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Abstract—Starting from the elemental 2 × 2 × 2 interference
channel, there has been much progress in the understanding
of multihop multiflow wireless networks through degrees of
freedom (DoF) studies that have produced important ideas such
as (aligned) interference neutralization. However, much of this
progress has been limited to layered connectivity models that are
essentially motivated by the assumption that wireless networks
can only operate in half-duplex mode. Motivated by recent
breakthroughs in full-duplex radio technology, in this work we
expand the 2× 2× 2 interference channel model beyond layered
connectivity in order to study the impact of full-duplex operation.
In particular we study the impact of intra-layer connectivity
between relays that are in the same layer, the impact of direct
inter-layer connectivity between sources and destinations, and
the impact of intermediate inter-layer connectivity that connects
sources or destinations, not directly to each other, but to relay
nodes in non-adjacent layers in a 2 × 2 × 2 × 2 interference
channel. We show that intra-layer links and intermediate inter-
layer interference links do not cause a collapse of DoF while
direct interference links do cause a collapse of DoF.

Index Terms—Capacity, degrees of freedom, full-duplex, inter-
ference neutralization, multihop multiflow

I. INTRODUCTION

Characterizing the capacity of wireless networks is one of
the most important problems of network information theory.
Recent years have seen rapid progress on mainly two settings:
single flow multihop networks and single hop multiflow (inter-
ference) networks. In [1], it is shown that the capacity (within a
constant gap) of the single source multihop multicast network
is given by the network min-cut. In [2], the capacity of a
wireless multihop broadcast network where a single source
sends independent messages to multiple destinations over a
multihop network is characterized within a constant gap from
the cut-set bound. On the other hand, a variety of capacity
approximations in the form of DoF, generalized degrees of
freedom (GDoF), capacity within a constant gap and even
the exact capacity have been obtained for various single hop
interference networks [3], [4].
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Spurred by the advances in single hop multiflow, and
multihop single flow settings, there has been increasing interest
in the setting that combines the two — the multihop multiflow
setting, starting with the most elemental multihop multiflow
network, the 2×2×2 interference channel formed by concate-
nation of two 2-user interference channels. In [5], it is shown
that the 2 × 2 × 2 interference network achieves the cut-set
outer bound value of 2 DoF for almost all channel coefficients.
In [6], Shomorony and Avestimehr characterize the DoF for
two-unicast layered wireless networks with arbitrary number
of layers, arbitrary number of nodes per layer, and arbitrary
connectivity between adjacent layers. It is shown that 2 unicast
layered wireless networks can only have 1, 2 or 3/2 DoF.
A related work on 2 unicast networks by Wang, Kamath
and Tse in [7] characterizes the capacity region for two
unicast information flows over a layered linear deterministic
network. The DoF result for the layered two unicast problem
is generalized by Wang, Gou and Jafar in [8] allowing all
possible unicasts between 2 sources and 2 destinations. In this
setting, known as 2-source 2-sink all-unicast layered wireless
networks (also known as multihop X networks), each source
has an independent message for each destination. Wang, Gou
and Jafar show in [8] that with arbitrary number of nodes in
each layer and with arbitrary connectivity between adjacent
layers, the DoF belong to the set {1, 4/3, 3/2, 5/3, 2} almost
surely.

The 2 × 2 × 2 setting has been successfully extended in
several directions, including finite-field settings in [9], time-
varying linear schemes in [10], [11], [12], [13] and to the
K × K × K network in [14]. However, the extensions have
been limited primarily to layered network models, in large part
due to the traditional assumption that wireless networks must
operate in a half-duplex mode. With the growing interest and
remarkable recent progress in building practical full-duplex
radios [15], [16], [17], [18], [19], [20], [21], it is clear that
this traditional assumption is no longer valid. Consequently,
there is the need to update the theoretical models to include
the full-duplex assumption, and to understand the implications
of full-duplex operation in challenging network settings such
as the multihop multiflow problem. This work presents the
outcomes of our efforts in this direction.

Layered network models are essentially motivated by the
assumption of half-duplex communication where each layer,
i.e., all nodes in a layer, are either transmitting or receiving at
any time, but not both simultaneously. Thus, the nodes within
each layer do not hear each other. Also, among all layers that
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Fig. 1. 2× 2× 2 IC with interfering relays

Fig. 2. The 2× 2× 2 IC with arbitrary connectivity

are within communication range of each other, only one layer
is active at any time. However, in full-duplex communications,
this is not the case. Since the nodes can receive and transmit
simultaneously, all nodes within a layer can hear each other as
well, resulting in intra-layer links. For example, consider the
simplest setting of multihop interference networks consisting
of 2 sources, 2 relays and 2 destinations as shown in Fig.
1. If relay nodes R1 and R2 are assumed to be half-duplex
and they are always either both transmitting or both receiving
simultaneously, then they cannot hear each other, i.e., the links
between them do not exist. This is no longer the case if
R1 and R2 can transmit and receive simultaneously. While
a first order capacity characterization in the form of DoF for
the layered case is known to meet the min-cut outer bound
in [5], it remains unknown if this is still the case when
there are interfering links between two relays due to full-
duplex operations. It is this problem that we would like to
explore first in this paper. As will be shown in Section II,
the min-cut outer bound of 2 DoF is still achieved in this
case. The achievable scheme is built upon aligned interference
neutralization, originally introduced in [5] for the case without
interfering relays, with interesting modifications needed to
cancel intra-layer interference by exploiting the memory of
sources and relays.

With the understanding of how to deal with the intra-layer
interference between relays, we further allow the sources and
destinations to operate in the full-duplex mode. In this case,
since every node can transmit and receive simultaneously,
there may exist a two-way link between any two nodes de-
pending on the communication ranges, leading to all possible
connectivities as shown in the red dashed links in Fig. 2. Note
that two links between any two nodes in the figure represent
the forward link (due to transmitting) and the backward link
(due to receiving), respectively. For this network, it has already
been shown in [24] that if there is a direct interfering link
from a source to the other destination, the DoF collapse to
one. However, it remains unknown if such DoF collapse still
happens without direct interfering links. This is the problem
that we explore in Section III. What we show in this work is
that for all cases without direct interfering links, the min-cut

Fig. 3. 2× 2× 2× 2 IC with arbitrary inter-layer connectivity

outer bound of 2 DoF is achieved almost surely.
The results summarized so far indicate that the intra-layer

interference introduced by full-duplex relays causes no loss of
DoF for the underlying layered 2 × 2 × 2 IC, while the end-
to-end inter-layer cross-links that connect a source directly to
its unintended destination cause a collapse of DoF. It remains
to understand the role of intermediate inter-layer links that
connect sources or destinations, not directly to each other,
but to intermediate relay nodes. To include inter-layer links
to/from relay nodes, we further study the 2 × 2 × 2 × 2
IC formed by concatenation of 3 interference channels with
arbitrary inter-layer connectivity as shown in Fig. 3, where the
black links indicate the underlying layered connectivity and
the red dashed links represent all other possible inter-layer
connectivities in the network. As will be shown in Section
IV, even for this class of networks, the min-cut outer bound
of 2 DoF can be almost surely achieved except when there
is a direct interfering link from a source to its unintended
destination. In this case, the DoF collapse to one.

II. THE 2× 2× 2 INTERFERENCE CHANNEL WITH
INTERFERING RELAYS

In this section, we explore the 2× 2× 2 IC with interfering
relays shown in Fig. 1.

A. System Model

The received signal at relay Rk, k ∈ {1, 2} in time slot t is
YRk

(t) = Fk1(t)X1(t)+Fk2(t)X2(t)+Hkk̄(t)XRk̄
(t)+Zk(t)

where k̄ = 1 if k = 2 and k̄ = 2 if k = 1. Fkj(t), ∀k, j ∈
{1, 2}, is the complex channel coefficient from Sj to Rk, Hkk̄

is the channel coefficient from Rk̄ to Rk, Xj(t) is the input
signal from Sj , XRk̄

(t) is the input signal from Rk̄ and Zk(t)
is the independent identically distributed (i.i.d.) zero mean
unit variance circularly symmetric complex Gaussian noise.
The received signal at Dk in time slot t is given by Yk(t) =
Gk1(t)XR1(t)+Gk2(t)XR2(t)+Nk(t), where Gkj(t), ∀k, j ∈
{1, 2}, is the complex channel coefficient from Rj to Dk and
Nk(t) is the i.i.d. Gaussian noise. We assume every node in
the network has an average power constraint P . The relays
are full-duplex. In addition, the relays are causal, i.e., the
transmitted signals at relays only depend on the past received
signals but not the current received signals. We assume that
sources and relays know all channels while destinations only
know channels from relays. To avoid degenerate conditions,
we assume the absolute values of channel coefficients of the
layered links are bounded between a nonzero minimum value
and a finite maximum value. However, the channel coefficients
of intra-layer links can be any arbitrary value. We will consider
two settings where channel coefficients are time-varying or
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constant: 1) the channel coefficients change and are drawn
i.i.d. from a continuous distribution for every channel use, and
2) the channel coefficients are drawn i.i.d. from a continuous
distribution before the transmissions, and once they are drawn,
they remain unchanged during the entire transmission.

