Fundación BBVA THE POWER OF ARITHMETIC IN ML

by Dr. Alberto A. Del Barrio

University of California at Irvine, 08-jan-2021

Outline

- Deep Learning and Approximate Computing
- Approximate Logarithmic Multiplication
- The Posit Number System
- Conclusions
- Open challenges

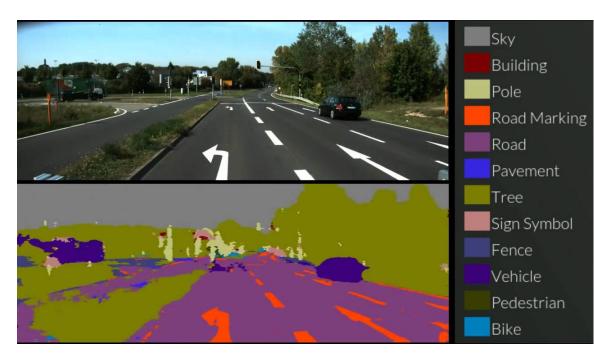
Outline

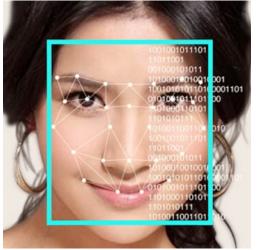
• Deep Learning and Approximate Computing

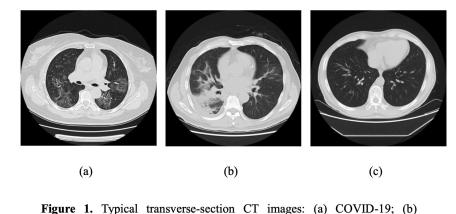
- Approximate Logarithmic Multiplication
- The Posit Number System
- Conclusions
- Open challenges

Computational Challenge in Machine Learning

- Machine Learning growing in diverse applications
 - Autonomous Driving, Face Recognition, Social Analysis...
 - ... even for **detecting covid-19**
- Large amount of data and/or time constraint
 - Computationally costly and challenging!



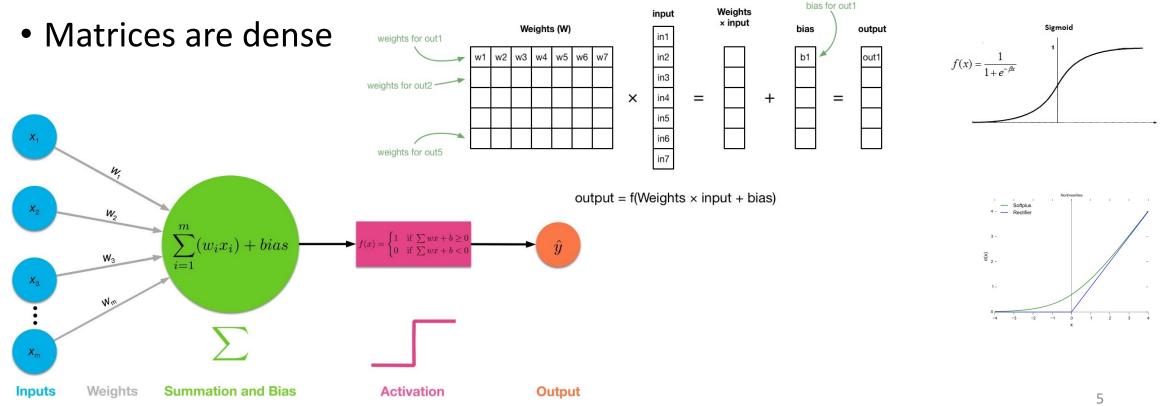




Influenza-A viral pneumonia; (c) no pneumonia manifestations on this chest CT image.

DNN Computation is Mostly Matrix Multiplications

- M by N matrix of weights multiplied by N by 1 vector of inputs
- Need an activation function after this matrix operation: Rectifier, Sigmoid, etc.



