Chapter 11

Recursion

- Basics of Recursion
- Programming with Recursion
Overview

Recursion: a definition in terms of itself.

Recursion in algorithms:
- Recursion is a natural approach to some problems
 - it sounds circular, but in practice it is not
- An *algorithm* is a step-by-step set of rules to solve a problem
 - it must eventually terminate with a solution
- A *recursive algorithm* uses itself to solve one or more subcases

Recursion in Java:
- Recursive methods implement recursive algorithms
- A *recursive method* in one whose definition includes a call to itself
 - a method definition with an invocation of the very method used to define it
Recursive Methods
Must Eventually Terminate

A recursive method must have
at least one base, or stopping, case.

- A base case does not execute a recursive call
 » it stops the recursion

- Each successive call to itself must be a "smaller version of itself"
 so that a base case is eventually reached
 » an argument must be made smaller each call so that
 eventually the base case executes and stops the recursion
Example: a Recursive Algorithm

One way to search a phone book (which is an alphabetically ordered list) for a name is with the following recursive algorithm:

Search:

 middle page = (first page + last page)/2

Open the phone book to middle page;

If (name is on middle page)
 then done; // this is the base case
else if (name is alphabetically before middle page)
 last page = middle page // redefine search area to front half
 Search // recursive call with reduced number of pages
else // name must be after middle page
 first page = middle page // redefine search area to back half
 Search // recursive call with reduced number of pages
Example: A Recursive Method

- **RecursionDemo** is a class to process an integer and print out its digits in words
 - e.g. entering 123 would produce the output "one two three"
- **inWords** is the method that does the work of translating an integer to words

```java
public static void inWords(int numeral) {
    if (numeral < 10)
        System.out.print(digitWord(numeral) + " ");
    else //numeral has two or more digits
    {
        inWords(numeral/10);
        System.out.print(digitWord(numeral%10) + " ");
    }
}
```

Here is the recursive call: *inWords* definition calls itself
Example: A Base Case

- Each recursive call to `inWords` reduces the integer by one digit
 - it drops out the least significant digit
- Eventually the argument to `inWords` has only digit
 - the if/else statement finally executes the base case
 - and the algorithm terminates

```java
public static void inWords(int numeral) {
    if (numeral < 10)
        System.out.print(digitWord(numeral) + " ");
    else //numeral has two or more digits
    {
        inWords(numeral/10);
        System.out.print(digitWord(numeral%10) + " ");
    }
}
```
What Happens with a Recursive Call

Suppose that `inWords` is called from the main method of `RecursionDemo` with the argument 987.

This box shows the code of `inWords` (slightly simplified) with the parameter numeral replaced by the argument 987.
What Happens with a Recursive Call

The if condition is false, so the else part of the code is executed.

In the else part there is a recursive call to `inWords`, with 987/10 or 98 as the argument.
In the recursive call, the if condition is false, so again the else part of the code is executed and another recursive call is made.
What Happens with a Recursive Call

inWords(987)
if (987 < 10)
 // print digit here
else // two or more digits left
{
 inWords(987/10);
 // print digit here
}

Output: nine

inWords(98)
if (98 < 10)
 // print digit here
else // two or more digits left
{
 inWords(98/10);
 // print 98 % 10
 // print nine
}
else // two or more digits left
{
 inWords(numeral/10);
 // print digit here
}

- This time the if condition is true and the base case is executed.
- The method prints nine and returns with no recursive call.
What Happens with a Recursive Call

- The method executes the next statement after the recursive call, prints \texttt{eight} and then returns.

```java
inWords(987)
if (987 < 10)
    // print out digit here
else // two or more digits left
{
    inWords(987/10);
    // print digit here
}
```

```java
if (98 < 10)
    // print out digit here
else // two or more digits left
{
    inWords(98/10);
    // print out 98 % 10 here
}
```

Output: \texttt{nine eight}
What Happens with a Recursive Call

- Again the computation resumes where it left off and executes the next statement after the recursive method call.
- It prints seven and returns and computation resumes in the main method.

```
inWords(987)
if (987 < 10)
    // print out digit here
else // two or more digits left
{
    inWords(987/10);
    // print 987 % 10
}
Output: nine eight seven
```
Remember: Key to Successful Recursion

Recursion will not work correctly unless you follow some specific guidelines:

