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General Problem Definition

We don’t know what goes on in the network

Measure and monitor:

= Who uses the network? For what?
= How much file-sharing is there?

= Can we observe any trends?

Security guestions:

= Have we been infected by a virus?
= |s someone scanning our network?
= Am | attacking others?
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Problem in More Detail

Given network traffic in terms of flows
m Flow: tuple (source IP, port; dest IP, port; protocol)
= Flow statistics: packet sizes, interarrival etc

Find which application generates each flow
m Or which flows are P2P
m Or detect viruses/worms

Issues:
m Definition of flow hides subtleties
= Monitoring tools, netflow, provide this
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State of the Art Approaches

Port-based: some apps use the same port
= Works well for legacy applications, but not for new apps

Statistics-based methods:

= Measure packet and flow properties
Packet size, packet interarrival time etc
Number of packets per flow etc

= Create a profile and classify accordingly
m Weakness: Statistical properties can be manipulated

Packet payload based:
= Match the signature of the application in payload

= Weakness
Require capturing the packet load (expensive)
Identifying the “signature” is not always easy

IP blacklist/whitelist filtering



Our Novelty, Oversimplified

We capture the intrinsic behavior of a user
= Who talks to whom

Benefits:

= Provides novel insight

= Is more difficult to fake

m Captures intuitively explainable patterns

Claim: our approach can give rise to a
new family of tools
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How our work differs from others

SYN FIN
— ™ s N
Packet Flow

Previous work

BLINC: Profile behavior of user (host level)
TDGs: Profile behavior of the whole network (network level)
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Motivation: People Really Care

We started by measuring P2P traffic

= which explicitly tries to hide

m Karagiannis (UCR) at CAIDA, summer 2003
How much P2P traffic is out there?

= RIAA claimed a drop in 2003

= We found a slight increase
"Is P2P dying or just hiding?" Globecom 2004
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The Reactions

RIAA did not like it

= Respectfully said that we don’t know what we
are doing

The P2P community loved it
= Without careful scrutiny of our method
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More People Got Interested

Wired: ~~Song-Swap Networks Still Humming"
on Karagiannis work.

ACM news, PC Magazine, USA Today,...
Congressional Internet Caucus (J. Kerry!)
In litigation docs as supporting evidence!

AL U UMY ! -.
DNGRESSIONAL
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Structure of the talk

Part I:

= BLINC: A host-based approach for traffic
classification

Part I1:

= Monitoring using the network-wide behavior:
Traffic Dispersion Graphs, TDGs

M. Faloutsos UCR
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Part I: BLLINC Traffic classification

The goal:
m Classify Internet traffic flows according to the
applications that generate them
Not as easy as it sounds:

m Traffic profiling based on TCP/UDP ports
Misleading

m Payload-based classification
Practically infeasible (privacy, space)

m Can require specialized hardware

Joint Work with: Thomas Karagiannis, UC Riverside/ Microsoft
Konstantina Papagiannaki, Nina Taft, Intel
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The State of the Art

Recent research approaches

m Statistical/machine-learning based classification
Roughan et al., IMC’'04
McGregor et al., PAM’05
Moore et al., SIGMETRICS’05

= Signhature based
Varghese, Fingerhut, Bonomi, SIGCOMM’06
Bonomi, et al. SIGCOMM’06

= IP blacklist/whitelist filtering to block bad traffic
Soldo+, Markopoulou, ITA’08

= UCR/CAIDA a systematic study in progress:
What works, under which conditions, why?
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Our contribution: BLLINC

BLINd Classification

= Ie without using payload

We present a fundamentally different “in
the dark” approach

= We shift the focus to the host

We identify “signhature” communication

patterns
m Difficult to fake

M. Faloutsos UCR
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BLINC overview

Characterize the host
= Insensitive to network dynamics (wire speed)

Deployable: Operates on flow records
= Input from existing equipment

Three levels of classification

= Social : Popularity

= Functional : Consumer/provider of services
= Application : Transport layer interactions
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Social Level

Social:
= Popularity z
= Bipartite cliques
Gaming communities y
identified by using data : c.st”d . §
mining:
= fully automated cross- 50}

association , 100
= Chakrabarti et al KDD 20 % 150;

(C. Faloutsos CMU) S 200/

~ 250
300 :
| 1.00 EDD__%
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Functional level

Functional:

