothing about the identity of the de-
sired message index to any individual database. The information
theoretic capacity of PIR is the maximum number of bits of de-
sired information that can be privately retrieved per bit of down-
loaded information. For K messages and N databases, we show
that the PIR capacity is

(
1 + 1/N + 1/N2 + · · ·+ 1/NK−1

)−1.
A remarkable feature of the capacity achieving scheme is that
if we eliminate any subset of messages (by setting the message
symbols to zero), the resulting scheme also achieves the PIR
capacity for the remaining subset of messages.

Index Terms—Capacity, private information retrieval.

I. INTRODUCTION

MARKED by paradigm-shifting developments such as
big data, cloud computing, and internet of things, the

modern information age presents researchers with an uncon-
ventional set of challenges. The rapidly evolving research
landscape continues to blur traditional boundaries between
computer science, communication and information theory,
coding and signal processing. For example, the index coding
problem which was introduced by computer scientists in 1998
[1], [2], is now a very active research topic in information
theory because of its fundamental connections to a broad range
of questions that includes topological interference manage-
ment [3], network coding [4], distributed storage capacity [5],
hat guessing [6], and non-Shannon information inequalities
[7]. Evidently, the crossover of problems across fields creates
exciting opportunities for fundamental progress through a
consolidation of complementary perspectives. The pursuit of
such crossovers brings us to the private information retrieval
(PIR) problem [8], [9], [10].

Introduced in 1995 by Chor, Kushilevitz, Goldreich and Su-
dan [11], [12], the private information retrieval (PIR) problem
seeks the most efficient way for a user to retrieve a desired
message from a set of distributed databases, each of which
stores all the messages, without revealing any information
about which message is being retrieved to any individual
database. The user can hide his interests trivially by requesting
all the information, but that could be very inefficient (expen-
sive). The goal of the PIR problem is to find the most efficient
solution.
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Besides its direct applications, PIR is of broad interest be-
cause it shares intimate connections to many other prominent
problems. PIR attracted our attention initially in [10] because
of its curious similarities to Blind Interference Alignment [13].
PIR protocols are the essential ingredients of oblivious transfer
[14], instance hiding [15], [16], [17], multiparty computation
[18], secret sharing schemes [19], [20] and locally decodable
codes [21]. Through the connection between locally decodable
and locally recoverable codes [22], PIR also connects to
distributed data storage repair [23], index coding [2] and the
entire umbrella of network coding [24] in general. As such
PIR holds tremendous promise as a point of convergence
of complementary perspectives. The characterization of the
information theoretic capacity of PIR that we undertake in
this work, is a step in this direction.

The PIR problem is described as follows. We have N
non-communicating databases, each stores the full set of
K independent messages W1, · · · ,WK . A user wants one
of the messages, say Wθ, θ ∈ {1, 2, · · · ,K}, but requires
each database to learn absolutely nothing (in the information
theoretic sense)1 about the retrieved message index, θ. To
do so, the user generates N queries Q1, · · · , QN and sends
Qn, n ∈ {1, 2, · · · , N} to the n-th database. After receiving
query Qn, the n-th database returns an answering string An to
the user. The user must be able to obtain the desired message
Wθ from all the answers A1, · · · , AN . To be private, each
query Qn and each answer An must be independent of the
desired message index, θ.

For example, suppose we have N = 2 databases and K
messages. To retrieve Wθ privately, the user first generates
a random length-K vector [h1, h2, · · · , hK ], where each el-
ement is independent and identically distributed uniformly
over F2, i.e., equally likely to be 0 or 1. Then the user
sends Q1 = [h1, h2, · · · , hθ, · · · , hK ] to the first database
and Q2 = [h1, h2, · · · , hθ−1, (hθ + 1), hθ+1, · · · , hK ] to the
second database. Each database uses the query vector as the
combining coefficients and produces the corresponding linear
combination of message bits as the answer to the query.

A1 =

K∑
k=1

hkWk (1)

A2 =

K∑
k=1

hkWk +Wθ (2)

The user obtains Wθ by subtracting A1 from A2. Privacy is
guaranteed because each query is independent of the desired
message index θ. This is because regardless of the desired

1There is another line of research, where privacy needs to be satisfied only
for computationally bounded databases [9], [8], [25].
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message index θ, each of the query vectors Q1, Q2 is individ-
ually comprised of elements that are i.i.d. uniform over F2.
Thus, each database learns nothing about which message is
requested.

The PIR problem was initially studied in the setting where
each message is one bit long [11], [12], [26], [27], [28], [21],
[29], where the cost of a PIR scheme is measured by the total
amount of communication between the user and the databases,
i.e., the sum of lengths of each query string (upload) and
each answering string (download). However, for the traditional
Shannon theoretic formulation, where message size is allowed
to be arbitrarily large, the upload cost is negligible compared
to the download cost [30]2. In this work we adopt the Shannon
theoretic formulation, so that we focus on the download
cost, measured relative to the message size. For the example
presented above, each message is 1 bit and we download a
total of 2 bits (one from each database), so that the download
cost is 2 bits per message bit. The reciprocal of download
cost is the rate, i.e., the number of bits of desired information
that is privately retrieved per downloaded information bit. The
maximum rate possible for the PIR problem is its information
theoretic capacity C. For the example presented earlier, the
private information retrieval rate is 1

2 , meaning that 1 bit of
desired information is retrieved from every 2 downloaded bits.
In general, for arbitrary N and K, the best previously known
achievable rate for PIR, reported in [31], is 1− 1

N . Since 1 is a
trivial upper bound on capacity, we know that 1 ≥ C ≥ 1− 1

N .
The bounds present a reasonable approximation of capacity for
large number of databases. However, in this work, we seek the
exact information theoretic capacity C of the PIR problem,
for arbitrary number of messages K and arbitrary number of
databases N .

The paper is organized as follows. Section II presents the
problem statement. The exact capacity of PIR is characterized
in Section III. Section IV presents a novel PIR scheme, and
Section V provides the information theoretic converse (i.e.,
a tight upper bound) to establish its optimality. Section VI
contains a discussion of the results and we conclude in Section
VII.

Notation: For a positive integer Z, we use the notation
[Z] = {1, 2, · · · , Z}. The notation X ∼ Y is used to indicate
that X and Y are identically distributed. Define the notation
An1:n2

, n1, n2 ∈ Z, as the set {An1
, An1+1, · · · , An2

} if
n1 ≤ n2, and as the null set otherwise.

II. PROBLEM STATEMENT

Consider K independent messages W1, · · · ,WK of size L
bits each.

H(W1, · · · ,WK) = H(W1) + · · ·+H(WK), (3)
H(W1) = · · · = H(WK) = L. (4)

There are N databases and each database stores all the
messages W1, · · · ,WK . In PIR a user privately generates
θ ∈ [K] and wishes to retrieve Wθ while keeping θ a secret

2The justification argument (traces back to Proposition 4.1.1 of [12]) is that
the upload cost does not scale with the message size. This is because we can
reuse the original query functions for each part of the message.

from each database. Depending on θ, there are K strategies
that the user could employ to privately retrieve his desired
message. For example, if θ = k, then in order to retrieve
Wk, the user employs N queries Q[k]

1 , · · · , Q[k]
N . Since the

queries are determined by the user with no knowledge of the
realizations of the messages, the queries must be independent
of the messages,

∀k ∈ [K], I(W1, · · · ,WK ;Q
[k]
1 , · · · , Q[k]

N ) = 0. (5)

The user sends query Q[k]
n to the n-th database. Upon receiving

Q
[k]
n , the n-th database generates an answering string A

[k]
n ,

which is a function of Q
[k]
n and the data stored (i.e., all

messages W1, · · · ,WK).

∀k ∈ [K],∀n ∈ [N ], H(A[k]
n |Q[k]

n ,W1, · · · ,WK) = 0. (6)

Each database returns to the user its answer A[k]
n . From all the

information that is now available to the user, he must be able
to decode the desired message Wk, with probability of error
Pe. The probability of error must approach zero as the size of
each message L approaches infinity3. From Fano’s inequality,
we have

[Correctness]
1

L
H(Wk|A[k]

1 , · · · , A[k]
N , Q

[k]
1 , · · · , Q[k]

N ) = o(L) (7)

where o(L) represents any term whose value approaches zero
as L approaches infinity.