- The heart of the method definition can be an if-else statement or some other branching statement.
- One or more of the branches should include a recursive invocation of the method.
 - Recursive invocations should use "smaller" arguments or solve "smaller" versions of the task.
- One or more branches should include no recursive invocations. These are the stopping cases or base cases.
Warning: Infinite Recursion May Cause a Stack Overflow Error

- If a recursive method is called and a base case never executes the method keeps calling itself

- The *stack* is a data structure that keeps track of recursive calls

- Every call puts data related to the call on the stack
 - the data is taken off the stack only when the recursion stops

- So, if the recursion never stops the stack eventually runs out of space
 - and a stack overflow error occurs on most systems
Recursive Versus Iterative Methods

All recursive algorithms/methods can be rewritten without recursion.

- Methods rewritten without recursion typically have loops, so they are called *iterative* methods
- Iterative methods generally run faster and use less memory space
- So when should you use recursion?
 » when efficiency is not important and it makes the code easier to understand
numberOfZeros—A Recursive Method that Returns a Value

- Takes a single int argument and returns the number of zeros in the number
 - Example: `numberOfZeros(2030)` returns 2

- Uses the following fact:

 If \(n \) is two or more digits long, then the number of zero digits is (the number of zeros in \(n \) with the last digit removed) plus an additional 1 if that digit is zero.

Examples:
 - Number of zeros in 20030 is number of zeros in 2003 plus 1 for the last zero
 - Number of zeros in 20031 is number of zeros in 2003 plus 0 because last digit is not zero
numberOfZeros

public static int numberOfZeros(int n)
{
 if (n==0)
 return 1;
 else if (n < 10) // and not 0
 return 0; // 0 for no zeros
 else if (n%10 == 0)
 return (numberOfZeros(n/10) + 1);
 else // n%10 != 0
 return (number of Zeros(n/10));
}

If n is two or more digits long, then the number of zero digits is (the number of zeros in n with the last digit removed) plus an additional 1 if that digit is zero.

Which is (are) the base case(s)? Why?

Which is (are) the recursive case(s)? Why?
public static int numberOfZeros(int n) {
 if (n==0)
 return 1;
 else if (n < 10) // and not 0
 return 0; // 0 for no zeros
 else if (n%10 == 0)
 return (numberOfZeros(n/10) + 1);
 else // n%10 != 0
 return (numberOfZeros(n/10));
}

numberOfZeros(2005) is numberOfZeros(200) plus nothing

numberOfZeros(200) is numberOfZeros(20) + 1

numberOfZeros(20) is numberOfZeros(2) + 1

numberOfZeros(2) is 0 (a stopping case)

Each method invocation will execute one of the if-else cases shown at right.

Computation of each method is suspended until the recursive call finishes.
Recursive Calls

Returning

Suspended computations completed as follows:

(numberOfZeros(2) is 0 (a stopping case)

numberOfZeros(20) is numberOfZeros(2) + 1,
which is 0 + 1 == 1

numberOfZeros(200) is numberOfZeros(20) + 1,
which is 1 + 1 == 2

numberOfZeros(2005) is numberOfZeros(200) plus nothing
which is 2 + 0 plus nothing == 2

public static int numberOfZeros(int n) {
 if (n==0)
 return 1;
 else if (n < 10) // and not 0
 return 0; // 0 for no zeros
 else if (n%10 == 0)
 return (numberOfZeros(n/10) + 1);
 else // n%10 != 0
 return (numberOfZeros(n/10));
}
Programming Tip:
Ask Until the User Gets It Right

```java
public void getCount()
{
    System.out.println("Enter a positive number:");
    count = SavitchIn.readLineInt();
    if (count <= 0)
    {
        System.out.println("Input must be positive.
        System.out.println("Try again.");
        getCount();  //start over
    }
}
```

Recursion continues until user enters valid input.
The "Name in the Phone Book" Problem Revisited

A recursive solution to the problem was shown in pseudocode on an earlier slide and is repeated here:

```
Search:
    middle page = (first page + last page)/2
    Open the phone book to middle page;
    If (name is on middle page)
        then done; / / this is the base case
    else if (name is alphabetically before middle page)
        last page = middle page/ / redefine search area to
                        front half
        Search/ / recursive call with reduced number of pages
    else / / name must be after middle page
        first page = middle page/ / redefine search area to
                        back half
        Search/ / recursive call with reduced number of pages
```
Binary Search Algorithm

- Searching a list for a particular value is a very common problem
 - searching is a thoroughly studied topic
 - *sequential* and *binary* are two common search algorithms

- *Sequential search*: inefficient, but easy to understand and program

- *Binary search*: more efficient than sequential, but it only works if *the list is sorted first!*

- The pseudocode for the "find the name in the phone book" problem is an example of a binary search
 - notice that names in a phone book are already sorted so you may use a binary search algorithm
Why Is It Called "Binary" Search?