Source Sk, k ∈ {1, 2} has a message Wk for destination
Dk. We denote the size of message Wk as |Wk|. For the
codewords spanning n channel uses, the rates Rk = log(|Wk|)

n
are achievable if the probability of error for both messages
can be simultaneously made arbitrarily small by choosing
an appropriately large n. The sum-capacity CΣ(P ) is the
maximum achievable sum rate. The number of degrees of
freedom is defined as d = limP→∞

CΣ(P )
logP .

B. Main Result

The main result is presented in the following theorem.
Theorem 1: For the 2 × 2 × 2 IC with interfering relays

defined in Section II-A, the total number of DoF is equal to 2
for both constant and time-varying channel coefficients, almost
surely.

Since the min-cut DoF outer bound is 2, we only need
to provide an achievable scheme. The achievable scheme is
designed on top of that for the 2 × 2 × 2 IC with additional
effort to cancel interference caused by relays. Thus, before
presenting the scheme for this channel, it is helpful to first
review the achievable scheme for the 2 × 2 × 2 IC proposed
in [5].

C. Review: Achievable Scheme for the 2× 2× 2 IC

Signaling is performed over M dimensions regardless of
whether it is time or rational dimensions. Over these M
dimensions, S1 sends M signals and S2 sends M−1 signals so
that a total of 2M−1

M DoF is achieved. Since M can be chosen
arbitrarily large, we can achieve arbitrarily close to the cut set
bound of 2. Here we illustrate the scheme for the constant
channel over rational dimensions. With a scaling factor that is
needed to satisfy the power constraints, the transmitted signals
are X1 =

∑M
k1=1 v1,k1ak1 and X2 =

∑M−1
k2=1 v2,k2bk2 where

vi,m are rational “beamforming” directions. ak1 and bk2 are
lattice symbols that will be specified later. Essentially each
symbol carries 1

M DoF. We choose v1,1 = (F11F22)
M−1. For

i = 1, · · · ,M − 1, v1,i+1 and v2,i are chosen as

v1,i+1 = (F12F21)
i(F11F22)

M−i−1 (1)
v2,i = FM−i

11 F i−1
12 F i

21F
M−1−i
22 . (2)

With this choice, 2M − 1 symbols are aligned in the M di-
mensional space as shown in Table I and II, so that they can be
resolved. After resolving these symbols, they are transmitted
over the second hop again in an aligned fashion similar to
the first hop but with phases reversal such that interference
is canceled at each destination. Specifically, R1 sends the
demodulated a1, a2 + b1, · · · , aM + bM−1 along rational
“beamforming” directions vR1,1, · · · , vR1,M . R2 sends the
demodulated a1+b1, · · · , aM−1+bM−1 along “beamforming”
directions vR2,1, · · · , vR2,M−1. The “beamforming” directions

are chosen as vR1,1 = (G11G22)
M−1 and

vR1,i+1 = (G12G21)
i(G11G22)

M−i−1 (3)
vR2,i = −GM−i

11 Gi−1
12 Gi

21G
M−1−i
22 . (4)

D. Outline for Achievable Schemes for Constant Channels

Now consider the 2 × 2 × 2 IC with interfering relays. In
this section, we provide the intuition behind the achievable
scheme and the rigorous description of the achievable scheme
is deferred to Appendix A.

In time slot 1, S1 sends symbols a1(1), · · · , aM (1) and
S2 sends symbols b1(1), · · · , bM−1(1) along “beamforming”
directions v1,1, · · · , v1,M and v2,1, · · · , v2,M−1 given in (1)
and (2), respectively. Since relays are causal, relays do not
transmit any signal in the first time slot. As a consequence,
relays only receive signals sent by sources so that they can
demodulate those aligned symbols as shown in Table I and II.

In time slot 2, S1 and S2 will transmit new symbol-
s a1(2), · · · , aM (2) and b1(2), · · · , bM−1(2) again along
v1,1, · · · , v1,M and v2,1, · · · , v2,M−1, respectively. Relays will
transmit the symbols that were already demodulated in the
previous time slot using the scheme for the 2 × 2 × 2 IC
as described in Section II-C, so that they can be decoded at
the destinations. Due to interfering links between the relays,
these symbols are not only received at the destinations, but
also at the relays. Next, we will illustrate how to cancel these
interfering symbols.

The idea is based on the observation that interfering symbols
were already received in an aligned fashion and demodulated
in the previous time slot. Specifically, the interfering symbols
and the demodulated symbols at R1 and R2 are listed in Table
III and IV, respectively. The relay can exploit its memory
to partially cancel interfering symbols using the previously
demodulated symbols. The remaining interfering symbols can
be canceled by utilizing the source nodes.

First, consider canceling a1(1). Note that at R1, a1(1)
was already demodulated in the first time slot. Thus R1 can
construct H12vR2,1a1(1), which is the interfering signal as
shown in Table III, and then subtract it from its received signal
to cancel a1(1). Similarly, R2 can cancel a1(1) by generating
−H21vR1,1(a1(1) + b1(1)) and then adding it to its received
signal.

Second, consider canceling b1(1). Note that after adding
−H21vR1,1(a1(1) + b1(1)) to the received signal at R2

to cancel a1(1), the effective direction of b1(1) becomes
H21(vR1,2 − vR1,1). Then S2 can resend b1(1) along u2,1 =
−F−1

22 H21(vR1,2 − vR1,1) so that it is received along
−H21(vR1,2 − vR1,1), and thus is canceled at R2. At R1, the
effective direction of b1(1) becomes the sum of the direction
of interfering b1(1) from R2 and that of the resent b1(1) from
S2, which is H12vR2,1 + F12u2,1. Therefore, R1 will add
−(H12vR2,1 + F12u2,1)(a2(1) + b1(1)) to its received signal
to cancel b1(1).

Third, consider canceling a2(1). Note that the effective
direction of a2(1) at R1 is H12(vR2,2 − vR2,1) − F12u2,1.
Therefore, S1 can resend a2(1) along the “beamforming”
direction u1,1 = −F−1

11 (H12(vR2,2 − vR2,1) − F12u2,1) to
cancel it. Similarly, at R2, the effective direction of a2(1)
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TABLE I
ALIGNMENT AT RELAY 1

dimension F11v1,1 F11v1,2 F11v1,3 · · · F11v1,i+1 · · · F11v1,M
dimension F12v2,1 F12v2,2 · · · F12v2,i · · · F12v2,M−1

symbol a1 a2 + b1 a3 + b2 ai+1 + bi aM + bM−1

TABLE II
ALIGNMENT AT RELAY 2

dimension F21v1,1 F21v1,2 · · · F21v1,i · · · F21v1,M−1 F21v1,M
dimension F22v2,1 F22v2,2 · · · F22v2,i · · · F22v2,M−1

symbol a1 + b1 a2 + b2 ai + bi aM−1 + bM−1 aM

TABLE III
INTERFERING SYMBOLS AND DEMODULATED SYMBOLS AT RELAY 1

Dimension of interfering symbols H12vR2,1 H12vR2,2 · · · H12vR2,i · · · H12vR2,M−1

Interfering symbols a1 + b1 a2 + b2 · · · ai + bi · · · aM−1 + bM−1

Demodulated symbols a1 a2 + b1 · · · ai+1 + bi · · · aM−1 + bM−2 aM + bM−1

TABLE IV
INTERFERING SYMBOLS AND DEMODULATED SYMBOLS AT RELAY 2

Dimension of interfering symbols H21vR1,1 H21vR1,2 · · · H21vR1,i+1 · · · H21vR1,M−1 H21vR1,M

Interfering symbols a1 a2 + b1 · · · ai+1 + bi · · · aM−1 + bM−2 aM + bM−1

Demodulated symbols a1 + b1 a2 + b2 · · · ai + bi · · · aM−1 + bM−1 aM

becomes H21vR1,2 + F21u1,1. R2 can add −(H21vR1,2 +
F21u1,1)(a2(1)+ b2(1)) to its received signal to cancel a2(1).

