intel)

Fast Prototyping Network Data
Mining Applications

Gianluca Iannaccone
Intel Research Berkeley

Motivation

e Developing new network monitoring apps is
unnecessarily time-consuming

e Familiar development steps

* Need deep understanding of data sets
(including details of the capture devices)

* Need to develop tools to extract information of interest

* Need to evaluate accuracy and resolution of data
(e.g., timestamps, completeness of data, etc.)

e ...and all this happens before one can really
get started!

2 February 28th, 2008 UC Irvine

Motivation (cont’'d)

e Developers tend to find shortcuts
* Quickly assemble bunch of ad-hoc scripts
* Not “"designed-to-last”

* Well known consequences
- hard to debug
- hard to distribute
- hard to reuse
- hard to validate
- suboptimal performance

e End result: many papers, very little code

3 February 28th, 2008 UC Irvine

Can we solve this problem by design?

e Yes, and it has been done before in other areas.

e Solution: Define declarative language and data
model for network monitoring

e What is specific to network measurements?

* Large variety of networking devices (i.e. potential data
sources) such as NIC cards, capture cards, routers, APs, ...

* Need native support for distributed queries to correlate
observations from a large number of data sources.

* Data sets tend to be extremely large for which data
shipping is not feasible.

February 28th, 2008 UC Irvine

Existing Solutions

o AT&T’'s GigaScope
e UC Berkeley’s TelegraphCQ and Pier

e Common approach (stream databases):

* Define subset of SQL adding new operators
(e.g., ‘window’ for time bins of continuous query)

* Gigascope supports hardware offloading by
static analysis of the GSQL query

5 February 28th, 2008 UC Irvine

Benefits and Limitations

+ Decouple what is done from how it is done.
+ Amenable to optimizations in the implementation
- Limited expressiveness.

- Need workaround to implement what is not in the
language losing the advantages above

- Entry barrier for new users is relatively high.

6 February 28th, 2008 UC Irvine

Alternative Design: The CoMo project

e Users write "monitoring plugins”
* Shared objects with predefined entry points.
* Users can write code in C or higher level languages
(support for C#, Java, Python, and others)
e The platform provides
* one single, extensible, network data model.
* support for a wide variety of network devices.
® abstraction of monitoring device internals.

* enforcement of programming structure in the plug-ins to
allow for optimization.

February 28th, 2008 UC Irvine

Design Challenges

e Fast Prototyping
* Network Data and Programming Model

e Resource Management
* Local monitoring node (Load Shedding)
* Global network of monitors ("Network-wide Sampling”)

8 February 28th, 2008 UC Irvine

Network Data Model

e Unified data model with quality and lineage information.
* Allows the definition of ad-hoc metadata
(i.e., labels defined by the users)
e Software sniffers understand native format of each device
and translate to our common data model
* support so far for PCAP, DAG, NetFlow, sFlow, 802.11 w/radio,
any CoMo monitoring plug-in.
e Shiffers describe the packet stream they generate
* Provide multiple templates if possible
® Describe the fields in the schema that are available

® Plug-ins just have to describe what they are interested
in and the system finds the most appropriate matching

9 February 28th, 2008 UC Irvine

Programming Model

e Application modules made of two components:
<filter>:<monitoring function>

e Filter run by the core, monitoring function contained in the
plug-in written by the user
* set of pre-defined callbacks to perform simple primitives
® e.g., update(), export(), store(), load(), print(), replay()

* callback are closures (i.e., the entire state is defined in the call).
they can be optimized in isolation and executed anywhere.

e No explicit knowledge of the source of the packet stream

* Modules specify what they need in the stream and access fields
via standard macros

® e.g., IP(src), RADIO(snr), NF(src_as)

February 28th, 2008 UC Irvine

Hardware Abstraction

e Goals: scalability and distributed queries
* support large number of data sources and high data rates

* support a heterogeneous environment (clients, APs, packet
sniffers, etc.)

e allow applications to perform partial query computations in
remote locations
e To achieve this we...
* hide to modules where they are running
* enforce a programming structure
* .. basically try to partially re-introduce declarative queries