To protect the user’s privacy, the K strategies must be
indistinguishable (identically distributed) from the perspective
of each database, i.e., the following privacy constraint must
be satisfied4 ∀n ∈ [N ],∀k ∈ [K]:

[Privacy]
(Q[1]

n , A
[1]
n ,W1, · · · ,WK) ∼ (Q[k]

n , A
[k]
n ,W1, · · · ,WK)

(8)

The PIR rate characterizes how many bits of desired in-
formation are retrieved per downloaded bit, and is defined as
follows.

R ,
L

D
(9)

where D is the expected value (over random queries) of the
total number of bits downloaded by the user from all the
databases. Note that because of the privacy constraint (8), the
expected number of downloaded bits for each message must
be the same.

A rate R is said to be ε-error achievable if there exists a
sequence of PIR schemes, each of rate greater than or equal to
R, for which Pe → 0 as L → ∞.5 The supremum of ε-error
achievable rates is called the ε-error capacity Cε. A stronger
(more constrained) notion of capacity is the zero-error capacity
Co, which is the supremum of zero-error achievable rates. A

3If Pe is required to be exactly zero, then the o(L) terms can be replaced
with 0.

4The privacy constraint is equivalently expressed as
I(θ;Q

[θ]
n , A

[θ]
n ,W1,W2, · · · ,WK) = 0.

5Equivalently, for any ε > 0, there exists a finite Lε such that Pe < ε for
all L > Lε.
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rate R is said to be zero-error achievable if there exists a PIR
scheme of rate greater than or equal to R for which Pe = 0.
From the definitions, it is evident that Co ≤ Cε. While in
noise-less settings, the two are often the same, in general the
inequality can be strict. Our goal is to characterize both the
zero-error capacity, Co, and the ε-error capacity, Cε, of PIR.

III. MAIN RESULT: CAPACITY OF PRIVATE INFORMATION
RETRIEVAL

Theorem 1 states the main result.
Theorem 1: For the private information retrieval problem

with K messages and N databases, the capacity is

Co = Cε =
(
1 + 1/N + 1/N2 + · · ·+ 1/NK−1

)−1
. (10)

The following observations are in order.
1) For N > 1 databases, the capacity expression can be

equivalently expressed as (1− 1
N )/(1−

(
1
N

)K
).

2) The capacity is strictly higher than the previously best
known achievable rate of 1− 1/N .

3) The capacity is a strictly decreasing function of the
number of messages, K, and when the number of
messages approaches infinity, the capacity approaches
1− 1/N .

4) The capacity is strictly increasing in the number of
databases, N . As the number of databases approaches
infinity, the capacity approaches 1.

5) Since the download cost is the reciprocal of
the rate, Theorem 1 equivalently characterizes
the optimal download cost per message bit as(
1 + 1/N + 1/N2 + · · ·+ 1/NK−1

)
bits.

6) The achievability proof for Theorem 1 to be presented
in the next section, shows that message size approaching
infinity is not necessary to approach capacity. In fact, it
suffices to have messages of size equal to any positive
integer multiple of NK bits (or NK symbols in any
finite field) each to achieve a rate exactly equal to
capacity, and with zero-error.

7) The upper bound proof will show that no PIR scheme
can achieve a rate higher than capacity with Pe → 0
as message size L → ∞. Unbounded message size
is essential to the information theoretic formulation of
capacity. However, from a practical standpoint, it is
natural to ask what this means if the message size is
limited. Finding the optimal rate for limited message
size remains an open problem in general. However, we
note that regardless of message size, Co (and therefore
also Cε) is always an upper bound on zero-error rate. For
arbitrary message size L, a naive extension of our PIR
scheme can be obtained as follows. Pad zeros to each
message, rounding up the message size to an integer
multiple of NK . Then over each block of NK symbols
per message, directly use the capacity achieving PIR
scheme. This achieves the rate Co

L
NK /

⌈
L
NK

⌉
, which

matches capacity exactly if L is a positive integer
multiple of NK , and otherwise, approaches capacity
for large L. It is also clearly sub-optimal in general,
especially for smaller message sizes where much better

schemes are already known. Additional discussion on
message size reduction for a capacity achieving PIR
scheme is presented in Section VI.

IV. THEOREM 1: ACHIEVABILITY

We present a zero-error PIR scheme for L = NK bits per
message in this section, whose rate is equal to capacity. Note
that a zero-error scheme with finite message length can always
be repeatedly applied to create a sequence of schemes with
message-lengths approaching infinity for which the probability
of error approaches (is) zero. Thus, the same scheme will
suffice as the proof of achievability for both zero-error and
ε-error capacity.

Let us illustrate the intuition behind the achievable scheme
with a few simple examples. Then, based on the examples,
we will present an algorithmic description of the achievable
scheme for arbitrary number of messages, K and arbitrary
number of databases, N . We will then revisit the examples
in light of the algorithmic formulation. Finally, we will prove
that the scheme is both correct and private, and that its rate is
equal to the capacity.

A. Two Examples to Illustrate the Key Ideas
The capacity achieving PIR scheme has a myopic or greedy

character, in that it starts with a narrow focus on the retrieval
of the desired message bits from the first database, but grows
into a full fledged scheme based on iterative application of
three principles:

(1) Enforcing Symmetry Across Databases
(2) Enforcing Message Symmetry within the Query to Each

Database
(3) Exploiting Side Information of Undesired Messages to

Retrieve New Desired Information
1) Example 1: N = 2,K = 2: Consider the simplest PIR

setting, with N = 2 databases, and K = 2 messages with
L = NK = 4 bits per message. Let [a1, a2, a3, a4] represent
a random permutation of L = 4 bits from W1. Similarly, let
[b1, b2, b3, b4] represent an independent random permutation
of L = 4 bits from W2. These permutations are generated
privately and uniformly by the user.

Suppose the desired message is W1, i.e., θ = 1. We start
with a query that requests the first bit a1 from the first database
(DB1). Applying database symmetry, we simultaneously re-
quest a2 from the second database (DB2). Next, we enforce
message symmetry, by including queries for b1 and b2 as the
counterparts for a1 and a2. Now we have side information
of b2 from DB2 to be exploited in an additional query to
DB1, which requests a new desired information bit a3 mixed
with b2. Finally, applying database symmetry we have the
corresponding query a4 +b1 for DB2. At this point the queries
satisfy symmetry across databases, message symmetry within
the query to each database, and all undesired side information
is exploited, so the construction is complete. The process is
explained below, where the number above an arrow indicates
which of the three principles highlighted above is used in each
step.

DB1 DB2

a1

(1)−→ DB1 DB2

a1 a2

(2)−→ DB1 DB2

a1, b1 a2, b2
· · ·
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· · · (3)−→
DB1 DB2

a1, b1 a2, b2
a3 + b2

(1)−→
DB1 DB2

a1, b1 a2, b2
a3 + b2 a4 + b1

Similarly, the queries for θ = 2 are constructed as follows.

DB1 DB2

b1

(1)−→ DB1 DB2

b1 b2

(2)−→ DB1 DB2

a1, b1 a2, b2
· · ·

· · · (3)−→
DB1 DB2

a1, b1 a2, b2
a2 + b3

(1)−→
DB1 DB2

a1, b1 a2, b2
a2 + b3 a1 + b4

Privacy is ensured by noting that [a1, a2, a3, a4] is a random
permutation of W1 and [b1, b2, b3, b4] is an independent ran-
dom permutation of W2. These permutations are only known
to the user and not to the databases. Therefore, regardless of
the desired message, each database is asked for one randomly
chosen bit of each message and a sum of a different pair of
randomly chosen bits from each message. Since the permuta-
tions are uniform, all possible realizations are equally likely,
and privacy is guaranteed.

To verify correctness, note that every desired bit is either
downloaded directly or added with known side information
which can be subtracted to retrieve the desired bit value. Thus,
the desired message bits are successfully recoverable from the
downloaded information.

Now, consider the rate of this scheme. The total number
of downloaded bits is 6 and the number of desired bits is 4.
Thus, the rate of this scheme is 4/6 = 2/3 which matches the
capacity for this case.

Finally, let us represent the structure of the queries (to any
database) in the following matrix.

a
b

a+ b

a (b) represents a place-holder for a distinct element of ai
(bj). The key to the structure is that it is made up of sums
(a single variable is also named a (trivial) sum) of message
bits, no message bit appears more than once, and all possible
assignments of message bits to these place-holders are equally
likely. The structure matrix will be useful for the algorithmic
description later.