Continuing this process, it can be seen that all interfering
symbols can be canceled.

Remark: Note that the scheme presented above works for
arbitrary H12 and H21

1. Also note that while the scheme is
presented for real channels where all signals, channel coeffi-
cients and noises are real values, it can be easily generalized
to the complex case using Theorem 7 in [23].

III. 2× 2× 2 INTERFERENCE NETWORKS WITH
ARBITRARY CONNECTIVITY

In this section, we explore the 2×2×2 interference networks
with arbitrary connectivity as shown in Fig. 2. Note that due to
full-duplex communications, nodes are simultaneously capable
of transmitting and receiving from each other if they are
within communication range of each other. The main result
is presented in the following theorem.

Theorem 2: For the 2 × 2 × 2 interference networks with
arbitrary connectivity shown in Fig. 2, the total number of DoF
is equal to 2, almost surely, except the case in which there is
a direct link between a source and its interfering destination.
In this case, the DoF collapse to 1.

Proof: When there is a direct link between a source
and its interfering destination regardless of the remaining
connectivity, the DoF collapse to 1 as already shown in [24].
Now let us consider the cases where such links do not exist.

1Note that the requirement on the non-zero channel coefficients of the
underlying layered network is a sufficient but not necessary condition to
achieve 2 DoF. This is also true for the networks studied in the remaining
parts of the paper. Allowing zero-channels takes the problem in a different
direction by adding the element of topological complexity. It significantly
changes the character of the problem, requiring topological notions such as
condensed networks and manageable interference, which are fairly involved
even in layered settings, as noted by [6].

Since the min-cut DoF outer bound is 2, we only need to
provide achievable schemes. Suppose the sources choose not
to listen and the destinations choose not to transmit. Then
except the red dashed links between the two relays, all other
red dashed links do not contribute to the transmit and receive
signals in the network, and thus are effectively removed from
the network. As a result, the remaining network becomes the
2×2×2 IC with interfering relays and with either direct links
from the sources to their own destinations or not depending
on the network connectivity. If such links do not exist, then
as shown before, 2 DoF can be achieved. If such links exist,
all nodes still use the same achievable scheme as if such links
were absent so that interference can still be canceled. The
only difference is that there is inter-symbol interference among
desired signals. It can be easily seen that this can be removed
by exploiting memory at destinations. Therefore, 2 DoF can
be achieved.

IV. THE 2× 2× 2× 2 INTERFERENCE NETWORKS WITH
ARBITRARY INTER-LAYER CONNECTIVITY

In this section, we study the 2 × 2 × 2 × 2 interference
networks with arbitrary inter-layer connectivity shown in Fig.
3.

A. System Model
The received signal at relays Aj , Bj and destination Dj ,

j = 1, 2, in time t, respectively, are

YAj (t) = HAj1(t)X1(t) +HAj2(t)X2(t) +NAj (t)

YBj (t) = HBj1(t)X1(t) +HBj2(t)X2(t)

+HBjA1(t)XA1(t) +HBjA2(t)XA2(t) +NBj (t)

Yj(t) = Hj1(t)X1(t) +Hj2(t)X2(t) +
2∑

i=1

(HjAi(t)XAi(t) +HjBi(t)XBi(t)) +Nj(t)
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where Xi(t), XAi(t) and XBi(t) are the input signals at Si,
Ai and Bi, respectively. HAji(t), HBji(t), Hji(t), HBjAi(t),
HjAi(t), HjBi(t) are the channels from Si to Aj , Bj , Dj ,
from Ai to Bj , Dj and from Bi to Dj , respectively. Note that
while the channels of the underlying layered network must be
non-zero, depending on network connectivity, each inter-layer
channel may or may not exist. NAj

(t), NBj
(t) and Nj(t) are

the additive i.i.d. Gaussian noise terms.
We assume that the relays are causal. In addition, the

channel coefficients follow a block fading model, i.e., they
remain constant in a sufficiently long coherence block and
switch to a value that is independently and identically drawn
from a continuous distribution from one block to the next. It
is assumed that global channel knowledge is available at every
node.

B. Main Result

Theorem 3: For the 2 × 2 × 2 × 2 IC with arbitrary inter-
layer connectivity defined in Section IV-A, the total number
of DoF is 2, almost surely, except the case in which there is a
direct link from a source to its interfering destination. In this
case, the DoF collapse to 1.

Proof: Let us consider the case in which there is a direct
interfering link from one source to the other destination. Since
1 DoF can be achieved by simply sending only one message,
we only need to provide the outer bound. Consider the case
in which there is a direct link from S1 to D2. Suppose we let
S2, A2 and B2 fully cooperate so that they effectively become
one transmitter with 3 antennas. Similarly, A1, B1 and D1 are
allowed to perfectly cooperate so that they form one receiver
with 3 antennas. We end up with a two user interference
channel with 1 antenna at transmitter 1 and receiver 2 while
3 antennas at transmitter 2 and receiver 1 and there are noisy
links from transmitter 1 to transmitter 2, from receiver 1 to
receiver 2 and from receiver 1 to transmitter 2. As proved in
[24], the DoF of this channel cannot be more than 1. Since
cooperation does not reduce the capacity, the original channel
cannot have more than 1 DoF as well. Following the same
argument, it can be shown that the networks cannot have more
than 1 DoF when there is a direct link from S2 to D1. For the
case in which there are no such direct interfering links, since
the min-cut DoF outer bound is 2, we only need to provide
achievable schemes.

C. Representative Networks: Ideas for the Achievable
Schemes

In this section, we present several representative networks
to illustrate various ideas behind the achievable schemes. The
proofs for general cases are presented in Appendix B where
the networks are divided into different classes and depending
on the type, one or more ideas represented in this section will
be used to construct the achievable schemes. In all cases, our
goal is to cancel all interference at the destinations to achieve
one DoF per message for a total of 2 DoF.

1) A transform approach: Consider the class of non-layered
2-source 2-sink multihop interference networks shown in Fig.
4. In this class of networks, we can identify one layer (the

Fig. 4. A transform approach to a class of non-layered 2-source 2-sink
non-layered multihop interference networks

layer consisting of nodes R1 and R2 in the figure) such that
it separates the network into two non-layered parts between
which no link exists. Also no directed cycles are present in
each part. Suppose in time t, all relay nodes within each of
these two non-layered parts only forward the signals received
in time t − 1, then the channel input-output relationships
between sources and relay nodes R1 and R2 become YRi(t) =∑Lii

lii=0 F
[lii]
ii (t)Xi(t−lii)+

∑Liī

liī=0 F
[liī]

īi
(t)Xī(t−līi)+Ẑi(t),

where lij , ∀i, j ∈ {1, 2}, is the delay index defined as
the number of nodes on a path from Sj to Ri, Lij is the
maximum delay between Sj and Ri, and Ẑi is the effective
noise at Ri. F

[lij ]
ij is the effective channel coefficient of all

paths with delay lij between Sj and Ri, which is a sum
of the products of the channel coefficients of links along
each path with delay lij . Note that depending on the network
connectivity, some of delays between 0 to Lij may not exist,
and thus the channel coefficients associated with those non-
existing paths are zero. Similarly, the channel input-output
relationships between relays and destinations become Yi(t) =∑Dii

dii=0 G
[dii]
ii (t)XRi(t−dii)+

∑Diī

diī=0 G
[diī]

īi
(t)XRī

(t−dīi)+

N̂i(t), where Dij is the maximum delay between Rj and Di,
dij is the delay index, and N̂i is the effective noise. In addition,
G

[dij ]
ij is the effective channel coefficient of the path with delay

dij between Rj and Di. Since we assume channels follow
a block fading model, they are time-invariant within every
coherence block. In the following we first consider signaling in
one coherence block and thus omit the time indices of channel
coefficients.

