
Fast Prototyping Network Data
Mining Applications

Gianluca Iannaccone
Intel Research Berkeley



Motivation

• Developing new network monitoring apps is
unnecessarily time-consuming

• Familiar development steps
• Need deep understanding of data sets

(including details of the capture devices)

• Need to develop tools to extract information of interest

• Need to evaluate accuracy and resolution of data
(e.g., timestamps, completeness of data, etc.)

• …and all this happens before one can really
get started!

February 28th, 2008 UC Irvine2



February 28th, 2008 UC Irvine3

Motivation (cont’d)

• Developers tend to find shortcuts
• Quickly assemble bunch of ad-hoc scripts

• Not “designed-to-last”

•Well known consequences
 hard to debug
 hard to distribute
 hard to reuse
 hard to validate
 suboptimal performance

• End result: many papers, very little code



February 28th, 2008 UC Irvine4

Can we solve this problem by design?

• Yes, and it has been done before in other areas.

• Solution: Define declarative language and data
model for network monitoring

• What is specific to network measurements?
• Large variety of networking devices (i.e. potential data

sources) such as NIC cards, capture cards, routers, APs, …

• Need native support for distributed queries to correlate
observations from a large number of data sources.

• Data sets tend to be extremely large for which data
shipping is not feasible.



February 28th, 2008 UC Irvine5

Existing Solutions

• AT&T’s GigaScope

• UC Berkeley’s TelegraphCQ and Pier

• Common approach (stream databases):
• Define subset of SQL adding new operators

(e.g., ‘window’ for time bins of continuous query)

• Gigascope supports hardware offloading by
static analysis of the GSQL query



February 28th, 2008 UC Irvine6

Benefits and Limitations

+ Decouple what is done from how it is done.

+ Amenable to optimizations in the implementation

- Limited expressiveness.

- Need workaround to implement what is not in the
language losing the advantages above

- Entry barrier for new users is relatively high.



February 28th, 2008 UC Irvine7

Alternative Design: The CoMo project

• Users write “monitoring plugins”
• Shared objects with predefined entry points.

• Users can write code in C or higher level languages
(support for C#, Java, Python, and others)

• The platform provides
• one single, extensible, network data model.

• support for a wide variety of network devices.

• abstraction of monitoring device internals.

• enforcement of programming structure in the plug-ins to
allow for optimization.



February 28th, 2008 UC Irvine8

Design Challenges

• Fast Prototyping
• Network Data and Programming Model

• Resource Management
• Local monitoring node (Load Shedding)

• Global network of monitors (“Network-wide Sampling”)



Network Data Model

• Unified data model with quality and lineage information.

• Allows the definition of ad-hoc metadata
(i.e., labels defined by the users)

• Software sniffers understand native format of each device
and translate to our common data model

• support so far for PCAP, DAG, NetFlow, sFlow, 802.11 w/radio,
any CoMo monitoring plug-in.

• Sniffers describe the packet stream they generate

• Provide multiple templates if possible

• Describe the fields in the schema that are available

• Plug-ins just have to describe what they are interested
in and the system finds the most appropriate matching

February 28th, 2008 UC Irvine9



February 28th, 2008 UC Irvine10

Programming Model

• Application modules made of two components:
<filter>:<monitoring function>

• Filter run by the core, monitoring function contained in the
plug-in written by the user
• set of pre-defined callbacks to perform simple primitives

• e.g., update(), export(), store(), load(), print(), replay()

• callback are closures (i.e., the entire state is defined in the call).
they can be optimized in isolation and executed anywhere.

• No explicit knowledge of the source of the packet stream
• Modules specify what they need in the stream and access fields

via standard macros

• e.g., IP(src), RADIO(snr), NF(src_as)



February 28th, 2008 UC Irvine11

Hardware Abstraction

• Goals: scalability and distributed queries
• support large number of data sources and high data rates

• support a heterogeneous environment (clients, APs, packet
sniffers, etc.)

• allow applications to perform partial query computations in
remote locations

• To achieve this we…
• hide to modules where they are running

• enforce a programming structure

• … basically try to partially re-introduce declarative queries



February 28th, 2008 UC Irvine12

Hardware Abstraction (cont’d)

• EXPORT/STORAGE can be replicated for load balancing

• CAPTURE is the main choke point
• It periodically discards all state to reduce overhead and maintain

a relative stable operating point



February 28th, 2008 UC Irvine13

Distributed queries

• Modules behave as software sniffers themselves

• replay() callback to generate a packet stream out of module
stored data

• e.g., snort module generates stream of packets labeled with the
rule they match; module B computes correlation of alerts

• This way computations can be distributed but also modules
can be pipelined (to reduce the load on CAPTURE)