2) Example 2: N = 3,K = 3: The second example is
when N = 3, K = 3. In this case, all messages have
L = NK = 27 bits. The construction of the optimal PIR
scheme for N = 3,K = 3 is illustrated below, where
[a1, · · · , a27], [b1, · · · , b27], [c1, · · · , c27] are three i.i.d. uni-
form permutations of bits from W1,W2,W3, respectively. The
construction of the queries from each database when θ = 1
may be visualized as follows.

DB1 DB2 DB3

a1

(1)−→ DB1 DB2 DB3

a1 a2 a3
· · ·

· · · (2)−→ DB1 DB2 DB3

a1, b1, c1 a2, b2, c2 a3, b3, c3
· · ·

· · · (3)−→

DB1 DB2 DB3

a1, b1, c1 a2, b2, c2 a3, b3, c3
a4 + b2
a5 + c2
a6 + b3
a7 + c3

· · ·

· · · (1)−→

DB1 DB2 DB3

a1, b1, c1 a2, b2, c2 a3, b3, c3
a4 + b2 a8 + b1 a12 + b1
a5 + c2 a9 + c1 a13 + c1
a6 + b3 a10 + b3 a14 + b2
a7 + c3 a11 + c3 a15 + c2

· · ·

· · · (2)−→

DB1 DB2 DB3

a1, b1, c1 a2, b2, c2 a3, b3, c3
a4 + b2 a8 + b1 a12 + b1
a5 + c2 a9 + c1 a13 + c1
a6 + b3 a10 + b3 a14 + b2
a7 + c3 a11 + c3 a15 + c2
b4 + c4 b6 + c6 b8 + c8
b5 + c5 b7 + c7 b9 + c9

· · ·

· · · (3)−→

DB1 DB2 DB3

a1, b1, c1 a2, b2, c2 a3, b3, c3
a4 + b2 a8 + b1 a12 + b1
a5 + c2 a9 + c1 a13 + c1
a6 + b3 a10 + b3 a14 + b2
a7 + c3 a11 + c3 a15 + c2
b4 + c4 b6 + c6 b8 + c8
b5 + c5 b7 + c7 b9 + c9

a16 + b6 + c6
a17 + b7 + c7
a18 + b8 + c8
a19 + b9 + c9

· · ·

· · · (1)−→

DB1 DB2 DB3

a1, b1, c1 a2, b2, c2 a3, b3, c3
a4 + b2 a8 + b1 a12 + b1
a5 + c2 a9 + c1 a13 + c1
a6 + b3 a10 + b3 a14 + b2
a7 + c3 a11 + c3 a15 + c2
b4 + c4 b6 + c6 b8 + c8
b5 + c5 b7 + c7 b9 + c9

a16 + b6 + c6 a20 + b4 + c4 a24 + b4 + c4
a17 + b7 + c7 a21 + b5 + c5 a25 + b5 + c5
a18 + b8 + c8 a22 + b8 + c8 a26 + b6 + c6
a19 + b9 + c9 a23 + b9 + c9 a27 + b7 + c7
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Similarly, the queries when θ = 2, 3 are as follows.

θ = 2
DB1 DB2 DB3

a1, b1, c1 a2, b2, c2 a3, b3, c3
a2 + b4 a1 + b8 a1 + b12

b5 + c2 b9 + c1 b13 + c1
a3 + b6 a3 + b10 a2 + b14

b7 + c3 c3 + b11 b15 + c2
a4 + c4 a6 + c6 a8 + c8
a5 + c5 a7 + c7 a9 + c9

a6 + b16 + c6 a4 + b20 + c4 a4 + b24 + c4
a7 + b17 + c7 a5 + b21 + c5 a5 + b25 + c5
a8 + b18 + c8 a8 + b22 + c8 a6 + b26 + c6
a9 + b19 + c9 a9 + b23 + c9 a7 + b27 + c7

θ = 3
DB1 DB2 DB3

a1, b1, c1 a2, b2, c2 a3, b3, c3
a2 + c4 a1 + c8 a1 + c12

b2 + c5 b1 + c9 b1 + c13

a3 + c6 a3 + c10 a2 + c14

b3 + c7 b3 + c11 b2 + c15

a4 + b4 a6 + b6 a8 + b8
a5 + b5 a7 + b7 a9 + b9

a6 + b6 + c16 a4 + b4 + c20 a4 + b4 + c24

a7 + b7 + c17 a5 + b5 + c21 a5 + b5 + c25

a8 + b8 + c18 a8 + b8 + c22 a6 + b6 + c26

a9 + b9 + c19 a9 + b9 + c23 a7 + b7 + c27

The structure of the queries is summarized in the following
structure matrix. Note again that the structure matrix is made
up of sums of place-holders of message bits, no message bit
appears more than once, and the assignment of all messages
bits to these place-holders is equally likely.

a
b
c

a+ b
a+ b
a+ c
a+ c
b+ c
b+ c

a+ b+ c
a+ b+ c
a+ b+ c
a+ b+ c

The examples illustrated above generalize naturally to arbitrary
N and K. As we proceed to proofs of privacy and correctness
and to calculate the rate for arbitrary parameters, a more
formal algorithmic description will be useful.

B. Formal Description of Achievable Scheme

For all k ∈ [K], define6 vectors Uk =
[uk(1), uk(2), · · · , uk(NK)]. We will use the terminology
k-sum to denote an expression representing the sum of k
distinct variables, each drawn from a different Uj vector, i.e.,
uj1(i1) + uj2(i2) + · · ·+ ujk(ik), where j1, j2, · · · , jk ∈ [K]
are all distinct indices. Furthermore, we will define such a
k-sum to be of type {j1, j2, · · · , jk}.

The achievable scheme is comprised of the following el-
ements: 1) a fixed query set structure, 2) an algorithm to
generate the query set as a deterministic function of θ, and 3)
a random mapping from Uk variables to message bits, which
will produce the actual queries to be sent to the databases.
The random mapping will be privately generated by the user,
unknown to the databases. These elements are described next.

1) A Fixed Query Set Structure: For all DB ∈ [N ], θ ∈ [K],
let us define ‘query sets’: Q(DB, θ), which must satisfy the
following structural properties. Each Q(DB, θ) must be the
union of K disjoint subsets called “blocks”, that are indexed
by k ∈ [K]. Block k must contain only k-sums. Note that
there are only

(
K
k

)
possible “types” of k-sums. Block k must

contain all of them. We require that block k contains exactly
(N − 1)k−1 distinct instances of each type of k-sum. This
requirement is chosen following the intuition from the three
principles, and as we will prove shortly, it ensures that the
resulting scheme is capacity achieving. Thus, the total number
of elements contained in block k must be

(
K
k

)
(N − 1)k−1,

and the total number of elements in each query set must be
|Q(DB, θ)| =

∑K
k=1

(
K
k

)
(N − 1)k−1. For example, for N =

3,K = 3, as illustrated previously, there are
(

3
1

)
= 3 types

of 1-sums (a, b, c) and we have (3− 1)1−1 = 1 instances of
each; there are

(
3
2

)
= 3 types of 2-sums (a+ b, b+ c, c+ a)

and we have (3 − 1)2−1 = 2 instances of each; and there is(
3
3

)
= 1 type of 3-sum (a+b+c) and we have (3−1)3−1 = 4

instances of it. The query to each database has this structure.
Furthermore, no message symbol can appear more than once
in a query set for any given database.

The structure of Block k of the query Q(DB, θ), enforced
by the constraints described above, is illustrated in Figure 1
through an enumeration of all its elements. Figure 1 is shown
at the top of the next page. In the figure, each Uj represents
a place-holder for a distinct element of Uj . Note that the
structure as represented in Figure 1 is fixed regardless of θ
and DB. All query sets must have the same fixed structure.

2) A Deterministic Algorithm: Next we present the algo-
rithm which will produce Q(DB, θ) for all DB ∈ [N ] as
function of θ alone. In particular, this algorithm will determine
which Uj variable is assigned to each place-holder value in
the query structure described earlier. To present the algorithm
we need these definitions.