Compare sequential and binary search algorithms:

How many elements are eliminated from the list each time a value is read from the list and it is not the "target" value?

Sequential search: each time a value is read from the list and it is not the "target" value, *only one item* from the list is eliminated

Binary search: each time a value is read from the list and it is not the "target" value, *half the list* is eliminated!

That is why it is called *binary* -

each unsuccessful test for the target value reduces the remaining search list by 1/2.
The `find` method of `ArraySearcher` implements a binary search algorithm.

It returns the index of the entry if the target value is found or -1 if it is not found.

Compare it to the pseudocode for the "name in the phone book" problem.

```java
private int search(int target, int first, int last)
{
    int result = -1; // to keep the compiler happy.
    int mid;
    if (first > last)
    {
        result = -1;
    } else
    {
        mid = (first + last)/2;

        if (target == a[mid])
        {
            result = mid;
        } else if (target < a[mid])
        {
            result = search(target, first, mid - 1);
        } else // (target > a[mid])
        {
            result = search(target, mid + 1, last);
        }
    }
    return result;
}
```
Binary Search Example

target is 33
The array a looks like this:

<table>
<thead>
<tr>
<th>Indexes</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>13</td>
<td>32</td>
<td>33</td>
<td>42</td>
<td>54</td>
<td>56</td>
<td>88</td>
</tr>
</tbody>
</table>

$\text{mid} = (0 + 9) / 2$ (which is 4)
$33 > a[\text{mid}]$ (that is, $33 > a[4]$)
So, if 33 is in the array, then 33 is one of:

<table>
<thead>
<tr>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
</table>

Eliminated half of the remaining elements from consideration because array elements are sorted.
target is 33

The array a looks like this:

<table>
<thead>
<tr>
<th>Indexes</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5 6 7 8 9</td>
<td>5 7 9 13 32 33 42 54 56 88</td>
</tr>
</tbody>
</table>

$\text{mid} = \frac{(5 + 9)}{2}$ (which is 7)
$33 < a[\text{mid}]$ (that is, $33 < a[7]$)
So, if 33 is in the array, then 33 is one of:

$$\text{Eliminate half of the remaining elements}$$

mid = (5 + 6) / 2 (which is 5)
$33 == a[\text{mid}]$
So we found 33 at index 5:
Merge Sort—
A Recursive Sorting Method

- Example of divide and conquer algorithm
- Divides array in half and sorts halves recursively
- Combines two sorted halves

Merge Sort Algorithm to Sort the Array `a`

If the array `a` has only one element, do nothing (stopping case).

Otherwise, do the following (recursive case):
 1. Copy the first half of the elements in `a` to a smaller array named `front`.
 2. Copy the rest of the elements in the array `a` to another smaller array named `tail`.
 3. Sort the array `front` with a recursive call.
 4. Sort the array `tail` with a recursive call.
 5. Merge the elements in the arrays `front` and `tail` into the array `a`.
Merge Sort

```java
public static void sort(int[] a)
{
    if (a.length >= 2)
    {
        int halfLength = a.length / 2;
        int[] front = new int[halfLength];
        int[] tail = new int[a.length - halfLength];
        divide(a, front, tail);
        sort(front);
        sort(tail);
        merge(a, front, tail);
    } // else do nothing.
}
```

Recursive calls
- Make "smaller" problems by dividing array
- Make "smaller" problems by dividing array
- Base case: a.length == 1 so a is sorted and no recursive call is necessary.

Do recursive case if true, base case if false
Summary

- If a method definition includes an invocation of the very method being defined, the invocation is called a recursive call.

- Recursive calls are legal in Java and sometimes can make code easier to read.

- To avoid infinite recursion, a recursive method definition should contain two kinds of cases: one or more recursive calls and one or more stopping cases that do not involve any recursive calls.

- Recursion can be a handy way to write code that says "if there is a problem then start the whole process over again."