11 February 28th, 2008 UC Irvine

Hardware Abstraction (cont’'d)

SIFErS | eveseeseseessessesssessessssssesssssssessesses Application module

— CAPTURE | {{ | EXPORT () [storaGe|) i.oQuery || | resuiss

w _J / lllllllll o ssmwm ;ﬁ- ;T ------ ; = ;- = l: “.
5 _J D\ /A) | QUERY | {& | —
= \ / SN /- = user query
z 7\ data = D E—
s packets tuples) .
s N [blocks () -|Query iz2 .
N \ =
g W\ 1 . =
/ / _J Aggregation | D QUERY | I
—’{\ | Demux B Fong-term — —
~J Filtering \{ analysis L) S {) | QUERY | —
check () , - —d(),
update (), store(), print(),
Synchronous with packet stream Periodic User Request-driven

e EXPORT/STORAGE can be replicated for load balancing

e CAPTURE is the main choke point

* It periodically discards all state to reduce overhead and maintain
a relative stable operating point

12 February 28th, 2008 UC Irvine

Distributed queries

e Modules behave as software sniffers themselves

* replay() callback to generate a packet stream out of module
stored data

® e.g., snort module generates stream of packets labeled with the
rule they match; module B computes correlation of alerts

e This way computations can be distributed but also modules
can be pipelined (to reduce the load on CAPTURE)

update() replay()
—> —>

ty

—

February 28th, 2008 UC Irvine

Design Challenges

e Resource Management
* Local monitoring node (Load Shedding)
* Global network of monitors ("Network-wide Sampling”)

14 February 28th, 2008 UC Irvine

Resource Management

. Load Network-wide
online Shedding Sampling
offline Capa_ncit_y Distribgted

Provisioning Indexing

local global

15 February 28th, 2008 UC Irvine

Resource Management

. Load Network-wide
online Shedding Sampling
offline Capgcit_y Distribgted

Provisioning Indexing

local global

16 February 28th, 2008 UC Irvine

Predictive Load Shedding

e Building robust network monitoring apps is hard
* Unpredictable nature of network traffic
* Anomalous traffic, extreme data mixes,
highly variable data rates
e Operating Scenario
®* Monitoring system running multiple arbitrary queries
* Single resource to manage: CPU cycles

e Challenge:
“How to efficiently handle overload situations?”

17 February 28th, 2008 UC Irvine

Approach

e Real-time modeling of the queries’ CPU usage

1. Find correlation between traffic features and CPU usage
— Features are query agnostic with deterministic worst case cost

2. Exploit the correlation to predict CPU load
3. Use the prediction to guide the load shedding procedure

e Main Novelty:
No a priori knowledge of the queries is needed

* Preserves high degree of flexibility
* Increases possible applications and network scenarios

18 February 28th, 2008 UC Irvine

Key Idea

e Cost of maintaining data structures needed to execute a
query can be modeled looking at a basic set of traffic features

e Empirical observation

* Updating state information incurs in different processing costs
- E.g., creating or updating entries, looking for a valid match, etc.

* Type of update operations depend on the incoming traffic
®* Query cost is dominated by the cost of maintaning the state

e Our method
* Find the right set of traffic features to model queries’ cost

19 February 28th, 2008 UC Irvine

x 10
w
4 .
| u
S 2 bR AR Wbt ahahand
(&]
0 | 1 1 | 1 1 | 1 1
0 10 20 30 40 50 80 70 80 90 100
2000F T T T T T T T T T 3
£ 2000 WMWWMMWWWWMM
<
@
& 1000} -
0 | 1 1 | 1 1 | 1 1
0,5 10 20 30 40 50 80 70 80 90 100
15 T T T 1 T T I T 1]
el
P LA W L P
)
@ gl _
0 | 1 1 | 1 1 | 1 1
0 10 20 30 40 50 80 70 80 90 100
3000 T T T 1 T T I T 1
w
o
S 1000F - . hora
b
0 1 1 1 1 1 1 | 1 1
0 10 20 30 40 50 80 70 80 90 100

Time (s)