For each k ∈ [K], let new(Uk) be a function that,
starting with uk(1), returns the “next” variable in Uk each
time it is called with Uk as its argument. So, for ex-
ample, the following sequence of calls to this function:

6Since the number of messages, K, can be arbitrary, and we have only
26 letters in the English alphabet, instead of ai, bj , ck , etc., we now use
u1(i), u2(j), u3(k), etc., to represent random permutations of bits from
different messages.
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Type No. Type of k-sum Instance No. Enumerated elements of Block k
1. {1, 2, · · · , k − 2, k − 1, k} 1. U1 + U2 + · · ·+ Uk−2 + Uk−1 + Uk

2. U1 + U2 + · · ·+ Uk−2 + Uk−1 + Uk
...

...
(N − 1)k−1. U1 + U2 + · · ·+ Uk−2 + Uk−1 + Uk

2. {1, 2, · · · , k − 2, k − 1, k + 1} 1. U1 + U2 + · · ·+ Uk−2 + Uk−1 + Uk+1

2. U1 + U2 + · · ·+ Uk−2 + Uk−1 + Uk+1

...
...

(N − 1)k−1. U1 + U2 + · · ·+ Uk−2 + Uk−1 + Uk+1

...
...

...
i. {i1, i2, · · · , ik} 1. Ui1 + Ui2 + · · ·+ Uik

2. Ui1 + Ui2 + · · ·+ Uik
...

...
(N − 1)k−1. Ui1 + Ui2 + · · ·+ Uik

...
...

...(
K
k

)
. {K − k + 1,K − k + 2, · · · ,K} 1. UK−k+1 + UK−k+2 + · · ·+ UK

2. UK−k+1 + UK−k+2 + · · ·+ UK
...

...
(N − 1)k−1. UK−k+1 + UK−k+2 + · · ·+ UK

Fig. 1. Structure of Block k of Q(DB, θ). The structure does not depend on θ or DB. Each Uj is a place-holder for a distinct variable from Uj .

new(U2),new(U1),new(U1),new(U1) + new(U2) will pro-
duce u2(1), u1(1), u1(2), u1(3) + u2(2) as the output.

Let us partition each block k into two subsets — a subset
M that contains the k-sums which include a variable from
Uθ, and a subset I which contains all the remaining k-sums
which contain no symbols from Uθ.7

Using these definitions the algorithm is presented next.
Algorithm 1 appears at the top of the next page.

Algorithm 1 realizes the 3 principles as follows. The for-
loop in steps 5 to 14 ensures database symmetry (principle
(1)). The for-loop in steps 10 to 13 ensures message symmetry
within one database (principle (2)). Steps 7 to 8 retrieve new
desired information using existing side information (principle
(3)).

The proof that the Q(DB, θ) produced by this algorithm in-
deed satisfy the query structure described before, is presented
in Lemma 1.

3) Ordered Representation and Mapping to Message Bits
to Produce Q[θ]

DB : It is useful at this point to have an ordered
vector representation of the query structure, as well as the
query set Q(DB, θ). For the query structure, let us first order
the blocks in increasing order of block index. Then within
the k-th block, k ∈ [K], arrange the “types” of k-sums by

7The nomenclatureM and I corresponds to ‘message’ and ‘interference’,
respectively.

8For any set Q, when accessing its elements in an algorithm (e.g., for all
q ∈ Q, do . . .), the output of the algorithm will in general depend on the order
in which the elements are accessed. However, for our algorithmic descriptions
the order is not important, i.e., any form of ordered access produces an optimal
PIR scheme. By default, a natural lexicographic ordering may be assumed.

first sorting the indices into (i1, i2, · · · , ik) such that i1 <
i2 < · · · < ik, and then arranging the k-tuples (i1, i2, · · · , ik)
in increasing lexicographic order. For the query set, we have
the same arrangement for blocks and types, but then for each
given type, we further sort the multiple instances of that type
by the i index of the uk(i) term with the smallest k value in
that type. Let ~Q(DB, θ) denote the ordered representation of
Q(DB, θ). Next we will map the uk(i) variables to message
bits to produce a query vector.

Suppose each message Wk, k ∈ [K], is represented by the
vector Wk = [wk(1), wk(2), · · · , wk(NK)], where wk(i) is
the binary random variable representing the i-th bit of Wk. The
user privately chooses permutations γ1, γ2, · · · , γK , uniformly
randomly from all possible (NK)! permutations over the
index set [NK ], so that the permutations are independent of
each other and of θ. The Uk variables are mapped to the
messages Wk through the random permutation γk, ∀k ∈ [K].
Let Γ denote an operator that replaces every instance of
uk(i) with wk(γk(i)), ∀k ∈ [K], i ∈ [NK ]. For exam-
ple, Γ({u1(2), u3(4) + u5(6)}) = {w1(γ1(2)), w3(γ3(4)) +
w5(γ5(6))}. This random mapping, applied to ~Q(DB, θ) pro-
duces the actual query vector Q[θ]

DB that is sent to database DB
as

Q
[θ]
DB = “Γ

(
~Q(DB, θ)

)
” (14)

We use the double-quotes notation around a random variable
to represent the query about its realization. For example,
while w1(1) is a random variable, which may take the value
0 or 1, in our notation “w1(1)” is not random, because it
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Algorithm 1 Input: θ. Output: Query sets Q(DB, θ), ∀DB ∈ [N ]

1: Initialize: All query sets are initialized as null sets. Also initialize Block← 1;
2: for DB = 1 : N do

Q(DB, θ,Block,M) ← {new(Uθ)} (11)

Q(DB, θ,Block, I) ←
⋃

k∈[K],k 6=θ

{new(Uk)} (12)

3: end for
4: for Block = 2 : K do {Generate each block...}
5: for DB = 1 : N do {for each database...}
6: for each DB′ = 1 : N and DB′ 6= DB do {by looking at all ‘other’ databases, and...}
7: for each8 q ∈ Q(DB′, θ,Block− 1, I) do {use the ‘I’ terms from their previous block...}

Q(DB, θ,Block,M)← Q(DB, θ,Block,M) ∪ {new(Uθ) + q} (13)

{...to create new M terms for this block by adding a new Uθ variable to each term.}
8: end for (q)
9: end for (DB′)

10: for all distinct {i1, i2, · · · , iBlock} ⊂ [K]/{θ} do {For all “types” that do not include θ...}
11: for i = 1 : (N − 1)Block−1 do {generate exactly (N − 1)Block−1 new instances of each.}

Q(DB, θ,Block, I)← Q(DB, θ,Block, I) ∪ {new(Ui1) + new(Ui2) + · · ·+ new(UiBlock)}

12: end for (i)
13: end for ({i1, i2, · · · , iBlock})
14: end for (DB)
15: end for (Block)
16: for DB = 1 : N do
17: Q(DB, θ)←

⋃
Block∈[K]

(
Q(DB, θ,Block, I) ∪Q(DB, θ,Block,M)

)
18: end for

only represents the question: “what is the value of w1(1)?”
This is an important distinction, in light of constraints such
as (5) which require that queries must be independent of
messages, i.e., message realizations. Note that our queries
are indeed independent of message realizations because the
queries are generated by the user with no knowledge of
message realizations. Also note that the only randomness in
Q

[θ]
DB is because of the θ and the random permutation Γ.

C. The Two Examples Revisited
To illustrate the algorithmic formulation, let us revisit the

two examples that were presented previously from an intuitive
standpoint.

1) Example 1. N = 2,K = 2: Consider the simplest PIR
setting, with N = 2 databases, and K = 2 messages with
L = NK = 4 bits per message. Instead of our usual notation,
i.e., U1 = [u1(1), u1(2), u1(3), u1(4)], for this example it will
be less cumbersome to use the notation U1 = [a1, a2, a3, a4].
Similarly, U2 = [b1, b2, b3, b4]. The query structure and the
outputs produced by the algorithm for θ = 1 as well as for
θ = 2 are shown below. The blocks are separated by horizontal
lines. Within each block the I terms are highlighted in red and
the M terms are in black. Note that there are no terms in I
for the last block (Block K), because there are no K-sums
that do not include the Uθ variables.