= Infer role of node
Server
Client
Collaborator

m One way: #source ports vs. # of flows

M. Faloutsos UCR
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Social level

Characterization of the popularity of hosts

Two ways to examine the behavior:
= Based on number of destination IPs
= Analyzing communities

Destnation

Source
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Social level: Identifying Communities

Find bipartite cliques

Destination

Source

M. Faloutsos UCR 18



Social Level: What can we see

Perfect bipartite cliques
= Attacks

Partial bipartite cligues
= Collaborative applications (p2p, games)

Partial bipartite cligues with same domain
IPs

= Server farms (e.g., web, dns, mail)
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Social Level:
Finding communities in practice

Clustered matrix

20
100
150+
200}

Row Clusters

2507

300

100 200 300
Column Clusters
Gaming communities identified by using data mining:
fully automated cross-association
Chakrabarti et al KDD 2004 (C. Faloutsos CMU)



Functional level

Characterization based on tuple (1P, Port)

Three types of behavior
= Client

m Server

= Collaborative

M. Faloutsos UCR
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Functional level: Characterizing the
host

Collaborative
applications: No
distinction
between servers
and clients

Y-axis: number of source ﬁorts X-axis: number of flows

Obscure behavior due to multiple mail
M protocols and passive ftp 22



Application level

Interactions between network hosts
display diverse patterns across application

types.

We capture patterns using graphlets:
= Most typical behavior
= Relationship between fields of the 5-tuple
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Application level: Graphlets

sourcelP destinationlP sourcePort destinationPort
O O 0~ 0
O

Capture the behavior of a single host (IP address)

Graphlets are graphs with four “columns”:
m src [P, dst IP, src port and dst port

Each node is a distinct entry for each column
m E.g. destination port 445

Lines connect nodes that appear on the same flow

M. Faloutsos UCR
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Graphlet Generation (FTP)

sourcelP destinationPort

X U 20 5005
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What can Graphlets do for us?

Graphlets
®= are a compact way to profile of a host
= capture the intrinsic behavior of a host

Premise:
= Hosts that do the same, have similar graphlets

Approach
= Create graphlet profiles

m Classify new hosts if they match existing
graphlets

M. Faloutsos UCR 26



Training Part:
Create a Graphlet Library

el P swPort dstPot wdP dstlP scPort dsPortgelP P swPort dstPat gD dlP Pt dstPort

ATTACK WEB (TCP)

ATTACK
i CGAMES (LDP)

(a) (h) (c) (d)

sl AP scPort dtPot g P dstP acPot  dPort  swlP dsP ClscPot Pt sdP &P scPot dstPort

CHAT(TCP)
PIR(TCP, UDP) GAMES/UDP
(e) n (g) (h)

siclP (P scPort  dstPort seelP dstlP scPot dstPort selP P O sePot dsPot kP Peio P scPorn datPon

DNS/UDP

MAIL server
STREAMING/REAL with DNS
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Additional Heuristics

In comparing graphlets, we can use other info:
= the transport layer protocol (UDP or TCP).
= the relative cardinality of sets.

= the communities structure:
If X and Y talk to the same hosts, X and Y may be similar
Follow this recursively

Other heuristics:
= Using the per-flow average packet size

= Recursive (mail/dns servers talk to mail/dns
servers, etc.)

= Failed flows (malware, p2p)
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Evaluating BLINC

We use real network traces

Data provided by Intel:
= Residential (Web, p2p)
= Genome campus (ftp)

Train BLINC on a small part of the trace
Apply BLINC on the rest of the trace

M. Faloutsos UCR
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Compare with what?

Develop a reference point
= Collect and analyze the whole packet
= Classification based on payload signatures

Not perfect but nothing better than this

M. Faloutsos UCR
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Classification Results

Metrics

= Completeness
Percentage classified by BLINC relative to benchmark
“Do we classify most traffic?”

m Accuracy
Percentage classified by BLINC correctly
“When we classify something, is it correct?”

= Exclude unknown and nonpayload flows

M. Faloutsos UCR 31



Classification results : Totals

100

90+

80

Percentage of flows

20+
10~

80%-90% completeness !
>90% accuracy !!