Aupdate() replay() Bupdate() replay()



February 28th, 2008 UC Irvine14

Design Challenges

• Fast Prototyping
• Network Data and Programming Model

• Resource Management
• Local monitoring node (Load Shedding)

• Global network of monitors (“Network-wide Sampling”)



Resource Management

February 28th, 2008 UC Irvine15

online

offline

local global

Load 
Shedding

Capacity
Provisioning

Network-wide
Sampling

Distributed
Indexing



Resource Management

February 28th, 2008 UC Irvine16

online

offline

local global

Load 
Shedding

Capacity
Provisioning

Network-wide
Sampling

Distributed
Indexing



Predictive Load Shedding

• Building robust network monitoring apps is hard
• Unpredictable nature of network traffic

• Anomalous traffic, extreme data mixes,
highly variable data rates

• Operating Scenario
• Monitoring system running multiple arbitrary queries

• Single resource to manage: CPU cycles

• Challenge:
“How to efficiently handle overload situations?”

February 28th, 2008 UC Irvine17



Approach

• Real-time modeling of the queries’ CPU usage
1. Find correlation between traffic features and CPU usage

– Features are query agnostic with deterministic worst case cost

2. Exploit the correlation to predict CPU load

3. Use the prediction to guide the load shedding procedure

• Main Novelty:
No a priori knowledge of the queries is needed
• Preserves high degree of flexibility

• Increases possible applications and network scenarios

February 28th, 2008 UC Irvine18



Key Idea

• Cost of maintaining data structures needed to execute a
query can be modeled looking at a basic set of traffic features

• Empirical observation

• Updating state information incurs in different processing costs
– E.g., creating or updating entries, looking for a valid match, etc.

• Type of update operations depend on the incoming traffic

• Query cost is dominated by the cost of maintaning the state

• Our method

• Find the right set of traffic features to model queries’ cost

February 28th, 2008 UC Irvine19



Example

February 28th, 2008 UC Irvine20



Example

February 28th, 2008 UC Irvine21



System overview

February 28th, 2008 UC Irvine22

Use multi-resolution bitmaps to
extract features (e.g., # of new 

flows, repeat flows, with 
different aggregation levels)

Use a variant of FCBF [1] 
to remove irrelevant and 

redundant features

[1] L. Yu and H. Liu. Feature Selection for High-Dimensional Data:
A Fast Correlation-Based Filter Solution. In Proc. of ICML, 2003.

MLR to predict CPU cycles
needed by queries to
process the batch 

Apply flow/packet sampling
on batch to reduce CPU
requests. Assume linear
relationship CPU/pkts

Use TSC to 
measure and 

feed back 
actual cycles 

spent 



Performance: Cycles per batch

February 28th, 2008 UC Irvine23



Performance: packet losses

February 28th, 2008 UC Irvine24

No load shedding Reactive Predictive



Performance: Accuracy

• Queries estimate their unsampled output by
multiplying their results by the inverse of the
sampling rate

February 28th, 2008 UC Irvine25

Errors in the query results (mean ± stdev)



Limitations

• Current method works only with queries that
support packet/flow sampling
•Working on custom load shedding support

• Results shown when applying same sampling rate
across all queries.
• Need to accommodate for varying needs of queries

• Maximize the overall system utility by guaranteeing
queries a fair access to CPU (and packet streams)

• Consider other resources (e.g., memory, disk)

February 28th, 2008 UC Irvine26



Resource Management

February 28th, 2008 UC Irvine27

online

offline

local global

Load 
Shedding

Capacity
Provisioning

Network-wide
Sampling

Distributed
Indexing



Network-wide Sampling

• Given a network of monitors, select the ones that
need to participate in a measurement task
• The task is unknown a priori

• Operating scenario
• Routing is known. Relationship between pairs of

monitoring nodes is known

• Challenge:
how to configure a network-wide monitoring
infrastructure with hundreds of viewpoints?

28 UC IrvineFebruary 28th, 2008



Our objective

• Given a measurement task and a target accuracy,
find a method that:
• sets the sampling rates on all monitors

• guarantees optimal use of resources
(in terms of processed packets)

• requires minimum configuration

• can adapt quickly to changes in the traffic

• Method should apply to a general class of
measurement tasks

29 UC IrvineFebruary 28th, 2008



A case study

• Estimate amount of traffic flowing among a subset of origin-
destination pairs

• Common task for traffic engineering apps

30 UC IrvineFebruary 28th, 2008

Janet
AS786

GEANT 
European Research Network



Problem formulation

• Effective sampling rate approximated by sum of sampling rates

• All constraints are linear and define a convex solution space

• Unique maximizer exists as long as M() is strictly concave

31 UC IrvineFebruary 28th, 2008

Choose vector of sampling rates p that maximizes

utility function for OD pair k “effective” sampling rate for OD pair k

sampling rate on monitor i

max sampling rate for monitor i

packets traversing monitor i
system capacity (in packets)