Query Structure
~Q(DB, θ)

Block 1 U1

U2

Block 2 U1 + U2

Ordered Output of Algorithm 1 for θ = 1

~Q(DB1, θ = 1) ~Q(DB2, θ = 1)
a1 a2

b1 b2
a3 + b2 a4 + b1

Ordered Output of Algorithm 1 for θ = 2

~Q(DB1, θ = 2) ~Q(DB2, θ = 2)
a1 a2

b1 b2
a2 + b3 a1 + b4

To verify that the scheme is correct, note that whether θ = 1
or θ = 2, every desired bit is either downloaded directly (block
1) or appears with known side information that is available
from the other database. To see why privacy holds, recall that
the queries are ultimately presented to the database in terms
of the message variables and the mapping from Uk to Wk
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is uniformly random and independent of θ. So, consider an
arbitrary realization of the query with (distinct) message bits
w1(i1), w2(i2) from W1 and w2(j1), w2(j2) from W2.

Γ( ~Q(DB, θ))
w1(i1)
w2(j1)

w1(i2) + w2(j2)

Given this query, the probability that it was generated for
θ = 1 is (( 1

4 )( 1
3 ))2 = 1

144 , which is the same as the
probability that it was generated for θ = 2. Thus, the query
provides the database no information about θ, and the scheme
is private. This argument is presented in detail and generalized
to arbitrary K and N in Lemma 3. Finally, consider the rate
of this scheme. The total number of downloaded bits is 6, and
the number of desired bits downloaded is 4, so the rate of
this scheme is 4/6 = 2/3 which matches the capacity for this
case.

2) Example 2. N = 3,K = 3: The second example is when
K = 3, N = 3. In this case, both messages have L = NK =
27 bits. U1 = [a1, a2, · · · , a27], U2 = [b1, b2, · · · , , b27], U3 =
[c1, c2, · · · , c27]. The query structure is shown below.

~Q(DB, θ)
Block 1 U1

U2

U3

Block 2 U1 + U2

U1 + U2

U1 + U3

U1 + U3

U2 + U3

U2 + U3

Block 3 U1 + U2 + U3

U1 + U2 + U3

U1 + U2 + U3

U1 + U2 + U3

The output of Algorithm 1, for θ = 1, is shown next.

~Q(DB1, θ = 1) ~Q(DB2, θ = 1) ~Q(DB3, θ = 1)
a1 a2 a3
b1 b2 b3
c1 c2 c3

a4 + b2 a8 + b1 a12 + b1
a6 + b3 a10 + b3 a14 + b2
a5 + c2 a9 + c1 a13 + c1
a7 + c3 a11 + c3 a15 + c2
b4 + c4 b6 + c6 b8 + c8
b5 + c5 b7 + c7 b9 + c9

a16 + b6 + c6 a20 + b4 + c4 a24 + b4 + c4
a17 + b7 + c7 a21 + b5 + c5 a25 + b5 + c5
a18 + b8 + c8 a22 + b8 + c8 a26 + b6 + c6
a19 + b9 + c9 a23 + b9 + c9 a27 + b7 + c7

The output of Algorithm 1, for θ = 2, is shown next.

~Q(DB1, θ = 2) ~Q(DB2, θ = 2) ~Q(DB3, θ = 2)
a1 a2 a3
b1 b2 b3
c1 c2 c3

a2 + b4 a1 + b8 a1 + b12
a3 + b6 a3 + b10 a3 + b14
a4 + c4 a6 + c6 a8 + c8
a5 + c5 a7 + c7 a9 + c9
b5 + c2 b9 + c1 b13 + c1
b7 + c3 b11 + c3 b15 + c3

a6 + b16 + c6 a4 + b20 + c4 a4 + b24 + c4
a7 + b17 + c7 a5 + b21 + c5 a5 + b25 + c5
a8 + b18 + c8 a8 + b22 + c8 a6 + b26 + c6
a9 + b19 + c9 a9 + b23 + c9 a7 + b27 + c7

The output of Algorithm 1, for θ = 3, is shown next.

~Q(DB1, θ = 3) ~Q(DB2, θ = 3) ~Q(DB3, θ = 3)
a1 a2 a3
b1 b2 b3
c1 c2 c3

a4 + b4 a6 + b6 a8 + b8
a5 + b5 a7 + b7 a9 + b9
a2 + c4 a1 + c8 a1 + c12
a3 + c6 a3 + c10 a2 + c14
b2 + c5 b1 + c9 b1 + c13
b3 + c7 b3 + c11 b2 + c15

a6 + b6 + c16 a4 + b4 + c20 a4 + b4 + c24
a7 + b7 + c17 a5 + b5 + c21 a5 + b5 + c25
a8 + b8 + c18 a8 + b8 + c22 a6 + b6 + c26
a9 + b9 + c19 a9 + b9 + c23 a7 + b7 + c27

Note that this construction retrieves 27 desired message bits
out of a total of 39 downloaded bits, so its rate is 27/39 =
9/13, which matches the capacity for this case.

D. Proof of Correctness, Privacy and Achieving Capacity

The following lemma confirms that the query set produced
by the algorithm satisfies the required structural properties.

Lemma 1: (Structure of Q(DB, θ)) For any θ ∈ [K] and
for any DB ∈ [N ], the Q(DB, θ) produced by Algorithm 1
satisfies the following properties.

1) For all k ∈ [K], block k contains exactly (N − 1)k−1

instances of k-sums of each possible type.
2) No uk(i), i ∈ [NK ] variable appears more than once

within Q(DB, θ) for any given DB.
3) Exactly NK−1 variables for each Uk, k ∈ [K], appear

in the query set Q(DB, θ).
4) The size of Q(DB, θ) is NK−1 + 1

N−1 (NK−1 − 1).
Proof:

1) Fix any arbitrary N . The proof is based on induction on
the claim S(k), defined as follows.
S(k) : “Block k contains exactly (N − 1)k−1 instances
of k-sums of all possible types.”
The basis step is when k = 1. This step is easily verified,
because a 1-sum is simply one variable, of which there
are K possible types, and from (11), (12) in Algorithm
1, we note that the first block always consists of one
variable of each vector Uk, k ∈ [K].
We next proceed to the inductive step. Suppose S(k) is
true. Then we wish to prove that S(k+1) must be true as
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well. Here we have Block = k+1. First, consider (k+1)-
sums of type {i1, i2, · · · , ik+1} ⊂ [K]/{θ} where none
of the indices is θ. These belong in Q(DB, θ, k + 1, I),
and from line 11 of the algorithm it is verified that
exactly (N−1)Block−1 = (N−1)k instances are generated
of this type. Next, consider the (k + 1)-sums of type
{i1, i2, · · · , ik, θ} where one of the indices is θ. These
belong to Q(DB, θ, k+1,M) and are obtained by adding
new(Uθ) to each of the k-sums of type {i1, i2, · · · , ik}
that belong to Q(DB′, θ, k, I) for all DB′ 6= DB. There-
fore, the number of instances of (k + 1)-sums of type
{i1, i2, · · · , ik, θ} in Q(DB, θ, k+ 1,M) must be equal
to the product of the number of ‘other’ databases DB′,
which is equal to N − 1, and the number of instances
of type {i1, i2, · · · , ik} in each database DB′, which is
equal to (N−1)k−1 because S(k) is assumed to be true
as the induction hypothesis. (N − 1) × (N − 1)k−1 =
(N − 1)k, and thus, we have shown that S(k + 1) is
true, completing the proof by induction.

2) From (11),(13), we see that for each block, the desired
variables, i.e., the Uθ variables appear only through the
new(Uθ) function so that each of them only appears
once. For the non-desired variables Uk, k 6= θ, we see
that the only time that they do not appear through the
new(Uk) function is when they enter through q in (13).
However, from (13) we see that these variables come
from the I part of the previous block of other databases,
where each of them was only introduced once through a
new(Uk) function. Moreover, each term from the I part
of the previous block of other databases is used exactly
once. Therefore, these Uk variables also appear no more
than once in the query set of a given database.

3) Since we have shown that no variable appears more than
once, we only need to count the number of times each
vector Uk, k ∈ [K] is invoked within Q(DB, θ). Consider
any particular vector, say Uj . The number of possible
types of k-sums that include index j is

(
K−1
k−1

)
. As we

have also shown, the k-th block contains (N − 1)k−1

instances of k-sums of each type. Therefore, the number
of instances of vector Uj in block k is (N−1)k−1

(
K−1
k−1

)
.