It can be easily seen that the channels between S1, S2 and
R1, R2, and channels between R1, R2 and D1, D2 become
inter-symbol interference (ISI) channels. We can remove the
ISI and convert the channel into a parallel 2 × 2 × 2 IC by
introducing a cyclic prefix and using DFT/IDFT. Specifically,
consider using the channel Nc + D times in one coherence
block where D = max{Lij , Dij}. Let us first consider the
channel between S1, S2 and R1, R2. For Nc transmitted
symbols at Si, xi = [xi(1), · · · , xi(Nc)]

T , we create a length
Nc+D input block by adding D cyclic prefix to xi, which is
given by Xi = [xi(Nc−D+1), xi(Nc), xi(1), · · · , xi(Nc)]

T .
By discarding the first D received symbols, Ri obtains a
block of Nc symbols, YRi = [YRi(D + 1), · · · , YRi(D +
Nc)]

T , which is given by YRi = Fiixi + Fīixī + Ẑi

where Fij is a circulant matrix with the first row given by
[F

[0]
ij 0 · · · 0 F

[D]
ij F

[D−1]
ij · · · F

[1]
ij ]. It is well known that

the circulant matrix can be decomposed as Fij = U−1F̃ijU
where U is the DFT matrix in which the (k, n)th entry is equal
to 1√

Nc
e

−j2πkn
Nc , k, n = 0, . . . , Nc − 1, and F̃ij is a diagonal

matrix with the nth diagonal entry equal to the nth entry of the
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(a) A three-hop non-layered network (b) Effective channel after shutting
down node B1

Fig. 5. Interference neutralization exploiting memory

column vector
√
NcU[F

[0]
ij , · · · , F [D]

ij , 0, · · · , 0]T . By setting
xi = U−1x̃i and multiplying the received signal with U,
the signal becomes ỸRi = UYRi = F̃iix̃i + F̃īix̃ī + Z̃Ri .
Thus, after these operations the original ISI channels between
sources and relays are converted to parallel channels.

The same procedure can be applied to convert the ISI chan-
nels between the relays and destinations to parallel channels:
Ỹi = G̃iix̃Ri + G̃īix̃Rī

+ Ñi. After the transformation,
the originally non-layered channel is converted to a parallel
2× 2× 2 IC with Nc sub-channels in each coherence block.
By signaling over M coherence time blocks, each sub-channel
becomes a 2× 2× 2 time-varying IC, over which the aligned
interference neutralization schemes proposed in [5] can be
applied to cancel interference. It should be noted that while
the interference can be canceled, it remains to check if the
desired signals are resolvable since the channels are no longer
generic after transformation. As shown in [5], the desired
signals are resolvable if G̃n

12(t)G̃
n
21(t)/(G̃

n
11(t)G̃

n
22(t)) and

F̃n
12(t)F̃

n
21(t)/(F̃

n
22(t)F̃

n
11(t)), respectively, are all distinct over

t = 1 to M , where G̃n
ij(t) and F̃n

ij(t) are the channels of the
nth sub-channel in the tth block. It will be shown later in the
appendix that the condition is satisfied for all cases considered
in the paper, so that 2M−1

M DoF can be achieved on each sub-
channel. Thus, the total DoF achieved is 2M−1

M · Nc

Nc+D where
D is a constant depending on the network connectivity. As M
and Nc go to infinity, 2 DoF are achieved.

2) Interference neutralization exploiting memory: Consider
the network shown in Fig. 5(a). Let us first shut down B1,
resulting in the effective channel connectivity shown in Fig.
5(b). Now consider canceling interference from S1 to D2.
Note that there are two paths from S1 to D2: S1 → A1 →
B2 → D2 and S1 → A2 → B2 → D2. We will design
the scaling factors at node A1 and A2 in a manner that
allows interfering signals passing through these two paths
to cancel each other before arriving at D2. Specifically, A1

simply forwards its received signal while A2 uses a scaling
factor α(t). With this transmission scheme, the transmitted
signal X1(t) from S1 is received at B2 in time slot t as
(HB2A1(t)HA11(t−1)+α(t)HB2A2(t)HA21(t−1))X1(t−1).
In order to cancel interference, α(t) is chosen to force
HB2A1(t)HA11(t−1)+α(t)HB2A2(t)HA21(t−1) = 0, which
leads to α(t) = −HB2A1

(t)HA11(t−1)

HB2A2
(t)HA21(t−1) . Note that while signal

X1(t) is canceled at D2, it is not canceled at its desired
destination D1 almost surely since channels from A1, A2 to
D1 and B2 are distinct almost surely.

Next consider canceling interference from S2 to D1. Note
that there are two kinds of paths: delays one and two. In
particular, paths S2 → A1 → D1, S2 → A2 → D1 and S2 →

B2 → D1 have delay one while paths S2 → A1 → B2 → D1

and S2 → A2 → B2 → D1 have delay two. We first cancel
interference with delay two by exploiting the memory at B2.
Suppose the transmit signal from S2 is X2(t), which will be
received at B2 in time slot t as

ȲB2(t) = HB22(t)X2(t) + (HB2A1(t)HA12(t− 1)

+α(t)HB2A2(t)HA22(t− 1))X2(t− 1).

For t = 1, ȲB2(1) = HB22(1)X2(1). For t = 2,

ȲB2(2) = HB22(2)X2(2) + (HB2A1(2)HA12(1)

+α(2)HB2A2
(2)HA22(1))X2(1).

To cancel X2(1), we can subtract
HB2A1

(2)HA12(1)+α(2)HB2A2
(2)HA22(1)

HB22(1)
ȲB2(1) from

ȲB2(2) to obtain Y ′
B2

(2) = HB22(2)X2(2). We
can continue this procedure to cancel X2(t − 1) in
every t > 2 at B2 as follows: Y ′

B2
(t) = ȲB2(t) −

HB2A1
(t)HA12(t−1)+α(t)HB2A2

(t)HA22(t−1)

HB22(t−1) Y ′
B2

(t − 1) =

HB22(t)X2(t). As a result, all interfering signals with delay
two are canceled.

To cancel interference with delay one, B2 will choose the
scaling factor β(t) in a manner that allows the interfering
signals passing through three paths with delay one to be
canceled before arriving at the destination. Specifically, in time
t, the transmit signal at B2 is XB2(t) = β(t)Y ′

B2
(t − 1).

With this transmission scheme, the transmit signal X2(t)
from S2 will be received at D1 after passing through paths
S2 → A1 → D1, S2 → A2 → D1 and S2 → B2 → D1 as

(H1A1(t)HA12(t− 1) + α(t)H1A2(t)HA22(t− 1)

+β(t)H1B2(t)HB22(t− 1))X2(t− 1),

which is forced to be zero by setting β(t) =

−H1A1 (t)HA12(t−1)+α(t)H1A2 (t)HA22(t−1)

H1B2 (t)HB22(t−1) . Thus all
interference from S2 is canceled at D1.

So far we have shown that all interfering signals are
canceled at both destinations. Next, we will show that 2 DoF
can be achieved. Consider an M+2 symbol-extended channel,
i.e., signaling is performed over a block of M + 2 time slots.
Note that 2 corresponds to the maximum delay between any
two nodes in the network. In each block, M symbols are sent
followed by two zeros. The zero-padding is used to avoid inter-
block interference and ensure that noise accumulation due to
successively interference cancelation at B2 does not build up
across blocks. Within each block, the transmission scheme
described above is used to cancel inter-user interference. By
channel coding across blocks, 2M

M+2 DoF can be achieved,
which goes to 2 as M → ∞. Note that symbol-extension
with zero padding equal to the maximum delay of the network
applies to all memory related schemes proposed in the paper.
Due to limited space, we will omit such argument in the
remaining part of the paper and focus on how to cancel inter-
user interference.

3) Combining aligned interference neutralization with in-
terference neutralization: Consider the network shown in Fig.
6. The transmission is performed over M dimensions which
are obtained by coding across M time slots, each from one
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Fig. 6. 2× 2× 2× 2 with 4 inter-layer links

independent coherence block. The effective channel after sym-
bol extension becomes an M ×M diagonal matrix H(t) with
independent diagonal entries, H(M(t− 1)+ 1), · · · ,H(Mt).