Training and Inference

- Learning Step: Weights are produced by training, initially random, using successive approximation that includes backpropagation with gradient descent. Mostly floating point operations. Time consuming
- Inference Step: Recognition and classifications. More frequently invoked step. Fixed point operation
- Both steps include many dense matrix vector operations

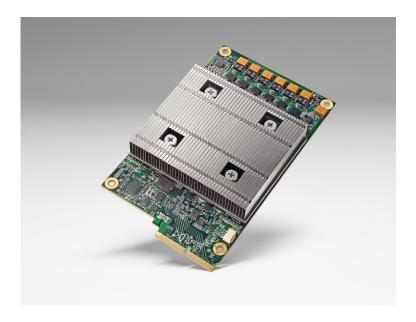
Opportunities for Power Savings

Perfect for hardware acceleration

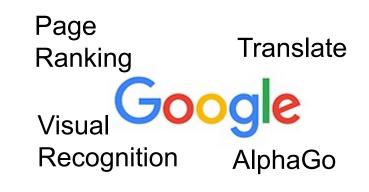
- A lot of MAC operations
- Parallel and regular structure

Suitable for Approximate Computing

- Inherent error in machine learning
- Applications can tolerate small errors
- Approximate multiplier for the CNN accelerator can reduce power consumption from datacenters to embedded systems



Google TPU Accelerator

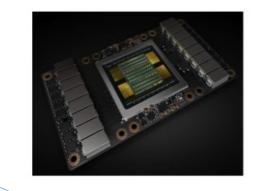


Services that use TPU

Big Players are Investing Heavily on ML

- Custom built chips for AI
 - iPhone X AI Chip
 - Google TPU 2
 - Nvidia acquiring ARM
 - Microsoft Azure and integration of FPGAs
 - Intel acquiring Altera and Nervana; ML accelerator IP
 - AMD acquiring Xilinx
- Software tools
 - Tensorflow, Pytorch, Caffe
 - ML algorithms

Nvidia Volta GV100 (2017)

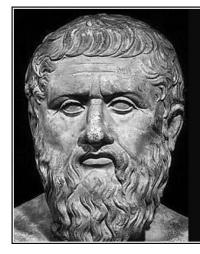


- · 15 FP32 TFLOPS
- 120 Tensor TFLOPS
- · 16GB HBM2 @ 900GB/s
- · 300W TDP
- 12nm process
- 21B Transistors
- die size: 815 mm2
- · 300GB/s NVLink

New Generation of Accelerators are able to train and inference in one chip

Addition is deeply optimized ...

- ... I just type +
- Why on earth should I learn about Arithmetic? I prefer Python
- This is something really ancient

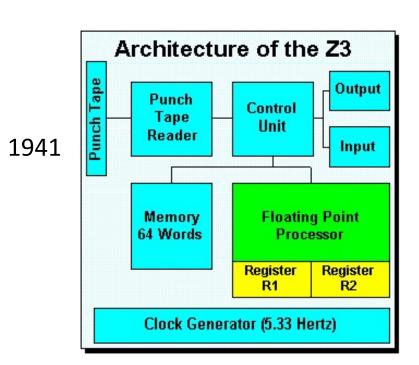


Arithmetic is a kind of knowledge in which the best natures should be trained, and which must not be given up.

