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Motivation

• Developing new network monitoring apps is
unnecessarily time-consuming

• Familiar development steps
• Need deep understanding of data sets

(including details of the capture devices)

• Need to develop tools to extract information of interest

• Need to evaluate accuracy and resolution of data
(e.g., timestamps, completeness of data, etc.)

• …and all this happens before one can really
get started!
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Motivation (cont’d)

• Developers tend to find shortcuts
• Quickly assemble bunch of ad-hoc scripts

• Not “designed-to-last”

•Well known consequences
 hard to debug
 hard to distribute
 hard to reuse
 hard to validate
 suboptimal performance

• End result: many papers, very little code
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Can we solve this problem by design?

• Yes, and it has been done before in other areas.

• Solution: Define declarative language and data
model for network monitoring

• What is specific to network measurements?
• Large variety of networking devices (i.e. potential data

sources) such as NIC cards, capture cards, routers, APs, …

• Need native support for distributed queries to correlate
observations from a large number of data sources.

• Data sets tend to be extremely large for which data
shipping is not feasible.
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Existing Solutions

• AT&T’s GigaScope

• UC Berkeley’s TelegraphCQ and Pier

• Common approach (stream databases):
• Define subset of SQL adding new operators

(e.g., ‘window’ for time bins of continuous query)

• Gigascope supports hardware offloading by
static analysis of the GSQL query
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Benefits and Limitations

+ Decouple what is done from how it is done.

+ Amenable to optimizations in the implementation

- Limited expressiveness.

- Need workaround to implement what is not in the
language losing the advantages above

- Entry barrier for new users is relatively high.
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Alternative Design: The CoMo project

• Users write “monitoring plugins”
• Shared objects with predefined entry points.

• Users can write code in C or higher level languages
(support for C#, Java, Python, and others)

• The platform provides
• one single, extensible, network data model.

• support for a wide variety of network devices.

• abstraction of monitoring device internals.

• enforcement of programming structure in the plug-ins to
allow for optimization.



February 28th, 2008 UC Irvine8

Design Challenges

• Fast Prototyping
• Network Data and Programming Model

• Resource Management
• Local monitoring node (Load Shedding)

• Global network of monitors (“Network-wide Sampling”)



Network Data Model

• Unified data model with quality and lineage information.

• Allows the definition of ad-hoc metadata
(i.e., labels defined by the users)

• Software sniffers understand native format of each device
and translate to our common data model

• support so far for PCAP, DAG, NetFlow, sFlow, 802.11 w/radio,
any CoMo monitoring plug-in.

• Sniffers describe the packet stream they generate

• Provide multiple templates if possible

• Describe the fields in the schema that are available

• Plug-ins just have to describe what they are interested
in and the system finds the most appropriate matching
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Programming Model

• Application modules made of two components:
<filter>:<monitoring function>

• Filter run by the core, monitoring function contained in the
plug-in written by the user
• set of pre-defined callbacks to perform simple primitives

• e.g., update(), export(), store(), load(), print(), replay()

• callback are closures (i.e., the entire state is defined in the call).
they can be optimized in isolation and executed anywhere.

• No explicit knowledge of the source of the packet stream
• Modules specify what they need in the stream and access fields

via standard macros

• e.g., IP(src), RADIO(snr), NF(src_as)
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Hardware Abstraction

• Goals: scalability and distributed queries
• support large number of data sources and high data rates

• support a heterogeneous environment (clients, APs, packet
sniffers, etc.)