The aligned interference neutralization scheme proposed in
[5] is applied to the 2× 2× 2 IC comprised of the first three
layers to cancel interfering signals from S1 to B2 and from
S2 to B1. In time t, S1 and S2 use V1(t) and V2(t) as beam-
forming matrices to send M and M−1 symbols denoted as the
M × 1 vector a(t) and (M − 1)× 1 vector b(t), respectively:
X1(t) = V1(t)a(t) and X2(t) = V2(t)b(t), where V1(t) =
[v1,1(t), · · · ,v1,M (t)] and V2(t) = [v2,1(t), · · · ,v2,M−1(t)]
are chosen in the same manner as in [5]: v1,1(t) = [1 1 · · · 1]T ,
and for i = 1, · · · ,M − 1,

v1,i+1(t) =
(
H−1

A11
(t)HA12(t)H

−1
A22

(t)HA21(t)
)i
v1,1(t)

v2,i(t) =
(
H−1

A22
(t)HA21(t)H

−1
A11

(t)HA12(t)
)i−1

H−1
A22

(t)HA21(t)v1,1(t) (5)

Relays A1 and A2 will send the received signals in the next
time slot by multiplying them with A1(t) and A2(t), respec-
tively: XAi(t) = Ai(t)YAi(t − 1). With this transmission
scheme, the received signals at B1 and B2 are given by (6)
and (7), respectively, where N′

Bi
(t) is the effective noise. As

shown in [5], the following choices of A1(t) and A2(t) force
I1(t) = I2(t) = 0:

A1(t) = U1(t)(HA11(t− 1)V1(t− 1))−1 (8)
A2(t) = U2(t)(HA21(t− 1)V1(t− 1))−1 (9)

where U1(t) = [u1,1(t) · · ·u1,M (t)] and U2(t) =
[u2,1(t) · · ·u2,M (t)] and for i = 1, · · · ,M − 1

u1,i+1(t) =
(
H−1

B1A1
(t)HB2A1(t)H

−1
B2A2

(t)HB1A2(t)
)i

u1,1(t)

u2,i(t) = −
(
H−1

B2A2
(t)HB1A2(t)H

−1
B1A1

(t)HB2A1(t)
)i−1

H−1
B2A2

(t)HB2A1(t)u1,1(t)

u2,M (t) = −H−1
B2A2

(t)HB2A1(t)u1,M (t)

where u1,1(t) = [1 1 · · · 1]T . Thus transmitted signals from
S1 and S2 are neutralized at B2 and B1, respectively.

Our next goal is to cancel the transmitted signals from S1

and S2 that arrive at B1 and B2, respectively, through A1

and A2. Mathematically, we want to cancel X1(t − 1) from
the received signal at B1 as given in (6) and X2(t− 1) from
the received signal at B2 as given in (7). In time slot t = 1,
the transmitted signals passing through A1 and A2 have not
arrived at node Bi, i = 1, 2 and the received signals are given
by YBi(1) = HBii(1)Xi(1)+N′

Bi
(1). In time slot t = 2, Bi

cancels Xi(1) from its received signals as follows.

ỸBi(2) = YBi(2)−Ei(2)H
−1
Bii

(1)YBi(1)

= HBii(2)Xi(2) + ÑBi(2) (10)

where ÑBi(2) is the effective noise. Similarly, in time t > 2,
Bi cancels Xi(t− 1) as follows.

ỸBi(t) = YBi(t)−Ei(t)H
−1
Bii

(t− 1)ỸBi(t− 1)

= HBii(t)Xi(t) + ÑBi
(t) (11)

So far, we have canceled all interfering signals with delay
two. It can be seen that now all interfering signals will be
received with delay one. To cancel it, we design scaling factors
at nodes B1 and B2. The transmitted signal at Bi in time slot
t is given by XBi(t) = Bi(t)ỸBi(t − 1), i = 1, 2. With this
transmitted signal, the received signal at Di becomes

Yi(t) = HiAi(t)Ai(t)HAi ī(t− 1)Xī(t− 1)

+HiAi(t)Ai(t)HAii(t− 1)Xi(t− 1)

+
2∑

j=1

HiBj (t)Bj(t)ỸBj (t− 1) +N′
i(t)

(a)
= (HiAi(t)Ai(t)HAi ī(t− 1)

+HiBī
(t)Bī(t)HBī ī

(t− 1))Xī(t− 1)

+(HiAi(t)Ai(t)HAii(t− 1)

+HiBi(t)Bi(t)HBii(t− 1))Xi(t− 1) +N′′
i (t)

where (a) is obtained by using ỸBi(t) given in
(11). To cancel the interfering signal Xī(t − 1) from
Yi(t), it is required that HiAi(t)Ai(t)HAi ī(t −
1) + HiBī

(t)Bī(t)HBī ī
(t − 1) = 0, which leads to

Bī(t) = −H−1
iBī

(t)
(
HiAi(t)Ai(t)HAi ī(t− 1)

)
H−1

Bī ī
(t− 1).

After canceling all interference at the destination, it can be
easily checked that the desired signals are received along full
rank matrices and thus can be decoded.

V. CONCLUSION

We study the effects of non-layered inter-layer and intra-
layer links, which are mainly motivated by full-duplex com-
munications, on the fully connected layered interference net-
works. By characterizing the DoF of the 2 × 2 × 2 IC with
arbitrary connectivity and those of 2× 2× 2× 2 interference
networks with arbitrary inter-layer connectivity, we conclude
that direct interference links cause collapse of DoF while
indirect interference links do not reduce DoF. While only a
class of non-layered 2-source 2-sink two unicast interference
networks are considered, we believe the ideas that emerged out
of studying this class of non-layered networks will be useful
to deal with the interference arriving along paths with different
lengths in many non-layered multihop multiflow networks. In
addition, the small networks studied in this work are useful
to characterize a much larger class of non-layered networks
which can be condensed to these small networks.
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YB1(t) = HB11(t)X1(t) + (HB1A1(t)A1(t)HA11(t− 1) +HB1A2(t)A2(t)HA21(t− 1))︸ ︷︷ ︸
E1(t)

X1(t− 1)

+ (HB1A1(t)A1(t)HA12(t− 1) +HB1A2(t)A2(t)HA22(t− 1))X2(t− 1)︸ ︷︷ ︸
I1(t)=0

+N′
B1

(t) (6)

YB2(t) = HB22(t)X2(t) + (HB2A1(t)A1(t)HA12(t− 1) +HB2A2(t)A2(t)HA22(t− 1))︸ ︷︷ ︸
E2(t)

X2(t− 1)

+ (HB2A1(t)A1(t)HA11(t− 1) +HB2A2(t)A2(t)HA21(t− 1))X1(t− 1)︸ ︷︷ ︸
I2(t)=0

+N′
B2

(t) (7)

APPENDIX A
ACHIEVABILITY FOR THE 2× 2× 2 IC WITH INTERFERING

RELAYS

We first provide the achievable scheme for the constant
channels.

Sources: Message W1 is split into M sub-messages.
Sub-message W1,k1 , k1 ∈ {1, . . . ,M}, is encoded us-
ing a codebook with the codeword of length n denot-
ed as ak1(1), · · · , ak1(n). Similarly, message W2 is s-
plit into M − 1 sub-messages. Sub-message W2,k2 , k2 ∈
{1, . . . ,M − 1}, is encoded using a codebook with the
codeword of length n denoted as bk2(1), · · · , bk2(n). For
any ϵ > 0 and a constant γ, let C denote all inte-
gers in the interval

[
−γP

1−ϵ
2(M+ϵ) , γP

1−ϵ
2(M+ϵ)

]
, i.e., C ={

x : x ∈ Z ∩
[
−γP

1−ϵ
2(M+ϵ) , γP

1−ϵ
2(M+ϵ)

]}
. ak1(t) and bk2(t)

are obtained by uniform i.i.d. sampling on C. Essentially,
each sub-message carries 1−ϵ

M+ϵ DoF. Then in time slot 1,
the transmitted signals are X1(1) = A

∑M
k1=1 v1,k1ak1(1)

and X2(1) = A
∑M−1

k2=1 v2,k2bk2(1) where v1,k1 and v2,k2 are
chosen as in (1) and (2), respectively. To satisfy the power
constraints, the constant scaling factor A is chosen to be
ξ
γP

M−1+2ϵ
2(M+ϵ) where ξ = min( 1∑M

k1=1 v2
1,k1

, 1∑M−1
k2=1 v2

2,k2

) as in [5].