— Plato —

AZQUOTES

9

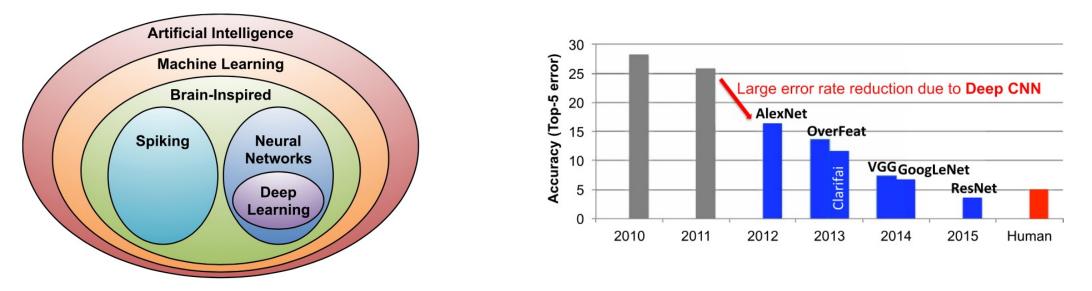




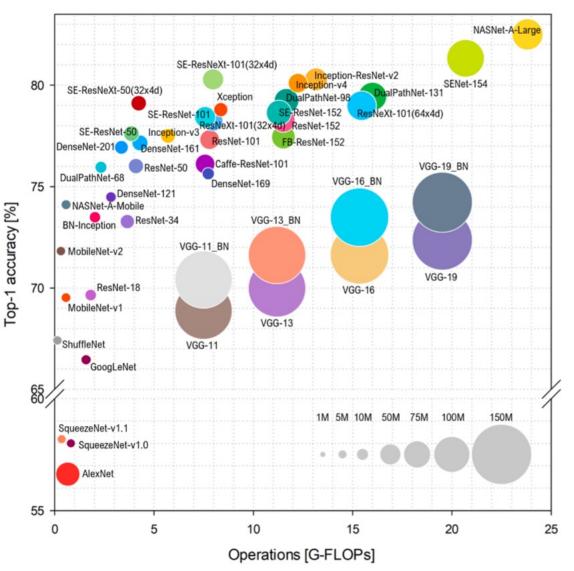
Addition is deeply optimized ...

• ... I just type +

- Neural Networks theory was developed in the mid 20th century
- Until we did not have enough computational power and available data (around 2010), they did not take off



V. Sze, Y. Chen, T. Yang and J. S. Emer, "Efficient Processing of Deep Neural Networks: A Tutorial and Survey," in *Proceedings of the IEEE*, vol. 105, no. 12, pp. 2295-2329, Dec. 2017, doi: 10.1109/JPROC.2017.2761740.



- DNNs are very complex
- The number of parameters is usually larger than 10M
- Training is very expensive
- Jevons Paradox or "dying because of the success"

Consumption	CO ₂ e (lbs)
Air travel, 1 passenger, NY \leftrightarrow SF	1984
Human life, avg, 1 year	11,023
American life, avg, 1 year	36,156
Car, avg incl. fuel, 1 lifetime	126,000

Training one model (GPU)

NLP pipeline (parsing, SRL)	39
w/ tuning & experimentation	78,468
Transformer (big)	192
w/ neural architecture search	626,155

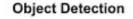
Table 1: Estimated CO_2 emissions from training common NLP models, compared to familiar consumption.¹

[1] S. Bianco, R. Cadene, L. Celona and P. Napoletano, "Benchmark Analysis of Representative Deep Neural Network Architectures," in *IEEE Access*, vol. 6, pp. 64270-64277, 2018, doi: 10.1109/ACCESS.2018.2877890.

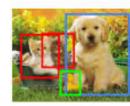
		Po	lynomial		Exponential			
Benchmark	Error rate	Computation Required (Gflops)	Environmental Cost (CO_2)	Economic Cost (\$)	Computation Required (Gflops)	Environmental Cost (CO ₂)	Economic Cost (\$)	
	Today: 11.5%	10 ¹⁴	10 ⁶	10 ⁶	10 ¹⁴	10 ⁶	10 ⁶	
ImageNet	Target 1: 5%	10 ¹⁹	10 ¹⁰	1011	10 ²⁷	10 ¹⁹	10 ¹⁹	
	Target 2: 1%	10 ²⁸	10 ²⁰	10 ²⁰	10 ¹²⁰	10 ¹¹²	10112	
	Today: 46.7%	1014	100	100	10 ¹⁵	107	10 ⁷	
MS COCO	Target 1: 30%	10 ²³	1014	10 ¹⁵	10 ²⁹	10 ²¹	1021	
	Target 2: 10%	1044	10 ³⁶	10 ³⁶	10 ¹⁰⁷	10 ⁹⁹	1099	
	Today: 4.621%	10 ¹³	10 ⁴	10 ⁵	10 ¹³	10 ⁵	10 ⁵	
SQuAD 1.1	Target 1: 2%	10 ¹⁵	107	107	10 ²³	10 ¹⁵	10 ¹⁵	
	Target 2: 1%	1018	10 ¹⁰	10 ¹⁰	1040	10 ³²	1032	
	Today: 6.5%	1013	105	10 ⁵	10 ¹³	105	10 ⁵	
CoLLN 2003	Target 1: 2%	10 ⁴³	10 ³⁵	1035	1082	10 ⁷³	1074	
	Target 2: 1%	1061	10 ⁵³	1053	10 ¹⁸¹	10 ¹⁷³	10 ¹⁷³	
	Today: 54.4%	10 ¹²	104	10 ⁴	10 ¹²	10 ⁴	10 ⁴	
WMT 2014 (EN-FR)	Target 1: 30%	10 ²³	10 ¹⁵	1015	10 ³⁰	10 ²²	1022	
(2.1.1.1)	Target 2: 10%	10 ⁴³	10 ³⁵	1035	10 ¹⁰⁷	10 ⁹⁹	10 ¹⁰⁰	