Summing over all K blocks within Q(DB, θ) we find
K∑
k=1

(N − 1)k−1

(
K − 1

k − 1

)
= (N − 1 + 1)K−1 (Binomial Identity) (15)
= NK−1 (16)

4) The k-th block of Q(DB, θ) contains (N − 1)k−1 in-
stances of k-sums of each possible type, and there are(
K
k

)
possible types of k-sums. Therefore, the cardinality

of Q(DB, θ) is

|Q(DB, θ)|

=

K∑
k=1

(N − 1)k−1

(
K

k

)
(17)

=

K∑
k=1

(N − 1)k−1

[(
K − 1

k

)
+

(
K − 1

k − 1

)]

(18)

(16)
= NK−1 +

K−1∑
k=1

(N − 1)k−1

(
K − 1

k

)
(19)

= NK−1 +
1

N − 1

K−1∑
k=1

(N − 1)k
(
K − 1

k

)
(20)

= NK−1 +
1

N − 1
(NK−1 − 1) (21)

We are now ready to prove that the achievable scheme is
correct, private and achieves the capacity, in the following two
lemmas.

Lemma 2: The scheme described in Algorithm 1 is correct
and the rate achieved is (1 + 1/N + · · ·+ 1/NK−1)−1, which
matches the capacity.

Proof: The scheme is correct, i.e., all desired variables,
Uθ, are decodable (with zero error probability), because either
they appear with no interference (the first block) or they appear
with interference q that is also downloaded separately from
another database DB′ so it can be subtracted. From Lemma
1 we know that there are NK−1 desired bit-variables in each
Q(DB, θ). Note that desired variables always appear through
new(Uθ), so they do not repeat across databases. Thus, the
total number of desired bits that are retrieved is N×NK−1 =
NK .

We next compute the rate. The total number of desired bits
retrieved is NK , and the total number of downloaded bits from
all databases is N × |Q(DB, θ)| in every case. Therefore, the
rate,

R =
NK

N × |Q(DB, θ)|
(22)

=
NK

N [NK−1 + 1
N−1 (NK−1 − 1)]

(23)

=

(
NK−1 + 1

N−1 (NK−1 − 1)

NK−1

)−1

(24)

=

(
1 +

1
N−1 (NK−1 − 1)

NK−1

)−1

(25)

=

(
1 +

1
N (1− 1

NK−1 )

1− 1
N

)−1

(26)

=

(
1 +

1

N
+ · · ·+ 1

NK−1

)−1

(27)

Lemma 3: The scheme described in Algorithm 1 is private.
Proof: The intuition is quite straightforward. Regardless

of θ, every realization of the query vector that fits the query
structure is equally likely because of the uniformly random
permutation Γ. To formalize this intuition, let us calculate the
probability of an arbitrary query realization.

For any DB ∈ [N ], θ ∈ [K], consider the
ordered query vector representation ~Q(DB, θ). For
each Uk, k ∈ [K], denote the order in which
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these symbols appear in ~Q(DB, θ), as ~uk(DB, θ) =
[uk(ik,DB,θ,1), uk(ik,DB,θ,2), · · · , uk(ik,DB,θ,NK−1)].
Since the ordered query structure is already fixed
regardless of θ and DB, and no variable occurs more
than once, ~Q(DB, θ) is completely determined by
(~u1(DB, θ), ~u2(DB, θ), · · · , ~uK(DB, θ)). Similarly, for each
k ∈ [K], denote an arbitrary NK−1-tuple of bits from
message Wk by ~wk = [wk(i′k1

), wk(i′k2
), · · · , wk(i′kNK−1

)].
Recall that uk(i) = wk(γk(i)), ∀k ∈ [K], i ∈ [NK ],
and γ1, γ2, · · · , γK are uniform permutations chosen
independently of each other and also independently of θ.
Therefore, for all (~w1, ~w2, · · · , ~wK), we have

Prob
(

Γ (~u1(DB, θ), ~u2(DB, θ), · · · , ~uK(DB, θ)) = . . .

. . . (~w1, ~w2, · · · , ~wK)
)

(28)

=

K∏
k=1

Prob
(

Γ(~uk(DB, θ)) = ~wk

)
(29)

=

((
1

NK

)(
1

NK − 1

)
· · ·
(

1

NK −NK−1 + 1

))K
(30)

which does not depend on θ. Thus, the distribution of ~Q(DB, θ)
does not depend on θ. Since Q[θ]

DB is a function of ~Q(DB, θ),
Q

[θ]
DB must be independent of θ as well. Next, we show that

privacy requirement (8) must be satisfied.

I(θ;Q
[θ]
DB , A

[θ]
DB ,W1:K)

= I(θ;Q
[θ]
DB ) + I(θ;W1:K |Q[θ]

DB ) + I(θ;A
[θ]
DB |W1:K , Q

[θ]
DB )

(31)
= 0 + 0 + 0 = 0 (32)

where I(θ;Q
[θ]
DB ) = 0 because we have already proved that

Q
[θ]
DB is independent of θ, I(θ;W1:K |Q[θ]

DB ) = 0 because
the desired message index and the query are generated pri-
vately by the user with no knowledge of the messages, and
I(θ;A

[θ]
DB |W1:K , Q

[θ]
DB ) = 0 because the answer is deterministic

function of the query and messages. Therefore, all information
available to database DB (Q[θ]

DB , A
[θ]
DB ,W1, · · · ,WK) is indepen-

dent of θ and the scheme is private.
Remark: From the proofs of privacy and correctness, note

that the key is the query structure and the random mapping,
Γ, of message bits to the query structure. In particular,
no assumption is required on the statistics of the messages
themselves. So the scheme works and a rate equal to Co
remains achievable even if the messages are not independent,
although it may no longer be the capacity for this setting. For
example, if N = K = 2 and the two messages are identical,
W1 = W2, then clearly the capacity is 1, which is higher than
Co = 2/3. The independence of the messages is, however,
needed for the converse.

We end this section with a lemma that highlights a curious
property of our capacity achieving PIR scheme – that if
the scheme is projected onto any subset of messages by
eliminating the remaining messages, it also achieves the PIR
capacity for that subset of messages.

Lemma 4: Given a capacity achieving scheme generated by
Algorithm 1 for K messages, if we set ∆, 1 ≤ ∆ ≤ K − 1
messages to be null, then the scheme achieves the capacity for
the remaining K −∆ messages.

Proof: We first prove that the scheme is correct after
eliminating messages. This is easy to see as eliminating
messages does not hurt (influence) the decoding procedure.
Note that the eliminated messages can not include the desired
one. We next prove that the scheme is also private. This is
also easy to see as the permutations of the messages are
independent, so that after eliminating messages, the bits of
the remaining messages still distribute identically, no matter
which message is desired. We finally compute the rate and
show that the scheme achieves the capacity for the remaining
messages. Note that the total number of desired bits does not
change, i.e., it is still NK . The total number of downloaded
equations decreases, as ∆ messages are set to 0. In particular,
the following number of equations becomes 0.

N

∆∑
k=1

(
∆

k

)
(N − 1)k−1 (33)

= N
1

N − 1

[
∆∑
k=0

(
∆

k

)
(N − 1)k − 1

]
(34)

= N
1

N − 1
(N∆ − 1) (35)

Subtracting above from N |Q(DB, θ)|, we have the total num-
ber of downloaded equations. Therefore, the rate achieved is

R =
NK

N |Q(DB, θ)| −N 1
N−1 (N∆ − 1)

(36)

=
NK

N [NK−1 + 1
N−1 (NK−1 − 1)− 1

N−1 (N∆ − 1)]

(37)

=

(
NK−1 + 1

N−1 (NK−1 −N∆)

NK−1

)−1

(38)

=

(
1 +

1
N−1 (NK−1 −N∆)

NK−1

)−1

(39)

=

(
1 +

1
N (1− 1

NK−∆−1 )

1− 1
N

)−1

(40)

=

(
1 +

1

N
+ · · ·+ 1

NK−∆−1

)−1

(41)

which matches the capacity.

V. THEOREM 1: CONVERSE

Note that the converse is proved for arbitrary L, i.e., we
no longer assume that L = NK . Let us start with two useful
lemmas. Note that in the proofs, the relevant equations needed
to justify each step are specified by the equation numbers set
on top of the (in)equality symbols.