70}
60}
50|
40+
30}

UN1 UN2

Il Completeness
| |Accuracy

BLINC works well

M. Faloutsos UCR
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Characterizing the unknown:
Non-payload tlows

BLINC is not limited by non-payload flows or
unknown signatures

Destination port scans

10 . s
My Do
. Aster N Backdoor
10
RPC Sasser
10° explait Slammer
% 10t
(.
 40°

10" 107 1a” 10"
Port

Flows classified as attacks reveal
known exploits
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BLINC i1ssues and limitations

How do we compare graphlets?
= “Graph similarity” is difficult to define
= Currently, based on heuristics and training

What iIf a node runs two apps at the same time?

Extensibility
= Creating and incorporating new graphlets

Application sub-types
= e.dg., BitTorrent vs. Kazaa

Access vs. Backbone networks?
= Works better for access networks (e.g. campus)

M. Faloutsos UCR 34



eveloping a Useable Tool

-

Blinc: MultiLevel Traffic

Classification
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Follow up work:
Profiling the end user

We examine the dynamics of profiling

How much variability exists
= Per node over time
= Among nodes in a network

How can | summarize a graphlet
= So that | can compare it with others?

The answers in PAM 2007

M. Faloutsos UCR
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Conclusions - 1

We shift the focus from flows to hosts
= Capture the intrinsic behavior of a host

Multi-level analysis:
= each level provides more detall

Good results Iin practice:

= BLINC classifies 80-90% of the traffic with
greater than 90% accuracy

M. Faloutsos UCR
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Part I1: Tratfic Dispersion Graphs

Monitoring traffic as a network-wide phenomenon

Flo{
SYN FIN
EI‘I;I'I- SYN FIN = =
00
g I ----{1H1Im
Host
Packet Flow Individual Host Host Community (TDG)

Paper at Internet Measurement Conference (IMC) 2007
Joint work with: Marios lliofotou UC Riverside, G. Varghese UCSD
Prashanth Pappu, Sumeet Singh (Cisco) M. Mitzenmacher (Harvard)
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Tratfic Dispersion Graphs
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(a) Al UDP flows (Ssec) (b) All UDP flows including Slammer
worm (Ssec)

Traffic Dispersion Graphs:

= Who talks to whom

Deceptively simple definition

Provides powerful visualization and novel insight

M. Faloutsos UCR 39



Detining TDGs

A node iIs an IP address (host, user)

A key issue: define an edge (Edge filter)
= Edge can represent different communications
= Simplest: edge = the exchange of any packet

= Edge Filter can be more involved:
A number of pkts exchanged
TCP with SYN flag set (initiating a TCP connection)
sequence of packets (e.g., TCP 3-way handshake)
Payload properties such as a content signature

M. Faloutsos UCR 40



Generating a TDG

Pick a monitoring point (router, backbone link)

Select an edge filter
= Edge Filter = “What constitutes an edge in the graph?”
m E.g., TCP SYN Dst. Port 80

If a packet satisfies the edge filter, create the link
= srclP - dstlIP

Gather all the links and generate a graph
= within a time interval, e.g., 300 seconds (5 minutes)
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TDGs are a New Kind of Beast

TDGs are

= Directed graphs
= Time evolving
= Possibly disconnected

TDGs are not yet another scalefree graph
TDGs are not a single family of graphs
= TDGs with different edge filters are different

TDGs hide a wealth of information
m Make “cool” visualizations
= Can be “mined” to provide novel insight

M. Faloutsos UCR 42



TDGs and Preliminary Results

We focus on studying port-based TDGs
= Even that can give interesting information

We study destination ports of known
applications:

= UDP ports: we generate an edge based on the
first packet between two hosts

= TCP we add an edge on a TCP SYN packet for
the corresponding destination port number
e.g., port 80 for HTTP, port 25 for SMTP etc.

M. Faloutsos UCR 43



Data Used

Real Data: typical duration = 1 hour

= OC48 from CAIDA (22 million flows, 3.5 million IPs)
= Abilene Backbone (23.5 million flows, 6 million IPs)
= WIDE Backbone (5 million flows, 1 million IPs)

m Access links traces (University of Auckland) + UCR

traces were studied but not shown here (future work)
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TDGs as a Visualization Tool

M. Faloutsos UCR
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Identifying Hierarchies

SMTP (email)

eHierarchical structure with multiple levels of hierarchy

M. Faloutsos UCR



Web Trafttic
Web: port 8080

Web: https
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TDG Visualizations (Peet-to-Peer)
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Detecting Viruses and Unusual Activities