• allow applications to perform partial query computations in
remote locations

• To achieve this we…
• hide to modules where they are running

• enforce a programming structure

• … basically try to partially re-introduce declarative queries
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Hardware Abstraction (cont’d)

• EXPORT/STORAGE can be replicated for load balancing

• CAPTURE is the main choke point
• It periodically discards all state to reduce overhead and maintain

a relative stable operating point
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Distributed queries

• Modules behave as software sniffers themselves

• replay() callback to generate a packet stream out of module
stored data

• e.g., snort module generates stream of packets labeled with the
rule they match; module B computes correlation of alerts

• This way computations can be distributed but also modules
can be pipelined (to reduce the load on CAPTURE)

Aupdate() replay() Bupdate() replay()
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Design Challenges

• Fast Prototyping
• Network Data and Programming Model

• Resource Management
• Local monitoring node (Load Shedding)

• Global network of monitors (“Network-wide Sampling”)



Resource Management
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Predictive Load Shedding

• Building robust network monitoring apps is hard
• Unpredictable nature of network traffic

• Anomalous traffic, extreme data mixes,
highly variable data rates

• Operating Scenario
• Monitoring system running multiple arbitrary queries

• Single resource to manage: CPU cycles

• Challenge:
“How to efficiently handle overload situations?”
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Approach

• Real-time modeling of the queries’ CPU usage
1. Find correlation between traffic features and CPU usage

– Features are query agnostic with deterministic worst case cost

2. Exploit the correlation to predict CPU load

3. Use the prediction to guide the load shedding procedure

• Main Novelty:
No a priori knowledge of the queries is needed
• Preserves high degree of flexibility

• Increases possible applications and network scenarios
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Key Idea

• Cost of maintaining data structures needed to execute a
query can be modeled looking at a basic set of traffic features

• Empirical observation

• Updating state information incurs in different processing costs
– E.g., creating or updating entries, looking for a valid match, etc.

• Type of update operations depend on the incoming traffic

• Query cost is dominated by the cost of maintaning the state

• Our method

• Find the right set of traffic features to model queries’ cost
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Example
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Example
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System overview
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Use multi-resolution bitmaps to
extract features (e.g., # of new 

flows, repeat flows, with 
different aggregation levels)

Use a variant of FCBF [1] 
to remove irrelevant and 

redundant features

[1] L. Yu and H. Liu. Feature Selection for High-Dimensional Data:
A Fast Correlation-Based Filter Solution. In Proc. of ICML, 2003.

MLR to predict CPU cycles
needed by queries to
process the batch 

Apply flow/packet sampling
on batch to reduce CPU
requests. Assume linear
relationship CPU/pkts

Use TSC to 
measure and 

feed back 
actual cycles 

spent 



Performance: Cycles per batch
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Performance: packet losses
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No load shedding Reactive Predictive



Performance: Accuracy

• Queries estimate their unsampled output by
multiplying their results by the inverse of the
sampling rate
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Errors in the query results (mean ± stdev)



Limitations

• Current method works only with queries that
support packet/flow sampling
•Working on custom load shedding support

• Results shown when applying same sampling rate
across all queries.
• Need to accommodate for varying needs of queries

• Maximize the overall system utility by guaranteeing
queries a fair access to CPU (and packet streams)

• Consider other resources (e.g., memory, disk)
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Resource Management
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Network-wide Sampling

• Given a network of monitors, select the ones that
need to participate in a measurement task
• The task is unknown a priori

• Operating scenario
• Routing is known. Relationship between pairs of

monitoring nodes is known

• Challenge:
how to configure a network-wide monitoring
infrastructure with hundreds of viewpoints?
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Our objective

• Given a measurement task and a target accuracy,
find a method that:
• sets the sampling rates on all monitors

• guarantees optimal use of resources
(in terms of processed packets)

• requires minimum configuration

• can adapt quickly to changes in the traffic

• Method should apply to a general class of
measurement tasks
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A case study

• Estimate amount of traffic flowing among a subset of origin-
destination pairs

• Common task for traffic engineering apps
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Janet
AS786

GEANT 
European Research Network



Problem formulation

• Effective sampling rate approximated by sum of sampling rates

• All constraints are linear and define a convex solution space

• Unique maximizer exists as long as M() is strictly concave
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Choose vector of sampling rates p that maximizes

utility function for OD pair k “effective” sampling rate for OD pair k

sampling rate on monitor i

max sampling rate for monitor i

packets traversing monitor i
system capacity (in packets)