Algorithm

• Solve system defined by KKT conditions
• select set active/inactive constraints

(equivalent to switching off/on a monitor)

• use gradient projection method to explore space

• use KKT conditions to check optimality of solution

• Selection of active/inactive constraints is NP-hard
 no guarantee of convergence

• Limit algorithm runs to 2,000 iterations
 98.6% optimum found (for our task)

32 UC IrvineFebruary 28th, 2008



The utility function

• Measures quality of sampling an OD pair

• “Well behaved” to make the algorithm run fast

• Square relative error good candidate
• SRE = (X/p – S) / S)2

• Utility is 1 - E[SRE]
• M(p) = 1 – E[1/S] * (1/p – 1);

• minor tweaking to force it to be zero when p = 0

• needs E[1/S] where S is the size of the OD pair

33 UC IrvineFebruary 28th, 2008



Evaluation

• Consider NetFlow data from GEANT
• Collected using Juniper’s Traffic Sampling

• 1/1000 periodic sampling

•We scale the measurement by 1000
(we just need a realistic mix of OD pair sizes)

• Results based on one run of the algorithm
• One five minute snapshot of the network traffic

• Compute OD pair sizes and link loads

• Assume E[1/S] is known

34 UC IrvineFebruary 28th, 2008



Results highlights

• Measuring relative accuracy
• Defined as one minus relative error (not squared)

• Allows to validate manipulation of utility function and the
use of effective sampling rate

• Accuracy is in the range 89-99%
•Worst accuracy for JANET – LU (it has just 20 pkts/sec)

• Measurement spread across 10 links

• Max sampling rates is 0.92% (lightly loaded links)
• Most links are around 0.1%

• No OD pair is monitored on more than two links

• Effective sampling rate (sum of sampling rates) is a good
approximation of actual sampling rate35 UC IrvineFebruary 28th, 2008



Comparing to “naive” solutions

• Why not just monitoring JANET access link?
• All the monitored traffic would be relevant!

• To achieve same accuracy over all OD pairs we need ~1%
sampling rate

  70% more packets are processed

• It’s not always possible to monitor both directions of
access links

• Why not just monitoring all UK links?
• There are just 6 links leaving the UK

• Straightforward algorithm to set sampling rate (each OD
pair is present on just one link), but...

36 UC IrvineFebruary 28th, 2008



Monitoring all UK links

• Why does our method work better?

• It looks across the entire network to find where small OD pairs
manifest themselves without hiding behind large flows

37 UC IrvineFebruary 28th, 2008



Deployment on real networks

• Two aspects need to be addressed

• Bootstrap:
What prior knowledge about the network does the
method need?
• need routing information

• need estimate of E[1/S] for each OD pair

• Adaptation:
How does the method perform over time?
• time of day effect change E[1/S] and Ui

• routing event change path taken by OD pairs

38 UC IrvineFebruary 28th, 2008



Bootstrapping phase

39 UC IrvineFebruary 28th, 2008



Adapting to traffic fluctuations

• Three different cases that require different approaches

• Link load increases

• more sampled packets, exceeding capacity

 find new sampling rates to enforce target capacity

• OD pair decreases in volume

• poor accuracy because of bad E[1/S] estimate

 adapt capacity Q to keep target accuracy

• OD pair traverses different set of links

• missing entire OD pair

 monitor routing updates and “re-bootstrap” the algorithm

40 UC IrvineFebruary 28th, 2008



Fluctuations in OD pairs

• Monitoring accuracy of OD pairs

• Accuracy is not known.

• Need to estimate E[1/S] from sampled data.

• Use simplest method  Current size of OD pair

• Compute new sampling rates when estimated accuracy drops
below target

• If the estimated accuracy is still below target, increase
capacity by 10%

• Decrease capacity if estimated accuracy is above target for
more than one hour

41 UC IrvineFebruary 28th, 2008



Fluctuations in OD pairs

42 UC IrvineFebruary 28th, 2008



Fluctuations in OD pairs (cont’d)

43 UC IrvineFebruary 28th, 2008



Conclusions

• The CoMo Project
• Code available at http://como.sourceforge.net

• Open source, BSD License

• Currently in the process of being commercialized by Intel
(codename Harris Hill)

• Used by EU Onelab/Onelab2 (Planetlab Europe)

February 28th, 2008 UC Irvine44