Random IP range scanning activity?
Slammer: port 1434 NetBIOS: port 137
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Visually detecting virus activity

A
m|

5 % T 1

2 'ﬁb
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q;%m;iﬂm SRR e

(a) Al UDP flows (Ssec) (b) All UDP flows including Slammer
worm (Ssec)

Virus (slammer) creates more “star” configurations

Directivity makes it clearer
m Center node -> nodes, for virus “stars”
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Quantitative Study of TDGs

M. Faloutsos UCR
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Using Graph Metrics

We use new and commonly used metrics
Degree distribution

Glant Connected Component
= Largest connected subgraph

Number of connected components

IN-Out nodes
= Node with in- and out- edges

Joint Degree Distribution

M. Faloutsos UCR

52



Degree Distribution
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The degree distributions of TDGs varies a lot.

Only some distributions can be modeled by power-laws (HTTP, DNS).
P2P communities (eDonkey) have many medium degree nodes (4 to 30).
HTTP and DNS have few nodes with very high degrees.

NetBIOS: Scanning activity: 98% of nodes have degree of one, few nodes

with very high degree - scanners
M. Faloutsos UCR 53
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Joint Degree Distribution (JDD)

11

[N
o

RIN|W|A|[O|O|N|®|©
w

QU ONON 0200
ONOYOY QoOr

JDD: P(ksy,k2), the probability that a randomly selected edge

connects nodes of degrees ki and k2

= Normalized by the total Number of links
M. Faloutsos UCR
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Joint Degree Distribution (JDD)

HTTP (client-server) WinMX (peer-to-peer) DNS (c-s and p2p)
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i H i z =i

———EE

! 1 ; 0 0.5 1 1.5 2 25 3 33
fog ’ Ork 4 log . o(k 1) log ,(k ;)

Couture plots (log-log scale due to high variability)
m X-axis: Degree of the node on the one end of the link
m Yy-axis: Degree of the other node
Observations:
m HTTP: low degree client to low to high degree servers
= WinMX: medium degree nodes are connected
= DNS: sings of both client server and peer-to-peer behavior

Top degree nodes are not directly connected (top right corner)



TDGs Can Distinguish Applications
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TDGs as a Monitoring/Security Tool

= @
Network Visualization
Data
- { Create Metric Security
I‘ > ™| D Graph [ Extraction Alarm

Two modes of operation:
m Classification: based on previously observed thresholds.
m Security: calculate TDGs and trigger an alarm on large change

How do we choose which TDGs to monitor?

= Manually,

= Automatically-adaptively,

m Using automatically extracted signatures of content (Earlybird)

M. Faloutsos UCR
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Final Conclusions

The “behavior” of hosts hides a information
= Studying the transport-layer can provide insight

We can do this at two levels
= Host level using using BLINC
= Network-wide level using TDGs

Advantages:
= More difficult to fake
= More intuitive to interpret and deploy

It can be used to monitor and secure

M. Faloutsos UCR 58



My Areas of Research

Measurements and models for the Internet

m Network Topology: models and patterns [ToN03, CSB06, NSDI07]
m Traffic monitoring: models and classification [sigcomm05] [PAMO07]
Routing Security

m Modeling and Securing BGP routing NEMECIS: [Infocom04, 07]

m Adhoc routing security: [ICNP 06][ICNPO7]

Quantifying and protecting against URL hijacking [minilnfocom08]

Design and capacity of WLANs and hybrid nets [mobicom07,
infocom08]

DART: A radical network layer for ad hoc [infocom04] [ToN06]
Cooperative Diversity in ad hoc networks [JsAc06, Infocom06]
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Extras

M. Faloutsos UCR
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Main research areas

Measurements
= Traffic, BGP routing and topology, ad hoc

Routing
= scalable ad hoc, BGP instability

Security
m D0S, BGP attacks, ad hoc DoS

Designing the future network
= Rethinking the network architecture

M. Faloutsos UCR

61



TDG Visualizntina JIANK
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TDG Visualizatio .
Slammer Worm | - E E?
UDP Dst. port 1434 é‘:ﬁ
10 seconds E %;O
About:

m Jan 25, 2003. MS-SQL-
Server 2000 exploit.
o Trace: April 24th

Observations
(Scanning Activity)
= Many high out-degree nodes
= Many disconnected components ..

m  The majority of nodes have
only in-degree (nodes being
scanned)