Algorithm

• Solve system defined by KKT conditions
• select set active/inactive constraints

(equivalent to switching off/on a monitor)

• use gradient projection method to explore space

• use KKT conditions to check optimality of solution

• Selection of active/inactive constraints is NP-hard
 no guarantee of convergence

• Limit algorithm runs to 2,000 iterations
 98.6% optimum found (for our task)
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The utility function

• Measures quality of sampling an OD pair

• “Well behaved” to make the algorithm run fast

• Square relative error good candidate
• SRE = (X/p – S) / S)2

• Utility is 1 - E[SRE]
• M(p) = 1 – E[1/S] * (1/p – 1);

• minor tweaking to force it to be zero when p = 0

• needs E[1/S] where S is the size of the OD pair
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Evaluation

• Consider NetFlow data from GEANT
• Collected using Juniper’s Traffic Sampling

• 1/1000 periodic sampling

•We scale the measurement by 1000
(we just need a realistic mix of OD pair sizes)

• Results based on one run of the algorithm
• One five minute snapshot of the network traffic

• Compute OD pair sizes and link loads

• Assume E[1/S] is known
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Results highlights

• Measuring relative accuracy
• Defined as one minus relative error (not squared)

• Allows to validate manipulation of utility function and the
use of effective sampling rate

• Accuracy is in the range 89-99%
•Worst accuracy for JANET – LU (it has just 20 pkts/sec)

• Measurement spread across 10 links

• Max sampling rates is 0.92% (lightly loaded links)
• Most links are around 0.1%

• No OD pair is monitored on more than two links

• Effective sampling rate (sum of sampling rates) is a good
approximation of actual sampling rate35 UC IrvineFebruary 28th, 2008



Comparing to “naive” solutions

• Why not just monitoring JANET access link?
• All the monitored traffic would be relevant!

• To achieve same accuracy over all OD pairs we need ~1%
sampling rate

  70% more packets are processed

• It’s not always possible to monitor both directions of
access links

• Why not just monitoring all UK links?
• There are just 6 links leaving the UK

• Straightforward algorithm to set sampling rate (each OD
pair is present on just one link), but...

36 UC IrvineFebruary 28th, 2008



Monitoring all UK links

• Why does our method work better?

• It looks across the entire network to find where small OD pairs
manifest themselves without hiding behind large flows
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Deployment on real networks

• Two aspects need to be addressed

• Bootstrap:
What prior knowledge about the network does the
method need?
• need routing information

• need estimate of E[1/S] for each OD pair

• Adaptation:
How does the method perform over time?
• time of day effect change E[1/S] and Ui

• routing event change path taken by OD pairs
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Bootstrapping phase

39 UC IrvineFebruary 28th, 2008



Adapting to traffic fluctuations

• Three different cases that require different approaches

• Link load increases

• more sampled packets, exceeding capacity

 find new sampling rates to enforce target capacity

• OD pair decreases in volume

• poor accuracy because of bad E[1/S] estimate

 adapt capacity Q to keep target accuracy

• OD pair traverses different set of links

• missing entire OD pair

 monitor routing updates and “re-bootstrap” the algorithm
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Fluctuations in OD pairs

• Monitoring accuracy of OD pairs

• Accuracy is not known.

• Need to estimate E[1/S] from sampled data.

• Use simplest method  Current size of OD pair

• Compute new sampling rates when estimated accuracy drops
below target

• If the estimated accuracy is still below target, increase
capacity by 10%

• Decrease capacity if estimated accuracy is above target for
more than one hour
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Fluctuations in OD pairs
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Fluctuations in OD pairs (cont’d)
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Conclusions

• The CoMo Project
• Code available at http://como.sourceforge.net

• Open source, BSD License

• Currently in the process of being commercialized by Intel
(codename Harris Hill)

• Used by EU Onelab/Onelab2 (Planetlab Europe)
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