Neil C. Thompson, Kristjan Greenewald, Keeheon Lee, Gabriel F. Manso: The Computational Limits of Deep Learning. CoRR abs/2007.05558 (2020)

Classification



CAT



CAT, DOG, DUCK

ImageNet

Figure 4: Implications of achieving performance benchmarks on the computation (in Gigaflops), carbon emissions (lbs), and economic costs (\$USD) from deep learning based on projections from polynomial and exponential models. The carbon emissions and economic costs of computing power usage are calculated using the conversions from [82]

Metrics	LeNet 5	AlexNet	Overfeat fast	VGG 16	GoogLeNet v1	ResNet 50
Top-5 error [†]	n/a	16.4	14.2	7.4	6.7	5.3
Top-5 error $(single crop)^{\dagger}$	n/a	19.8	17.0	8.8	10.7	7.0
Input Size	28×28	227×227	231×231	224×224	224×224	224×224
# of CONV Layers	2	5	5	13	57	53
Depth in # of CONV Layers	2	5	5	13	21	49
Filter Sizes	5	3,5,11	3,5,11	3	1,3,5,7	1,3,7
# of Channels	1, 20	3-256	3-1024	3-512	3-832	3-2048
# of Filters	20, 50	96-384	96-1024	64-512	16-384	64-2048
Stride	1	1,4	1,4	1	1,2	1,2
Weights	2.6k	2.3M	16M	14.7M	6.0M	23.5M
MACs	283k	666M	2.67G	15.3G	1.43G	3.86G
# of FC Layers	2	3	3	3	1	1
Filter Sizes	1,4	1,6	1,6,12	1,7	1	1
# of Channels	50, 500	256-4096	1024-4096	512-4096	1024	2048
# of Filters	10, 500	1000-4096	1000-4096	1000-4096	1000	1000
Weights	58k	58.6M	130M	124M	1M	2M
MACs	58k	58.6M	130M	124M	1M	2M
Total Weights	60k	61M	146M	138M	7M	25.5M
Total MACs	341k	724M	2.8G	15.5G	1.43G	3.9G
Pretrained Model Website	[56] [‡]	[57, 58]	n/a	[57-59]	[57-59]	[57-59]

Nowadays these are toy examples

• Inference is not easy either

V. Sze, Y. Chen, T. Yang and J. S. Emer, "Efficient Processing of Deep Neural Networks: A Tutorial and Survey," in *Proceedings of the IEEE*, vol. 105, no. 12, pp. 2295-2329, Dec. 2017, doi: 10.1109/JPROC.2017.2761740.

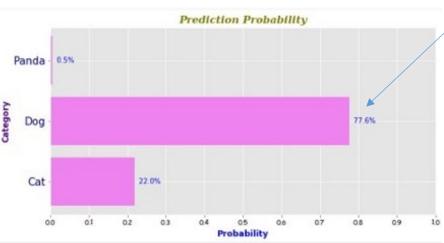
- ImageNet validation dataset (50,000 images)
- What if I save 1 pJ per multiplication? (just in inference)
 - LeNet-5 → 341 kmults/inference * 1 pJ * 50 kinferences = 17.1 mJ

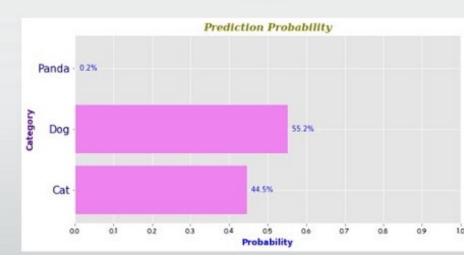
 - VGG-16 → 15.5 Gmults/inference * 1 pJ * 50 kinferences = 775 J
 - GoogleLeNet v1 → 1.43 Gmults/inference * 1 pJ * 50 kinferences = 71.5 J
 - ResNet-50 → 3.9 Gmults/inference * 1 pJ * 50 kinferences = 195 J

- iPhone 12 Pro, USB-C 20W adapter, 2h/full charge → 20W * 2h* 3600s/h = 144 kJ
- Average USA house consumption per year [1] → 10,649 kWh = 10,649 * 1,000 W/1kW * 3600s/1h = 38336.4 MJ
- How many people work on ML (particularly DNNs)?
 - Saving 1 pJ per multiplication you could be charging your iPhone 12 ... like forever 😊
- Jevons Paradox. Let's say, people validating Imagenet on ResNet-50
 - 100 people → 100 * 195 J = 0.0195 MJ
 - 1,000 people → 1,000 * 195 J = 0.195 MJ
 - 10,000 people → 1,0000 * 195 J = 1.95 MJ
 - 100,000 people → 100,000 * 195 J = 19.5 MJ
- Usually researchers make mistakes, so they will repeat the tests and also will test other NNs (just for fun ☺)

So why Approximate Computing?