February 28th, 2008 UC Irvine

x 10

2.8

2.6

CPU cycles

N
T

1.6}

new_5tuple flows < 500
O 500 < new_5tuple_flows < 700
+ 700 < new_5tuple_flows < 1000
+ new_5tuple_flows = 1000

&Y
-

1.4
1800

February 28th, 2008 UC Irvine

2000

2200

2400 2600 2800
packets/batch

3000

System overview

Use multi-resolution bitmaps to
extract features (e.g., # of new

flows, repeat flows, with MLR to predict CPU cycles
different aggregation levels) 7 needed by queriesto -3
, : process the batch ;
A T — /' Use TSC to
~ v >
Saten Feature Feature Multiple Linear Load measure and
pp—>| Filter _>D:DI[I'_> Extraction I Selection r Regression (MLR) 11 Shedding —>[Query feed back
S . actual cycles
m Prediction »~ shedding subsystem : spe nt
Network Use a variant of FCBF [1] Apply flow/packet sampling
traffic to remove irrelevant and on batch to reduce CPU
redundant features requests. Assume linear

relationship CPU/pkts

[1] L. Yu and H. Liu. Feature Selection for High-Dimensional Data:
A Fast Correlation-Based Filter Solution. In Proc. of ICML, 2003.

February 28th, 2008 UC Irvine

Performance: Cycles per batch

=
o
\
}
|
\

°o o o
D ~l (00]
I 1 1

~
1 1 1

Q04 /)]
O :

o
w
T

N
~

- - GPU cycles per batch -
L7 Predictive
: — — — Original i

. J -------- Reactive 1
oL—— ' ' ' | |

0 2 4 6 8 10 12 14 16
CPU usage [cycles/batch]

o o
T T

23 February 28th, 2008 UC Irvine

packets
N W & o O - O O

- -
=

o8

Performance: packet losses

—— Total b
—— DAG drops

am 10am 11am 12 pm 01 pm 02pm 03 pm 04 pm 05
time

No load shedding

February 28th, 2008 UC Irvine

packets

x 10
11 : T : : : T x
101 —Total 1
gt ——DAGdrops |
8 —— - Unsampled
7wt]
6f \/'NMI\'-
s L .
4 J"\,'l"l\ : : 4
3f " 1
L ! . f\ _\“ " B
2 I\«‘,f\»/","l\l’“' K] \‘\’\\\‘ﬁvv’l\;—\\‘l\‘l\l-l\#.
1 MNWWW
o8

am 10am 11am 12 pm 01 pm 02pm 03pm 04 pm 05
time

Reactive

packets

N W o 00y 0 O

-t
o

-

of

—Total
3 ——— DAG drops
- — - Unsampled

am 10am 11am 12pm 01 pm 02 pm 03 pm 04 pm 05 pm
time

Predictive

Performance: Accuracy

e Queries estimate their unsampled output by
multiplying their results by the inverse of the

sampling rate

Query original reactive predictive

application (pkts) 55.38% £11.80 | 10.61% £7.78 | 1.03% £0.65
application (bytes) | 55.39% +11.80 | 11.90% +8.22 | 1.17% +0.76
flows 38.48% +£902.13 | 12.46% +7.28 | 2.88% +3.34
high-watermark 8.68% +8.13 8.94% +9.46 | 2.19% +£2.30
link-count (pkts) 55.03% +£11.45 9.71% +£8.41 | 0.54% +0.50
link-count (bytes) 55.06% +11.45 | 10.24% +8.39 | 0.66% 40.60
top destinations 21.63 £31.94 41.86 +44.64 1.41 £3.32

25

Errors in the query results (mean * stdev)

February 28th, 2008 UC Irvine

Limitations

e Current method works only with queries that
support packet/flow sampling

* Working on custom load shedding support

e Results shown when applying same sampling rate
across all queries.
* Need to accommodate for varying needs of queries
* Maximize the overall system utility by guaranteeing
queries a fair access to CPU (and packet streams)

e Consider other resources (e.g., memory, disk)

26 February 28th, 2008 UC Irvine

Resource Management

online Load Network-wide
Shedding Sampling
offline Capgcit_y Distribgted
Provisioning Indexing

local global

27 February 28th, 2008 UC Irvine

Network-wide Sampling

e Given a network of monitors, select the ones that
need to participate in a measurement task

®* The task is unknown a priori

e Operating scenario

® Routing is known. Relationship between pairs of
monitoring nodes is known

e Challenge:
how to configure a network-wide monitoring
infrastructure with hundreds of viewpoints?

