A Low Complexity Progressive Bitstream Transmission System for Hybrid Channels with Correlated Loss

Farzad Etemadi, Hamid Jafarkhani
EECS Department
University of California, Irvine
Outline

- Motivation and introduction
- Hybrid channels
- Product codes
- Proposed solution
- Numerical results
- Summary and conclusion
Motivation

- Multi-media content delivery over fading channels and packet networks
- Lossy compression + channel coding
- Design metric: End-to-end expected distortion

Goal: Distortion minimization for a given transmission rate

Solution: Joint source-channel coding with progressive transmission
Progressive Transmission

- Embedded source coding
 - Rate-distortion trade-off through bitstream truncation
 - Image: SPIHT, JPEG2000
 - Video: 3D SPIHT, MPEG4-FGS
- Joint source-channel coding
 - Unequal protection
 - Maximize the expected rate (rate-based)
 - Minimize the expected distortion (distortion-based)
Hybrid Channel

- Simultaneous bits errors and packet erasures
 - Wireless device connected to the internet
- Correlated loss
 - Burst of errors (fading)
 - Bursts of packet loss (congestion)
- Finite-state channel model
Finite-State Channel Model

- Bit errors
 - Gilbert-Elliot
 - Error rates: $\varepsilon_G \ll \varepsilon_B$, SNR-dependent
- Packet erasures
 - Gilbert
 - Error rates: $\varepsilon_G = 0$, $\varepsilon_B = 1$
Product Code RS2D

- Well-known solution [Sherwood & Zeger 1997]

\[\begin{align*}
N & \quad \text{Number of packets} \\
L & \quad \text{Number of symbols/packet} \\
B_T = NL & \quad \text{Total budget} \\
X & \quad \text{Error protection parity} \\
O & \quad \text{Erasure protection parity} \\
1, 2, \ldots & \quad \text{Source symbols}
\end{align*} \]

- Optimize \(L_s \) and the number of erasure parity symbols
Product Code RS2D Optimization

- Optimization solutions [Stankovic et. al. 2004]
 - Optimal rate-based solution $O(NL)$
 - Near-optimal distortion-based solution $O(NL^2)$
- Existing work: memoryless channels
 - We extend it to correlated channels
- Compare RS2D vs. proposed solution
Extension of RS2D to Correlated Channels

- Correlated channel statistics

 \[P_{err}(n, m) = \text{Prob}\{m \text{ bit errors out of } n \text{ bits}\} \]
 \[P_{ers}(n, m) = \text{Prob}\{m \text{ packet erasures out of } n \text{ packets}\} \]

- \(\Phi_C = \text{Prob}\{\text{row code decoding failure with } C \text{ parity symbols}\} \)

 - Symbol error rates (RS codes)
 - Long bursts: \(\Phi_C \) from simulations
 - Short bursts: \(\Phi_C = 1 - \sum_{i=0}^{\left\lfloor \frac{C}{2} \right\rfloor} \binom{L}{i} P_{se}^i (1 - P_{se})^{L-i}, P_{se} = 1 - P_{err}(s, 0), s: \text{symbol size (bits)} \)

\[
P_N(n, C) = \sum_{m=0}^{n} p(N_f = n - m | N_{ers} = m) P_{ers}(N, m)
\]

\[
p(N_f = n - m | N_{ers} = m) = \binom{N - m}{n - m} \Phi_C^{n-m} (1 - \Phi_C)^{N-n}
\]
Product Code Issues

- Complexity
 - Encoding/decoding (2D)
 - Quadratic optimization complexity $O(NL^2)$
- Poor burst error performance
- Unequal protection for erasures only
- Large rate/distortion-based performance gap

N	Number of packets
L	Number of symbols/packet
$B_T = NL$	Total budget

L_S and L denote the number of symbols and packets, respectively. N and L are used to allocate resources for protection. X indicates error protection parity, O indicates erasure protection parity, and $1, 2, \ldots$ are source symbols.
What’s Wrong with the Product Code?

• **Row code**
 - 2D code, high encoding/decoding complexity
 - Poor performance for long bursts
 - Optimal rate: $O(NL^2)$ optimization

• **Solution:**
 - Get rid of the row code!
Proposed Solution RS1D

- Simultaneous error/erasure correction using RS codes

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>16</th>
<th>20</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>13</td>
<td>17</td>
<td>21</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>8</td>
<td>11</td>
<td>14</td>
<td>18</td>
<td>22</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>15</td>
<td>19</td>
<td>23</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>24</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

* : Error/erasure parity
1, 2, ...: Source symbols
Proposed Solution RS1D

- Complexity
 - Encoding/decoding (1D)
 - Optimization $O(NL)$
- Burst error interleaving
- Unequal protection for errors AND erasures
- Small rate/distortion-based performance gap
RS1D Optimization

- Error+erasure equivalent channel with failure rate Ψ_C
- Distortion-based cost function:

$$\mathcal{E}_D = \sum_{i=1}^{L+1} D_{i-1} \Psi_C \prod_{j=1}^{i-1} (1 - \Psi_{C_j})$$

D_i: Distortion with the first i codewords

- Known linear complexity optimization techniques
- No explicit error vs. erasure budget allocation (linear complexity)
RS1D Failure Probability

\[\Psi_C = 1 - \sum_{i=0}^{N} p(N_{err} \leq \left\lfloor \frac{C-i}{2} \right\rfloor | N_{ers} = i) P_{ers}(N, i) \]

\[p(N_{err} \leq \left\lfloor \frac{C-i}{2} \right\rfloor | N_{ers} = i) = \sum_{j=0}^{\left\lfloor \frac{C-i}{2} \right\rfloor} p(N_{err} = j | N_{ers} = i) \]

\[p(N_{err} = j | N_{ers} = i) = \binom{N-i}{j} P_{se}^j (1 - P_{se})^{N-i-j} \]

where

\[P_{se} = 1 - P_{err}(s, 0) : \text{Symbol error probability} \]

\[P_{err}(n, m) = \text{Prob}\{m \text{ bit errors out of } n \text{ bits}\} \]

\[P_{ers}(n, m) = \text{Prob}\{m \text{ packet erasures out of } n \text{ packets}\} \]

\[s : \text{Symbol size in bits} \]
Numerical Results

- 512×512 gray scale Lena image
- SPIHT encoder
- $PSNR = 10 \log_{10} \frac{255^2}{D}$, D:expected distortion
- Total budget $B_T = LN = 10^4$ bytes
 - Max source coding rate: 0.3 bits-per-pixel
 - Various $\frac{L}{N}$ ratios
N=100, L=100

[Graph showing error rate vs. SNR for different bitstream transmission systems.]

A Low Complexity Progressive Bitstream Transmission System for Hybrid Channels with Correlated Loss – p. 17/21
N=200, L=50
N=50, L=200
Summary and Conclusion

- Extended product code analysis to correlated channels
- Simple 1D coding scheme for hybrid channel
 - Performance gain (up to 8dB)
 - Low coding/optimization complexity
- More results*
 - Low rate/distortion-based gap (0.5dB vs. 7dB for 2D)
 - Memoryless channels: No distortion gain, but reduced complexity

Thank You!