Lemma 5: I(W2:K ;Q
[1]
1:N , A

[1]
1:N |W1) ≤ L(1/R−1+o(L)).
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Proof:

I(W2:K ;Q
[1]
1:N , A

[1]
1:N |W1)

(3)
= I(W2:K ;Q

[1]
1:N , A

[1]
1:N ,W1) (42)

= I(W2:K ;Q
[1]
1:N , A

[1]
1:N )

+ I(W2:K ;W1|Q[1]
1:N , A

[1]
1:N ) (43)

(7)
= I(W2:K ;Q

[1]
1:N , A

[1]
1:N ) + o(L)L (44)

(5)
= I(W2:K ;A

[1]
1:N |Q

[1]
1:N ) + o(L)L (45)

= H(A
[1]
1:N |Q

[1]
1:N )−H(A

[1]
1:N |Q

[1]
1:N ,W2:K)

+ o(L)L (46)

≤ D −H(W1, A
[1]
1:N |Q

[1]
1:N ,W2:K)

+H(W1|A[1]
1:N , Q

[1]
1:N ,W2:K) + o(L)L (47)

(9)(6)(7)
= L/R−H(W1|Q[1]

1:N ,W2:K) + o(L)L (48)
(5)(3)(4)

= L/R− L+ o(L)L = L(1/R− 1 + o(L))

(49)

Lemma 6: For all k ∈ {2, · · · ,K},

I(Wk:K ;Q
[k−1]
1:N , A

[k−1]
1:N |W1:k−1)

≥ 1

N
I(Wk+1:K ;Q

[k]
1:N , A

[k]
1:N |W1:k) +

L(1− o(L))

N
.

Proof:

NI(Wk:K ;Q
[k−1]
1:N , A

[k−1]
1:N |W1:k−1)

≥
N∑
n=1

I(Wk:K ;Q[k−1]
n , A[k−1]

n |W1:k−1) (50)

(8)
=

N∑
n=1

I(Wk:K ;Q[k]
n , A

[k]
n |W1:k−1) (51)

≥
N∑
n=1

I(Wk:K ;A[k]
n |W1:k−1, Q

[k]
n ) (52)

(6)
=

N∑
n=1

H(A[k]
n |W1:k−1, Q

[k]
n ) (53)

≥
N∑
n=1

H(A[k]
n |W1:k−1, Q

[k]
1:N , A

[k]
1:n−1) (54)

(6)
=

N∑
n=1

I(Wk:K ;A[k]
n |W1:k−1, Q

[k]
1:N , A

[k]
1:n−1) (55)

= I(Wk:K ;A
[k]
1:N |W1:k−1, Q

[k]
1:N ) (56)

(5)(3)
= I(Wk:K ;Q

[k]
1:N , A

[k]
1:N |W1:k−1) (57)

(7)
= I(Wk:K ;Wk, Q

[k]
1:N , A

[k]
1:N |W1:k−1)− o(L)L

(58)
= I(Wk:K ;Wk|W1:k−1)

+ I(Wk:K ;Q
[k]
1:N , A

[k]
1:N |W1:k)− o(L)L (59)

(3)(4)
= L+ I(Wk:K ;Q

[k]
1:N , A

[k]
1:N |W1:k)− o(L)L (60)

= I(Wk+1:K ;Q
[k]
1:N , A

[k]
1:N |W1:k) + L(1− o(L))

(61)

With these lemmas we are ready to prove the converse.

Proof of Converse of Theorem 1

Starting from k = 2 and applying Lemma 6 repeatedly for
k = 3 to K,

I(W2:K ;Q
[1]
1:N , A

[1]
1:N |W1)

≥ L

N
(1− o(L)) +

1

N
I(W3:K ;Q

[2]
1:N , A

[2]
1:N |W1,W2)

(62)

≥ L

N
(1− o(L)) +

1

N

[ L
N

(1− o(L)) + . . .

. . .
1

N
I(W4:K ;Q

[3]
1:N , A

[3]
1:N |W1:3)

]
(63)

= L(1− o(L))(
1

N
+

1

N2
)

+
1

N2
I(W4:K ;Q

[3]
1:N , A

[3]
1:N |W1:3) (64)

≥ · · · (65)

≥ L(1− o(L))(
1

N
+ · · ·+ 1

NK−2
)

+
1

NK−2
I(WK ;Q

[K−1]
1:N , A

[K−1]
1:N |W1:K−1) (66)

≥ L(1− o(L))(
1

N
+ · · ·+ 1

NK−1
) (67)

Combining Lemma 5 and (67), we have

L(
1

R
− 1 + o(L)) ≥ L(1− o(L))(

1

N
+ · · ·+ 1

NK−1
) (68)

Dividing both sides by L and letting L go to infinity gives us

1

R
− 1 ≥

(
1

N
+ · · ·+ 1

NK−1

)
(69)

⇒ R ≤
(

1 +
1

N
+ · · ·+ 1

NK−1

)−1

(70)

thus, completing the proof.

VI. DISCUSSION

In this section we share some interesting insights beyond
the capacity characterization.

Upload Cost: To ensure privacy, we appealed to random-
ization arguments. To specify the randomly chosen query to
the databases incurs an upload cost. For large messages the
upload cost is negligible relative to the download cost, so
it was ignored in this work. However, if the upload cost
is a concern then it could be optimized as well. Random
permutations of message bits are sufficient for privacy, but it
is easy to see that the upload cost can be reduced by reducing
the number of possibilities to be considered. For example,
consider the K = 2 messages, N = 2 databases setting.
We can group the bits, i.e., we can divide the 4 bits of each
message into 2 groups, so that when we choose 2 bits, we
only choose 2 bits from the same group. This reduces the
choice to 1 out of 2 groups (rather than 2 out of 4 bits).
Further, it may be possible to avoid random permutations
among the chosen bits (group). For the same K = 2 messages
and N = 2 databases example, we can fix the order within
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Prob. 1/2 Prob. 1/2
Want W1 Want W2 Want W1 Want W2

Database 1 u1, v1, u2 + v2 u1, v1, u2 + v2 u3, v3, u4 + v4 u3, v3, u4 + v4

Database 2 u4, v2, u3 + v1 u2, v4, u1 + v3 u2, v4, u1 + v3 u4, v2, u3 + v1

each group and the scheme becomes the following, shown
at the top of this page. We denote the messages bits as
W1 = {u1, u2, u3, u4},W2 = {v1, v2, v3, v4}.

Note that regardless of which message is desired, the user is
equally likely to request either u1, v1, u2+v2 or u3, v3, u4+v4

from DB1, and either u2, v4, u1 + v3 or u4, v2, u3 + v1 from
DB2, so the scheme is private. However, each query is now
limited to only 2 possibilities, thereby significantly reducing
the upload cost. Also note that instead of storing all 8 bits
that constitute the two messages, each database only needs to
store 6 bits in this case, corresponding to the two possible
queries that it may face. Reducing the storage overhead is an
interesting question that has been explored by Fazeli, Vardy
and Yaakobi in [32].

Another interesting question in this context is to determine
the upload constrained capacity. An information theoretic
perspective is still useful. For example, since we are able to
reduce the upload cost for K = 2, N = 2 to two possibilities,
one might wonder if it is possible to reduce the upload cost
of the K = 3, N = 2 setting to 3 possibilities without loss
of capacity. Let us label the three possible downloads from
DB1 as f1, f2, f3 and the three possible downloads from DB2
as g1, g2, g3. We wish to find out if the original PIR capacity
of 4/7 is still achievable under these upload constraints. As
we show next, the capacity is strictly reduced. With uploads
limited to choosing one out of only 3 possibilities, the upload
constrained capacity of the K = 3, N = 2 setting is 1/2
instead of 4/7. Eliminating trivial degenerate cases, in this
case there is no loss of generality in assuming that we
can recover W1 from any one of these three possibilities:
(f1, g1), (f2, g2), (f3, g3); we can recover W2 from any one
of these three possibilities: (f1, g2), (f2, g3), (f3, g1); and we
can recover W3 from any one of these three possibilities:
(f1, g3), (f2, g1), (f3, g2). Then, for the optimal scheme we
have

H(W1) = I(W1; f1, g1) (71)
≤ 2H(A)−H(f1, g1|W1) (72)

Similarly, H(W1) ≤ 2H(A)−H(f2, g2|W1) (73)