28 February 28th, 2008 UC Irvine

Our objective

e Given a measurement task and a target accuracy,
find a method that:

* sets the sampling rates on all monitors

® guarantees optimal use of resources
(in terms of processed packets)

* requires minimum configuration
* can adapt quickly to changes in the traffic

e Method should apply to a general class of
measurement tasks

February 28th, 22808

A case study

e Estimate amount of traffic flowing among a subset of origin-
destination pairs

e Common task for traffic engineering apps

GEANT
European Research Network \\®

UC Irvine

Problem formulation

Choose vector of sampling rates p that maximizes

utility function for OD pair k

sampling rate on monitor i | k€F

A pl

Pi
Z p:U;

i€EL

packets traversing monitor i

IAN N IV

“effective” sampling rate for OD pair k

.

> M (pr (p)) .

0 max sampling rate for monitor i

o, < foralli € L

0,

system capacity (in packets)

Effective sampling rate approximated by sum of sampling rates

e All constraints are linear and define a convex solution space

31

February 28th, 2008 UC Irvine

Unigue maximizer exists as long as M() is strictly concave

Algorithm

e Solve system defined by KKT conditions

* select set active/inactive constraints
(equivalent to switching off/on a monitor)

* use gradient projection method to explore space
* use KKT conditions to check optimality of solution

e Selection of active/inactive constraints is NP-hard
- no guarantee of convergence

e Limit algorithm runs to 2,000 iterations
- 98.6% optimum found (for our task)

February 28th, 2108

The utility function

e Measures quality of sampling an OD pair
e "Well behaved” to make the algorithm run fast
e Square relative error good candidate
* SRE = (X/p - S) / S)?
o Utility is 1 - E[SRE]
*M(p) =1-E[1/S] * (1/p - 1);

* minor tweaking to force it to be zero when p = 0
* needs E[1/S] where S is the size of the OD pair

February 28th, 288

Evaluation

e Consider NetFlow data from GEANT

* Collected using Juniper’s Traffic Sampling
®* 1/1000 periodic sampling
* We scale the measurement by 1000
(we just need a realistic mix of OD pair sizes)
e Results based on one run of the algorithm
* One five minute snapshot of the network traffic
* Compute OD pair sizes and link loads
* Assume E[1/S] is known

February 28th, 2008

Results highlights

e Measuring relative accuracy
* Defined as one minus relative error (not squared)

* Allows to validate manipulation of utility function and the
use of effective sampling rate

e Accuracy is in the range 89-99%
* Worst accuracy for JANET - LU (it has just 20 pkts/sec)

e Measurement spread across 10 links

e Max sampling rates is 0.92% (lightly loaded links)
®* Most links are around 0.1%
* No OD pair is monitored on more than two links

February 28th, 2108

Comparing to "naive” solutions

e Why not just monitoring JANET access link?
* All the monitored traffic would be relevant!

®* To achieve same accuracy over all OD pairs we need ~1%
sampling rate
- 70% more packets are processed

* [t's not always possible to monitor both directions of
access links
e Why not just monitoring all UK links?
®* There are just 6 links leaving the UK

* Straightforward algorithm to set sampling rate (each OD
pair is present on just one link), but...

February 28th, 2008

Monitoring all UK links

1 T T — — T
K. T ' ! ! !

o
o

Average accuracy
o o
B 9

o
w

-©- Average over all OD pairs
-7 Worst OD pair .
—+— Best OD pair

—=— Average over all OD pairs (UK links only)
~A— Worst OD pair (UK links only) i
—— Best OD pair (UK links only

o
)

o
—_
>

Resource constraint 6

e Why does our method work better?