• DNN outputs are probabilities. It does not matter the value, the only thing that matters is the relative order



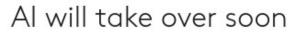


If instead of 77.6%, we had 70% or even 50%, it would not matter

But be careful with the approximations !!!

People with no idea about Al saying it will take over the world:

My Neural Network:

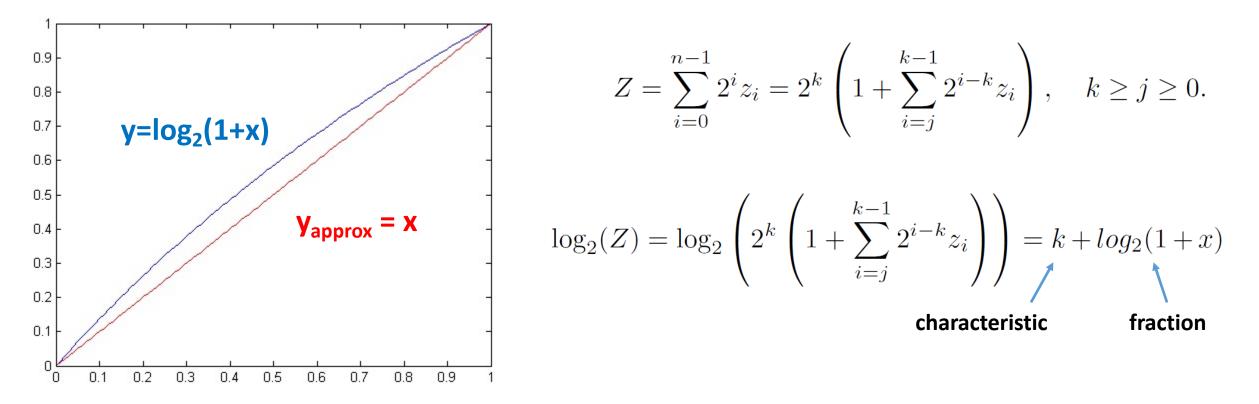


Outline

- Deep Learning and Approximate Computing
- Approximate Logarithmic Multiplication
- The Posit Number System
- Conclusions
- Open challenges

- Arithmetic is something very ancient ... so let's try something very ancient
- Logarithms were defined by Burgi and Napier at the beginning of the XVII century
- Current logarithms and their connection with the exponential were defined by Euler in the XVIII century
- Multiplication \rightarrow Addition in log domain, log(A*B) = log(A) + log(B)

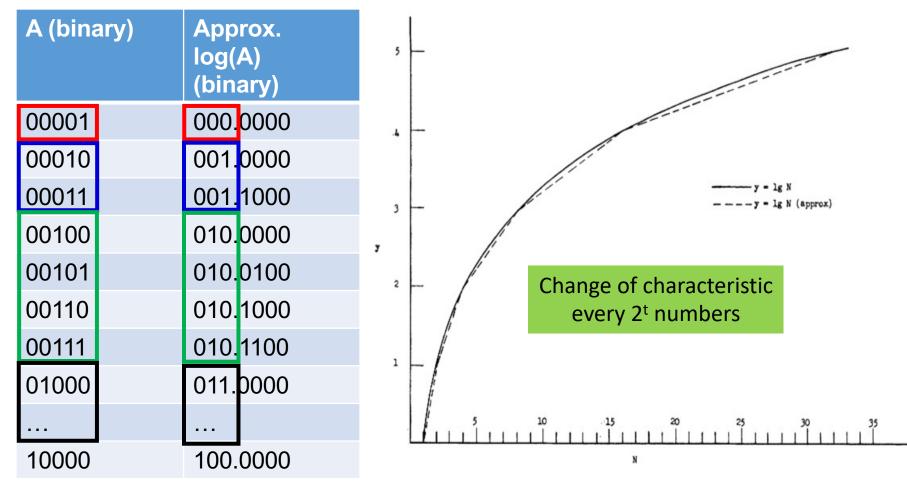
- Mitchell introduced digital logarithmic multiplication and division in 1962
- Based on approximating $log_2(1+x)$ with x, when x belongs to [0,1)