Adding the two,

2H(W1) ≤ 4H(A)−H(f1, g1, f2, g2|W1) (74)
≤ 4H(A)−H(W1,W2,W3|W1) (75)
≤ 4H(A)−H(W2,W3) (76)

⇒ C = H(W1)/2H(A) ≤ 1/2 (77)

Here, 2H(A) is the total download. (75) follows because from
f1, g1, f2, g2 we can recover all three messages. Thus, if the
upload can only resolve one out of three possibilities for the
query to each database, then the capacity of such a PIR scheme

cannot be more than 1/2, which is strictly smaller than the PIR
capacity without upload constraints, 4/7. In fact, the upload
constrained capacity in this case is exactly 1/2, as shown by
the following achievable scheme which is interesting in its own
right for how it fully exploits interference alignment. Suppose
W1,W2,W3 are symbols from a sufficiently large finite field
(e.g., F5). Then the following construction works.

f1 = W1 + 2W2 +W3 (78)
f2 = W1 + 4W2 + 3W3 (79)
f3 = 3W1 + 4W2 + 6W3 (80)
g1 = W1 + 4W2 + 2W3 (81)
g2 = 3W1 + 4W2 + 3W3 (82)
g3 = 2W1 + 4W2 + 6W3 (83)

It is easy to verify that W1 can be recovered from any one
of (f1, g1), (f2, g2), (f3, g3); W2 can be recovered from any
one of (f1, g2), (f2, g3), (f3, g1); and W3 can be recovered
from any one of (f1, g3), (f2, g1), (f3, g2). The reason we can
recover the desired message symbol from two equations, even
though all three message symbols are involved in those two
equations, is because of this special construction, which forces
the undesired symbols to align into one dimension in every
case. Thus, the upload constrained capacity for K = 3, N = 2
when the randomness is limited to choosing one out of 3 pos-
sibilities, is 1/2. Answering this question for arbitrary K,N
and arbitrary upload constraints is an interesting direction for
future work.

Message Size: The information theoretic formulation of the
PIR problem allows the sizes of messages to grow arbitrarily
large. A natural question is this – how large do we need each
message to be for the optimal scheme. In our scheme, each
message consists of NK bits. However, even for our capacity
achieving PIR scheme, the size of a message may be reduced.
As an example, for the same K = 2 messages and N = 2
databases setting, the following PIR scheme works just as well
(still achieves the same capacity) when each message is only
made up of 2 bits: W1 = (u1, u2), W2 = (v1, v2).

Prob. 1/2 Prob. 1/2
Want W1 Want W2 Want W1 Want W2

Database 1 u1, v2 u1, v2 u2, v1 u2, v1

Database 2 u2 + v2 u1 + v1 u1 + v1 u2 + v2

Determining the smallest message size needed to achieve the
PIR capacity, or the message size constrained PIR capacity, is
another interesting direction for future work.

Similarities between PIR and Blind Interference Align-
ment:

The idea of blind interference alignment was introduced in
[13] to take advantage of the diversity of coherence intervals
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that may arise in a wireless network. For instance, different
channels may experience different coherence times and co-
herence bandwidths. A diversity of coherence patterns can
also be artificially induced by the switching of reconfigurable
antennas in pre-determined patterns. As one of the simplest
examples of BIA, consider a K user interference channel,
where the desired channels have coherence time 1, i.e., they
change after every channel use, while the cross channels
(which carry interference) have coherence time 2, i.e., they
remain unchanged over two channel uses. The transmitters are
aware of the coherence times but otherwise have no knowledge
of the channel coefficients. The BIA scheme operates over
two consecutive channel uses. Over these two channel uses,
each transmitter repeats its information symbol, and each
receiver simply calculates the difference of its received signals.
Since the transmitted symbols remain the same and the cross
channels do not change, the difference of received signals
from the two channel uses eliminates all interference terms.
However, because the desired channels change, the desired
information symbols survive the difference at each receiver.
Thus, one desired information symbol is successfully sent for
each message over 2 channel uses, free from interference,
achieving 1

2 DoF per message. Remarkably, this is essentially
identical to the example of PIR included in the introduction,
i.e., (1), (2). Applications of BIA extend well beyond this
simple example [33], [34], [35], [36]. For instance, in the X
channel comprised of M transmitters and K receivers, using
only the knowledge of suitable channel coherence patterns,
BIA schemes achieve MK

M+K−1 DoF, which cannot be im-
proved upon even with perfect channel knowledge [13], [33].
The connection to PIR also extends naturally as follows.

The number of users in the BIA problem translates into the
number of messages in the PIR problem. The received signals
for user θ in BIA, translate into the answering strings when
message Wθ is the desired message in the PIR problem. The
channel vectors associated with user θ in the BIA problem
translate into the query vectors for desired message Wθ in the
PIR problem. The privacy requirement of the PIR scheme takes
advantage of the observation that in BIA, over each channel
use, the received signal at each receiver is statistically equiva-
lent, because the transmitter does not know the channel values
and the channel to each receiver has the same distribution. The
most involved aspect of translating from BIA to PIR is that in
BIA, the knowledge of the channel realizations across channel
uses reveals the switching pattern, which in turn reveals the
identity of the receiver. To remove this identifying feature of
the BIA scheme, the channel uses are divided into subgroups
such that the knowledge of the switching pattern within each
group reveals nothing about the identity of the receiver. Each
sub-group of channel uses is then associated with a different
database. Since the databases are not allowed to communicate
with each other, and each sub-group of queries (channel uses)
reveals nothing about the message (user), the resulting scheme
guarantees privacy. Finally, the symmetric degrees of freedom
(DoF) value per user in BIA is the ratio between the number
of desired message symbols and the number of channel uses
(received signal equations), and the rate R in PIR is the ratio
between the number of symbols of the desired message and the

total number of equations in all answering strings. In this way,
the DoF value achieved with BIA translates into the rate of
the corresponding PIR protocol, i.e., R = DoF. We summarize
these connections in the following table.

PIR BIA
Message Receiver
Queries Channel Coefficients
Answers Received Signals

Rate DoF

Recognizing this connection between PIR and BIA directly
leads to capacity achieving PIR schemes for K = 2 messages,
and arbitrary number of databases N , as in [10], by translating
from known optimal BIA schemes. However, for K > 2,
the PIR framework generalizes the BIA framework. This is
because the coherence patterns that are assumed to exist in
BIA are typically motivated by the distinct coherence times,
coherence bandwidths, or antenna switching patterns that are
feasible in wireless settings. However, since PIR is not bound
by wireless phenomena, it allows for arbitrary coherence
patterns, including many possibilities that would be considered
infeasible in wireless settings. Even the simple scheme of
BIA for the K user interference channel presented earlier, was
originally noted in BIA [13] merely as a matter of curiosity
rather than having any physical significance. As such, while
our initial insights into PIR came by viewing it as a special
case of existing BIA schemes, the new capacity achieving
PIR schemes introduced in this work go well beyond existing
results in BIA, by allowing arbitrary coherence patterns.

VII. CONCLUSION

Information theorists commonly study the optimal coding
rates of communication problems dealing with a few messages,
each carrying an asymptotically large number of bits, while
computer scientists often study the computational complexity
of problems dealing with an asymptotically large number
of messages, each carrying only a few bits (e.g., 1 bit per
message). The occasional crossover of problems between the
two fields opens up exciting opportunities for new insights.
A prominent example is the index coding problem [1], [2],
originally posed by computer scientists and recently studied
from an information theoretic perspective. The information
theoretic capacity characterization for the index coding prob-
lem is now recognized as perhaps one of the most important
open problems in network information theory, because of
its fundamental connections to a broad range of questions
that includes topological interference management, network
coding, distributed storage, hat guessing, and non-Shannon
information inequalities. Like index coding, the PIR problem
also involves non-trivial interference alignment principles and
is related to problems like blind interference alignment [13]
that have previously been studied in the context of wireless
networks. In fact, it was the pursuit of these connections that
brought us to the PIR problem [10]. Further, PIR belongs to
another rich class of problems studied in computer science,
with deep connections to oblivious transfer [14], instance hid-
ing [15], [16], [17], and distributed computation with untrusted
servers [18]. Bringing this class of problems into the domain
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of information theoretic studies holds much promise for new
insights and fundamental progress. The characterization of the
information theoretic capacity of Private Information Retrieval
is a step in this direction.
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