Then in time t = 2, . . . , n, the transmitted signals are

X1(t) = A′

(
M∑

k1=1

v1,k1ak1(t) +
M−1∑
i=1

u1,iai+1(t− 1)

)

X2(t) = A′

(
M−1∑
k2=1

v2,k2bk2(t) +
M−1∑
i=1

u2,ibi(t− 1)

)

where u2,i = −F−1
22 (H21(vR1,i+1 − vR1,i) − F21u1,i−1) and

u1,i = −F−1
11 (H12(vR2,i+1−vR2,i)−F12u2,i). Note that u1,0

is defined to be 0. And A′ should be chosen to satisfy the
power constraints, i.e.,

E
[
X2

j (t)
]
≤ γ2A′2 (

Mj∑
kj=1

v2j,kj
+

M−1∑
i=1

u2
j,i)︸ ︷︷ ︸

ξ2j

P
1−ϵ

(M+ϵ) ≤ P (12)

where M1 = M and M2 = M − 1. To satisfy power
constraints at both transmitters, we choose A′ = min{C,B}
where C and B are scaling factors that can ensure sources and
relays satisfy the power constraints, respectively. Specifically,

C = ξ
γP

M−1+2ϵ
2(M+ϵ) where ξ = min( 1

ξ1
, 1
ξ2
) and ξ2j is given

in (12), and B = ξ
2γP

M−1+2ϵ
2(M+ϵ) where ξ = min( 1

ξ1
, 1
ξ2
) and

ξ2j =
∑Mj

m,n=1 |vRj ,mvRj ,n| as given in [5].
Relays: Consider the first time slot. As mentioned be-

fore, since relays do not transmit in the first time s-
lot, the received signals are the same as the 2 ×
2 × 2 IC [5], which is omitted here. The relays will
demodulate the aligned symbols as described in [5].
Specifically, R1 will demodulate a1(1), a2(1) + b1(1),
· · · , aM (1) + bM−1(1) as x̂R1,1(1), x̂R1,2(1), . . . , x̂R1,M (1),
respectively. R2 will demodulate a1(1) + b1(1), · · · ,
ai(1) + bi(1), · · · , aM−1(1) + bM−1(1), aM (1) as
x̂R2,1(1), x̂R2,2(1), . . . , x̂R2,M−1(1), x̂R2,M (1), respectively.

Consider time slot t = 2. Let us first consider the
transmitted signal. Relays will send the demodulated sig-
nals in time slot 1. Specifically, the transmitted signals
are XR1(2) = A′∑M

k1=1 vR1,k1 x̂R1,k1(1) and XR2(2) =

A′∑M−1
k2=1 vR2,k2 x̂R2,k2(1), where A′ is chosen to satisfy the

power constraint and vR1,k1 and vR2,k2 are given in (3) and
(4), respectively.

Now consider the received signals: YRi
(2) =

FiiXi(2) + FīiXī(2) + HīiXRī
(2) + Zi(2). R1 will

first locally generate the following signal and add it to
its received signal: ȲR1(2) = A′(−H12vR2,1x̂R1,1(1) −∑M−1

i=1 (H12vR2,i + F12u2,i)x̂R1,i+1(1)). ȲR1
(2) =

A′(−H12vR2,1x̂R1,1(1) −
∑M−1

i=1 (H12vR2,i +
F12u2,i)x̂R1,i+1(1)). By writing x̂R1,1(1) = a1(1)+eR1,1(1),
x̂R1,i(1) = ai(1) + bi−1(1) + eR1,i(1), i = 2, · · · ,M ,
and x̂R2,j(1) = aj(1) + bj(1) + eR2,j(1) and
x̂R2,M (1) = aM (1) + eR2,M (1) where e represents the
demodulation error, YR1(2)+ ȲR1(2) can be easily calculated
as

YR1(2) + ȲR1(2)

= A′

(
F11v1,1a1(2) +

M∑
i=2

F11v1,i(ai(2) + bi−1(2))

)

+A′H12

M−1∑
j=1

vR2,jeR2,j(1)−A′H12vR2,1eR1,1(1)

−A′
M−1∑
j=1

(H12vR2,j + F12u2,j)eR1,j+1(1) + Z1(2)

Next, R1 will demodulate the aligned symbols using the signal
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YR1(2)+ȲR1(2) as follows. Define the following constellation
set CR1 = {A′ (F11v1,1xR1,1 + · · ·+ F11v1,MxR1,M )},
where xR1,1 is an integer in the interval[
−γP

1−ϵ
2(M+ϵ) , γP

1−ϵ
2(M+ϵ)

]
and xR1,i+1 is also an integer

but in the interval
[
−2γP

1−ϵ
2(M+ϵ) , 2γP

1−ϵ
2(M+ϵ)

]
. Notice that

v1,1, · · · , v1,M are distinct monomial functions of channel
coefficients and thus rationally independent almost surely.
Thus, there is a one-to-one mapping from CR1

to xR1,k1
,

k1 ∈ {1, · · · ,M}. Then Relay R1 will find the point in CR1

which has the minimal distance between YR1(2) + ȲR1(2),
and then make a hard decision on xR1,k1 by mapping the
point to x̂R1,k1(2). Using Theorem 5 in [22], it can be shown
that the minimum distance between constellation points
increases with P . Thus, the demodulation error e(1) in the
first time slot goes to zero as P → ∞, which allows the
demodulation error in this time slot to go to zero as P → ∞
as well.

Similarly, R2 will generate and then add the following sig-
nal to its received signal: ȲR2(2) = A′(−H21vR1,1x̂R2,1(1)−∑M−1

i=1 (H21vR1,i+1 + F21u1,i)x̂R2,i+1(1)). Then, R2 will
demodulate the aligned symbols from ȲR2(2) + ȲR2(2) as
x̂R2,1(2), . . . , x̂R2,M (2) in the same manner.

After relays demodulate the aligned symbols, they will
transmit them in the next time slot. In time slot t = 3, . . . , n+
1, relays will follow the same procedure. By replacing the
time indices 2 and 1 in the above analysis with t and t − 1,
respectively, we can obtain the equations for the transmitted
and received signals at relays.

Destinations: The destinations will use the same decoding
method as the 2 × 2 × 2 IC in [5]. The probability of error
of all the demodulations will go to zero as SNR tends to
infinity. Then, the coded rate for each symbol approaches
1
M DoF according to the rational dimension framework [22].
Therefore, a total of 2M

M−1 DoF can be achieved. As M goes
to infinity, 2M

M−1 → 2.
For the time-varying channels, the scheme follows from

that of the constant channel in a straightforward manner. In
particular, in this case, the rational dimensions, lattice code-
words and demodulation are replaced with time dimensions,
Gaussian codewords and linear transformation, respectively.
Due to limited space, the detailed description is omitted.

APPENDIX B
ACHIEVABILITY PROOF FOR THE 2× 2× 2× 2 IC WITH

ARBITRARY INTER-LAYER CONNECTIVITY

In this section, we provide the achievable schemes for the
2 × 2 × 2 × 2 IC with arbitrary inter-layer connectivity and
without the direct links from sources to destinations. If there
is a direct link between a source to its desired destination, then
the achievable scheme is exactly the same as that without such
link. In this case, the destination only needs to use memory
to cancel ISI of its desired signals.