Mitchell, J. N. (1962). Computer Multiplication and Division Using Binary Logarithms. *Electronic Computers, IRE Transactions on, EC-11*(4), 512–517. http://doi.org/10.1109/TEC.1962.5219391

Based on the approximate logarithm

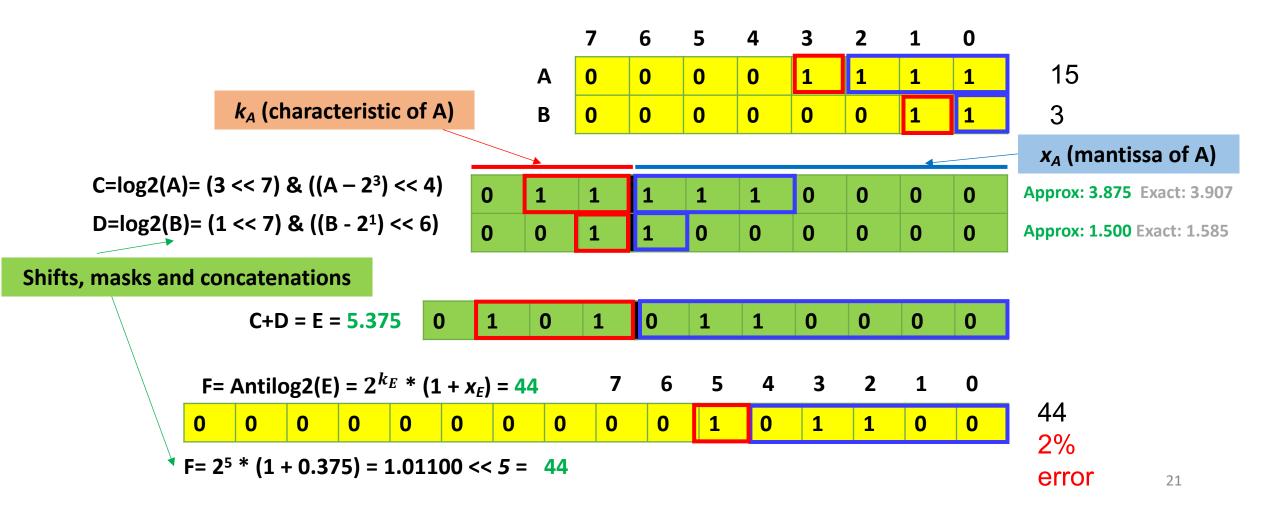
• Reduces logarithm to Leading One Detector (LOD) and Shifter operations



Mitchell, J. N. (1962). Computer Multiplication and Division Using Binary Logarithms. *Electronic Computers, IRE Transactions on, EC-11*(4), 512–517. http://doi.org/10.1109/TEC.1962.5219391

• Worst case relative error = 11.1%

In the log domain, a number A = 2^{k_A*} (1 + x_A)



Mitchell Log Multiplier

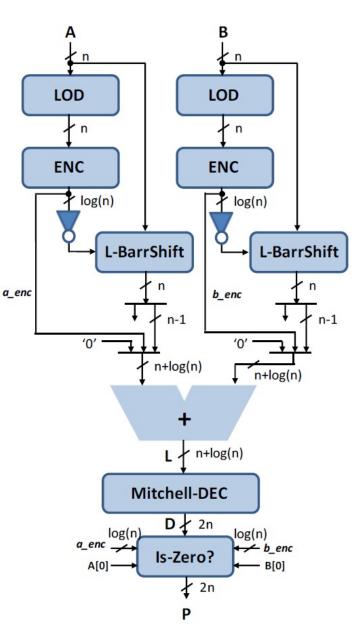
- Logic optimization of LOD and ENC
 - Fast and efficient fully parallel LOD
 - One-hot output
 - OR-Tree encoder. e.g. 113 = 0111 0001
 - One-hot LOD (h₇h₆h₅h₄h₃h₂h₁h₀) → 0100 0000
 - Or-Tree encoder $(e_2e_1e_0) \rightarrow 110$
 - $e_2 = h_7 \text{ or } h_6 \text{ or } h_5 \text{ or } h_4$, $e_1 = h_7 \text{ or } h_6 \text{ or } h_3 \text{ or } h_2$