* It looks across the entire network to find where small OD pairs
manifest themselves without hiding behind large flows

UC Irvine

Deployment on real networks

e Two aspects need to be addressed

e Bootstrap:
What prior knowledge about the network does the
method need?

* need routing information
* need estimate of E[1/S] for each OD pair

e Adaptation:
How does the method perform over time?

* time of day effect change E[1/S] and Ui
* routing event change path taken by OD pairs

February 28th, 288

Bootstrapping phase

1 T aa T T T T
0.95 |
® € S = & & & & 2 & D
PA—
0.9 |
A

0.85

Accuracy
o
[0

0.75

0.7

—— Average over all OD pairs (one iteration)
0.654 —— Worst OD pair (one iteration) .
—©- Average over all OD pairs (two iterations)
—7— Worst OD pair (two iterations)

06 bl aa aaaa sl el aaav ol il La s
10 10 10 10" 10° 10 10 10
Background sampling rate

February 28th, 288 UC Irvine

Adapting to traffic fluctuations

Three different cases that require different approaches

Link load increases
* more sampled packets, exceeding capacity
- find new sampling rates to enforce target capacity

e OD pair decreases in volume
® poor accuracy because of bad E[1/S] estimate
- adapt capacity Q to keep target accuracy

e OD pair traverses different set of links
®* missing entire OD pair
- monitor routing updates and “re-bootstrap” the algorithm

February 28th, 2008 UC Irvine

Fluctuations in OD pairs

e Monitoring accuracy of OD pairs
® Accuracy is not known.
* Need to estimate E[1/S] from sampled data.
* Use simplest method - Current size of OD pair

e Compute new sampling rates when estimated accuracy drops
below target

o If the estimated accuracy is still below target, increase
capacity by 10%

e Decrease capacity if estimated accuracy is above target for
more than one hour

UC Irvine

Fluctuations in OD pairs

1 T T T T T 4 x10 T T T T T
c
kN>~ N -.‘—3
V\ \//““/""\\/\\’ N\/ﬁ*’“/’»v/\«\//\//\’f‘\ g—
095F .]
I 1%}
| c
l o
O
[0}
0.9+ . o
=1
3
EGE) —— Capacity
— — Resource usage
> 0.85[- 0 1 1 L I T
8 8 10 12 14 16 18 20
5
o
g 5
< osf . x 10
4 T T T T T
c
§e]
a
0.75 4 IS
=1
17}
c
o
O
- | [0}
0.7 o
3
— — Average over all OD pairs 8 Average Capacity
—— Worst OD pai o
0.65 I 1 L I orstO ?alr = — — Capacity with perfect knowledge
8 10 12 14 16 18 20 0 ' ' ' ‘ :
Hour (UTC) 8 10 12 14 16 18 20

Hour (UTC)

February 28th, 2008 UC Irvine

Fluctuations in OD pairs (cont’'d)

February 28th, 21808

Packet sampling rate p;

Packet sampling rate p;

0.1 T T T T T T R
3 link 9 (FR-BE)
i link 17 (SE-PL)
g link 30 (IT-IL) -
, Link 33 (FR-LU) *
0.01 F. Link 28 (CZ-SK) -~~~
0.001 | Ve, T EE T SR
F S T S \L 7777777 T ‘\
,,,,,,,,, SR { :
| | -
0.0001 1 1 1 1 ! 1 N 1 1 . { } L
09h 10h 12h 13h 15h 16h 18h
01 E I I I N I I ! I M I ! I
: Link 5 (UK-FR)
link 7 (UK-SE)
link 8 (UK-NL)
link 31 (UK-NY)
0.01 | Link 2 (UK-PT) -~~~ 4
R i WUUUN e NS S ¥ SO Sy) V=
0.001 £ T .
00001 1 " | 1 1 1 1 1 1
09h 10h 12h 13h 15h 16h 18h 19h

UC Irvine

Conclusions

e The CoMo Project
e Code available at http://como.sourceforge.net

®* Open source, BSD License

® Currently in the process of being commercialized by Intel
(codename Harris Hill)

* Used by EU Onelab/Onelab2 (Planetlab Europe)

February 28th, 2008 UC Irvine