We categorize all cases based on the number of nodes in
each layer that participate in inter-layer links. Denote the
number of nodes that participate in inter-layer links in layer A
and layer B as NA, NB , respectively, where 0 ≤ NA, NB ≤ 2.
Then we divide networks with arbitrary inter-layer

Fig. 7. Networks with NA = 0

connectivity into two categories: (NA, NB) = (2, 2)
and (NA, NB) ̸= (2, 2). If (NA, NB) ̸= (2, 2), then it implies
that at least one of NA and NB is one or zero. If one of them
is zero, say NA is zero, then there is no inter-layer links from
layer A to the destinations. Such networks are shown in Fig.
7. In this case, layer B separates the network into two parts
and there is no link between these two parts. This belongs
to the class of networks considered in Section IV-C1. To
show that such networks can achieve 2 DoF, the only thing
remains to be checked is whether the channels satisfy the
sufficient conditions that G̃n

12(t)G̃
n
21(t)/(G̃

n
11(t)G̃

n
22(t)) and

F̃n
12(t)F̃

n
21(t)/(F̃

n
22(t)F̃

n
11(t)), respectively, are all distinct over

t = 1 to M , where Gn
ij and Fn

ij are the channels of the nth sub-
channel. In this case, channels from layer B to destinations
are generic and thus satisfy the condition almost surely. We
only need to show that the F̃n

12(t)F̃
n
21(t)/(F̃

n
22(t)F̃

n
11(t)) are

all distinct almost surely. As shown in Section IV-C1, in time
slot t, F̃n

11(t) = (HB1A1(t)HA11(t− 1)+HB1A2(t)HA21(t−
1))e−

j2πn
Nc + HB11(t), F̃n

21(t) = (HB2A1(t)HA11(t −
1) + HB2A2(t)HA21(t − 1))e−

j2πn
Nc + HB21(t),

F̃n
12(t) = (HB1A1(t)HA12(t − 1) + HB1A2(t)HA22(t −

1))e−
j2πn
Nc + HB12(t), F̃n

22(t) = (HB2A1(t)HA11(t − 1) +

HB2A2(t)HA21(t − 1))e−
j2πn
Nc + HB22(t). We will show

F̃n
12(t)F̃

n
21(t)F̃

n
22(t

′)F̃n
11(t

′) −F̃n
12(t

′)F̃n
21(t

′)F̃n
22(t)F̃

n
11(t) ̸= 0

almost surely. Note that this is a polynomial in variables H(t)
and H(t′). To prove such polynomial is non-zero almost
surely, it suffices to show it is not a zero polynomial. By
setting HB11(t), HB21(t), HB12(t) and HB12(t) to be zero
and HAjj(t−1) = HAjj(t

′−1) = HBjAj (t) = HBjAj (t
′) =

HA12(t − 1) = HA12(t
′ − 1) = HB1A2(t) = HB1A2(t

′) = 1,
j ∈ {1, 2} and HA21(t − 1) = 1, HA21(t

′ − 1) = 2,
HB2A1(t) = 3, HB2A1(t

′) = 4, F̃n
12(t)F̃

n
21(t)F̃

n
22(t

′)F̃n
11(t

′)−
F̃n
12(t

′)F̃n
21(t

′)F̃n
22(t)F̃

n
11(t) = 48e−

j8πn
Nc ̸= 0. Therefore, it is

not a zero polynomial and the polynomial is non-zero almost
surely.

If none of NA and NB is equal to zero, then one must be
equal to 1. Due to symmetry, let NA to be 1 and there are
inter-layer links through A1. In this case, we can shut down
node A1 so that again layer B separates the network into two
parts and there is no link between these two layers. Using the
transform approach 2 DoF can be achieved almost surely.

Next, we will consider the case where (NA, NB) = (2, 2).
Within this class, we further categorize the network based
on the number of inter-layer links. Let us denote the
number of inter-layer links on a path from S1 to D2

and S2 to D1 as L1 and L2, respectively. Note that
0 ≤ L1, L2 ≤ 4. Since (NA, NB) = (2, 2), the total
number of inter-layer links must be at least four, i.e.,
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L1+L2 ≥ 4, including all possible combinations of (L1, L2):
(0, 4), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)
and (4, 0), (3, 1), (4, 1), (3, 2), (4, 2), (4, 3). Due to symmetry,
we only consider the case where L1 ≤ L2. We consider all
cases one by one.

When (L1, L2) = (0, 4), the network is shown in Fig. 5(a).
And the achievable scheme is presented in Section IV-C2.

(a) (b)

(c) (d)

Fig. 8. Networks with (L1, L2) = (1, 3)

When (L1, L2) = (1, 3), there are four possible cases as
shown in Fig. 8. The achievable schemes for these four cases
are essentially the same. We will only describe the achievable
scheme for the network shown in Fig. 8(a). In this case,
we first cancel interference with delay one from S2 to D1

through paths S2 → A1 → D1 and S2 → A2 → D1. A1

will forward its received signal in the next time slot and A2

will amplify its received signal by α(t) and then forward
it. α(t) is chosen to cancel interference along these two
paths, i.e., HD1A1(t)HA1S2(t−1)+α(t)HD1A2(t)HA2S2(t−
1) = 0, leading to α(t) = −HD1A1(t)HA1S2(t −
1)/HD1A2(t)HA2S2(t − 1). After canceling this interfering
signal, from D1’s perspective, inter-layer links from A1 to
D1 and from A2 to D1 are effectively removed from the
network. The remaining network without these two links falls
into the category of (NA, NB) ̸= (2, 2), for which using the
transform approach can cancel all interference. What remains
to be shown is that F̃n

12(t)F̃
n
21(t)/(F̃

n
22(t)F̃

n
11(t)) are distinct

for all t almost surely. Similar to previous arguments, it is
sufficient to construct a set of channel coefficients such that
F̃n
12(t)F̃

n
21(t)F̃

n
22(t

′)F̃n
11(t

′)−F̃n
12(t

′)F̃n
21(t

′)F̃n
22(t)F̃

n
11(t) ̸= 0.

This is done by setting inter-layer links in the non-layered parts
to be zero, i.e., HB11(t) = HB22(t) = 0, setting the remaining
layered links as the same values chosen for the case shown
in Fig. 7, and then setting remaining inter-layer links in such
a manner that α(t) = 1. With this choice, it is easily seen
that F̃n

12(t)F̃
n
21(t)F̃

n
22(t

′)F̃n
11(t

′) −F̃n
12(t

′)F̃n
21(t

′)F̃n
22(t)F̃

n
11(t)

= 48e−
j8πn
Nc . This completes the proof. Note that similar argu-

ments can be applied to the cases where transform approach
is used and will be omitted due to limited space.

When (L1, L2) = (1, 4), there are four possible connec-
tivities as shown in Fig. 9. The achievable schemes are very
similar to the case where (L1, L2) = (1, 3). For example, for
the network shown in Fig. 9(a), using A1 and A2, interference
along paths S2 → A1 → D1 and S2 → A2 → D1 can be
canceled. The remaining interference can be canceled using
the transform approach so that 2 DoF can be achieved.

(a) (b)

(c) (d)

Fig. 9. Networks with (L1, L2) = (1, 4)

When (L1, L2) = (2, 2), there are a total of 6 possible
connectivities. Two basic connectivities are shown in Fig. 10.
By switching labels of the nodes A1 and A2 or B1 and
B2 or both in the network shown in Fig. 10(a), we obtain
another three connectivities. By switching labels of S1 and S2

as well as D1 and D2, we can obtain the last connectivity
in this case. The achievablility for Fig. 10(a) was already
presented in Section IV-C3. For the network shown in Fig.
10(b), A1 and A2 can be used to cancel interference arriving
at D1 along paths S2 → A1 → D1 and S2 → A2 → D1.
Once this interference is neutralized, the transform approach
can be applied by using B1 and B2 to cancel the remaining
interference to achieve 2 DoF.

(a) (b)

Fig. 10. Networks with (L1, L2) = (2, 2)

When (L1, L2) = (2, 3), there are a total of 12 possible
connectivities in this case, which can be obtained by adding
one inter-layer link from S2 to D1 in each of the connectivities
of (L1, L2) = (2, 3). Since there are two possible ways
to add such link in each case and there are a total of 6
possible cases, the total number of connectivities is 12. We
will consider adding links for three basic connectivities with
(L1, L2) = (2, 3) as shown in Fig. 11. The remaining cases
can be obtained by switching the labels of some nodes. The
networks obtained by adding one link based on the network
given in Fig. 10(a) are shown in Fig. 11(a). Each of the two
dashed lines represents one possible way to add the link.
Similarly, Fig. 11(b) shows two possible connectivities by
adding one inter-layer link based on the network shown in
Fig.10(b). Finally, by adding links to the network obtained by
switching labels S1, S2 and D1, D2, we obtain the last two
cases as shown in Fig. 11(c).

Let us first consider the achievable scheme for the network
shown in Fig.11(a). Suppose the link connecting S2 and B1

is added. The achievable scheme is similar to that of the case
without this link presented in Section IV-C3. S1, S2, A1 and
A2 will use the same transmission scheme as described in
Section IV-C3. Then the received signal at B1 is given by (13).
The received signal at B2 is given by (7). Note that (13) has
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YB1(t) = HB11(t)X1(t) +HB12(t)X2(t) + (HB1A1(t)A1(t)HA11(t− 1) +HB1A2(t)A2(t)HA21(t− 1))︸ ︷︷ ︸
E1(t)

X1(t− 1)

+ (HB1A1(t)A1(t)HA12(t− 1) +HB1A2(t)A2(t)HA22(t− 1))X2(t− 1)︸ ︷︷ ︸
I1(t)=0

+N′
B1

(t) (13)

(a) (b)

(c)

Fig. 11. Networks with (L1, L2) = (2, 3)

only one additional term HB12X2(t) compared to (6). These
two nodes will use the same procedure to cancel X1(t − 1)
and X2(t− 1) at B1 and B2, respectively. In time slot t = 1,
there is no inter-symbol interference and the received signals
are given by YB1(1) = HB11(1)X1(1) + HB12(1)X2(1) +
N′

B1
(1) and YB2(1) = HB22(1)X2(1)+N′

B2
(1). In time slot

t = 2, B1 cancels X1(1) as follows:

ỸB1(2) = YB1(2)−E1(2)H
−1
B11

(1)YB1(1)

= HB11(2)X1(2) +HB12(2)X2(2)

−E1(2)H
−1
B11

(1)HB12(1)X2(1) + ÑB1(2)

where ÑB1(2) is the effective noise. Similarly, in time t > 2,
B1 cancels X1(t − 1) as shown in (14). For B2, it cancels
X2(1) in time t = 2 as follows: Y′

B2(2) = YB2(2) −
E2(2)H

−1
B22

(1)YB2(1) = HB22(2)X2(2)+N′′
B2(2). In time

t > 2, B2 cancels X2(t− 1) as follows:

Y′
B2(t) = YB2(t)−E2(t)H

−1
B22

(t− 1)Y′
B2

(t− 1)

= HB22(t)X2(t) +N′′
B2(t). (15)

From Y′
B2(t), we can resolve X2(t) by inverting the effec-

tive channel, i.e., ȲB2(t) = H−1
B22

(t)Y′
B2(t) = X2(t) +

H−1
B22

(t)N′′
B2(t).

So far, interference with delay two has been canceled.
We still need to cancel interference with delay one. First
consider interfering signals from S1 to D2, which are a-
long paths S1 → B1 → D2 and S1 → A2 → D2.
B1 will send ỸB1(t) in the next block by multiplying a
matrix B1(t), i.e., XB1(t) = B1(t)ỸB1(t − 1). With this
transmission scheme, the interfering signal X1(t) is received
at D2 as H2B1(t)B1(t)HB11(t−1)+H2A2(t)A2(t)HA21(t−
1))X1(t − 1), which can be canceled by setting B1(t) =
−H−1

2B1
(t)H2A2(t)A2(t)HA21(t− 1)H−1

B11
(t− 1). After can-

celing the interference from S1, D2 can cancel the ISI of its
desired signal using memory and then decode its message.

Next consider canceling interference from S2 to D1. The
interference arriving at D1 along paths S2 → A1 → D1 and

S2 → B1 → D1 is given by

I2(t) = (H1A1(t)A1(t)HA12(t− 1)

+H1B1(t)B1(t)HB12(t− 1))X2(t− 1)

+H1B1(t)B1(t)X̃2(t− 1).

To cancel it, B2 will generate its transmitted signal in such
a manner that it is arrived at D1 as −I2(t). It can be seen
that from ȲB2(1), ȲB2(2), · · · , ȲB2(t−1), B2 can construct
the signal given in (16). Then the transmitted signal from
B2 is XB2(t) = H−1

1B2
(t)ỸB2(t). With this transmission

scheme, all interference is canceled at D1 and the received
signal at D1 becomes Y1(t) = (H1B1(t)B1(t)HB11(t− 1)+
H1A1(t)A1(t)HA11(t−1))X1(t−1)+N′

1(t). After canceling
all interference, D1 can decode its message.

Next consider the case in which the dashed link from A2

to D1 in Fig. 11(a) is added. The achievable scheme is very
similar to the case without this link. Specifically, all nodes
except B2 use the same scheme as the case in which that link is
absent. The only difference is that the amplifying matrix B2(t)
should be changed to account for the additional interference
due to the additional link. In this network, the interference
from S2 to D1 is the sum of signals arriving along three paths
S2 → A1 → D1, S2 → A2 → D1 and S2 → B2 → D1:
(H1A1(t)A1(t)HA12(t − 1) + H1A2(t)A2(t)HA22(t − 1) +
H1B2(t)B2(t)HB22(t− 1))X2(t− 1), which can be canceled
by choosing B2(t) = −H−1

1B2
(t)(H1A1(t)A1(t)HA12(t−1)+

H1A2(t)A2(t)HA22(t− 1))H−1
B22

(t− 1).
Next consider the networks shown in Fig. 11(b). Let us first

use A1 and A2 to cancel interfering signals along paths S2 →
A1 → D1 and S2 → A2 → D1. Once this interfering signal
is canceled, links A1 → D1 and A2 → D1 are effectively
removed from the network. The remaining interference can be
canceled using the transform approach by B1 and B2.

Finally, for the networks shown in Fig. 11(c), B1 and B2

will be used to cancel interference along paths S2 → B1 →
D1 and S2 → B2 → D1. The remaining interference can
be canceled using A1 and A2 by exploiting the transform
approach.

When (L1, L2) = (2, 4), there are a total of 6 possible
cases. Three basic connectivities are shown in Fig. 12. The
remaining three possible connectivities can be obtained by
switching labels A1 and A2, or B1 and B2, or both in the
network shown in Fig. 12(c). For the case shown in Fig. 12(a),
by shutting down nodes A1 and A2, the network becomes the
2× 2× 2 IC for which 2 DoF can be achieved [5]. Similarly,
by shutting down nodes B1 and B2 in the network shown in
Fig. 12(b), it becomes the 2×2×2 IC as well. For the network
shown in Fig. 12(c), by shutting down nodes A2 and B2, the
network becomes the 2× 2× 2 IC with interfering relays, for
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ỸB1(t) = YB1(t)−E1(t)H
−1
B11

(t− 1)ỸB1(t− 1)

= HB11(t)X1(t) +HB12(t)X2(t) +
t−1∑
n=1

(−1)t−n

(
t−1∏
m=n

E1(m+ 1)H−1
B11

(m)

)
HB12(n)X2(n)︸ ︷︷ ︸

X̃2(t)

+ÑB1
(t)(14)

−ỸB2(t) = (H1A1(t)A1(t)HA12(t− 1) +H1B1(t)B1(t)HB12(t− 1))ȲB2(t− 1)

+H1B1(t)B1(t)

(
t−2∑
n=1

(−1)t−n−1

(
t−2∏
m=n

E1(m+ 1)H−1
B11

(m)

)
HB12(n)ȲB2(n)

)
= I2(t) + ÑB2(t)(16)

which 2 DoF can be achieved as shown before.

(a) (b)

(c)

Fig. 12. Networks with (L1, L2) = (2, 4)

When (L1, L2) = (3, 3), the total number of possible
connectivities is 12. Four basic networks are shown in Fig.
13. By switching the labels of B1 and B2 in Fig. 13(a) and
labels of A1 and A2 in Fig. 13(c), two more connectivities
are obtained. Switching A1 and A2, or B1 and B2 or both
in Fig. 13(b) and 13(d) will give us three more connectivities
for each figure for a total of six possible connectivities. By
shutting down B1 and B2 in Fig. 13(a) and shutting down A1

and A2 in Fig. 13(c), we obtain the 2× 2× 2 IC for which 2
DoF can be achieved [5]. By shutting down A1 and B2 in Fig.
13(c) and shutting down A1 and B1 in Fig. 13(d), we obtain
the 2×2×2 IC with interfering relays for which 2 DoF can be
achieved. Achievable schemes for other cases follow directly.

(a) (b)

(c) (d)

Fig. 13. Networks with (L1, L2) = (3, 3)

When (L1, L2) = (3, 4), there are a total of four possible
connectivities as shown in Fig. 14. By shutting down A1 and

A2 in Fig. 14(a) and 14(d), and shutting down B1 and B2 in
Fig. 14(b) and 14(c), we obtain the 2× 2× 2 IC for which 2
DoF can be achieved.

(a) (b)

(c) (d)

Fig. 14. Networks with (L1, L2) = (3, 4)

When (L1, L2) = (4, 4), simply shutting down node A1

and A2 gives us the 2 × 2 × 2 IC for which 2 DoF can be
achieved.
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