Shift amount calculation

• (n-k-1) = not(k) when n is a power of 2

2 1 0
• =
$$m_{i-1,j} + m_{i-1,j+2^{i-1}}$$

• = $h_j = \begin{cases} z_j & j = \\ \overline{m_{\log(n),j+1}} \cdot z_j & j < \\ 4-bit \text{ parallel LOD} \end{cases}$



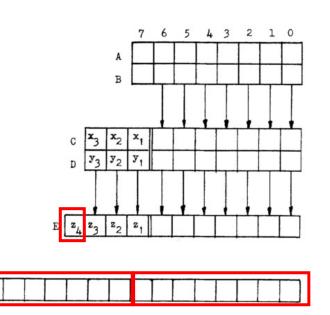
M. S. Kim, A. A. Del Barrio, R. Hermida and N. Bagherzadeh, "Low-power implementation of Mitchell's approximate logarithmic multiplication for convolutional neural networks," ASP-DAC, Jeju, 2018, pp. 617-622. doi: 10.1109/ASPDAC.2018.8297391

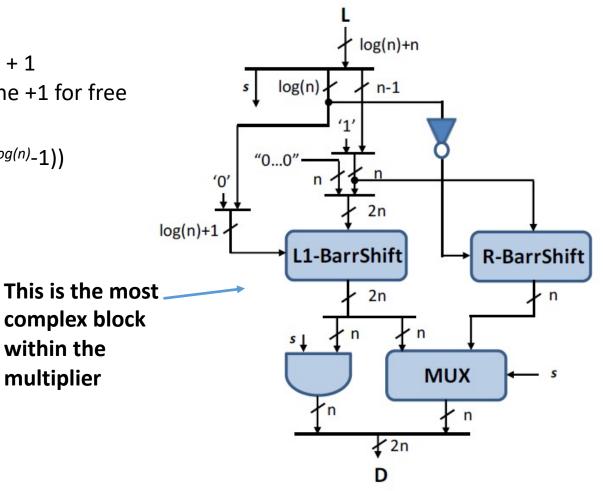
n – 1

n-1

Mitchell Decoder

- Given the characteristic (k), a normalized mantissa ($x \in [0,1)$), X = 2^k*(1+x)
- Two cases for decoding
 - Large Characteristic (msb = 1)
 - L1 barrel shifter \rightarrow shamtL = (k and $(2^{log(n)}-1)) + 1$
 - L1 is a customized left shifter that performs the +1 for free
 - Small Characteristic (msb = 0)
 - Right barrel shifter \rightarrow shamtR = not(k and (2^{log(n)}-1))
- Only AND needed for MSBs



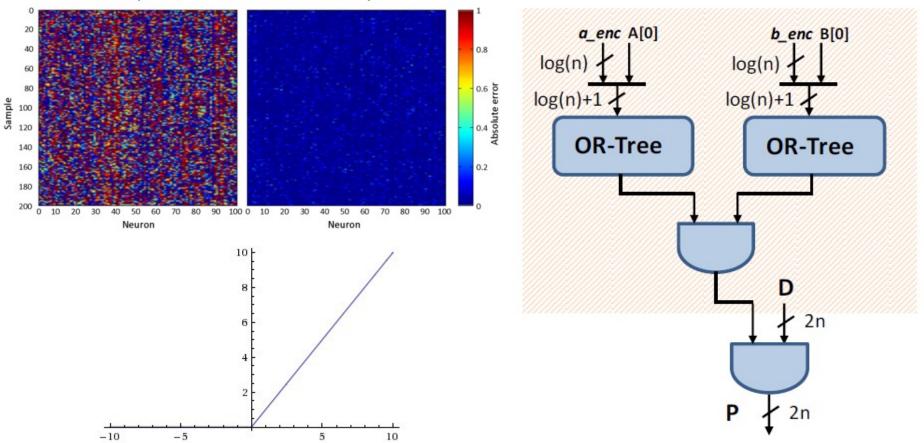


Zero Detection Unit

• Critical to CNN accuracy

Output error of neurons in the hidden layer

Quick check: if the characteristic is zero and the lsb is zero, the operand is zero

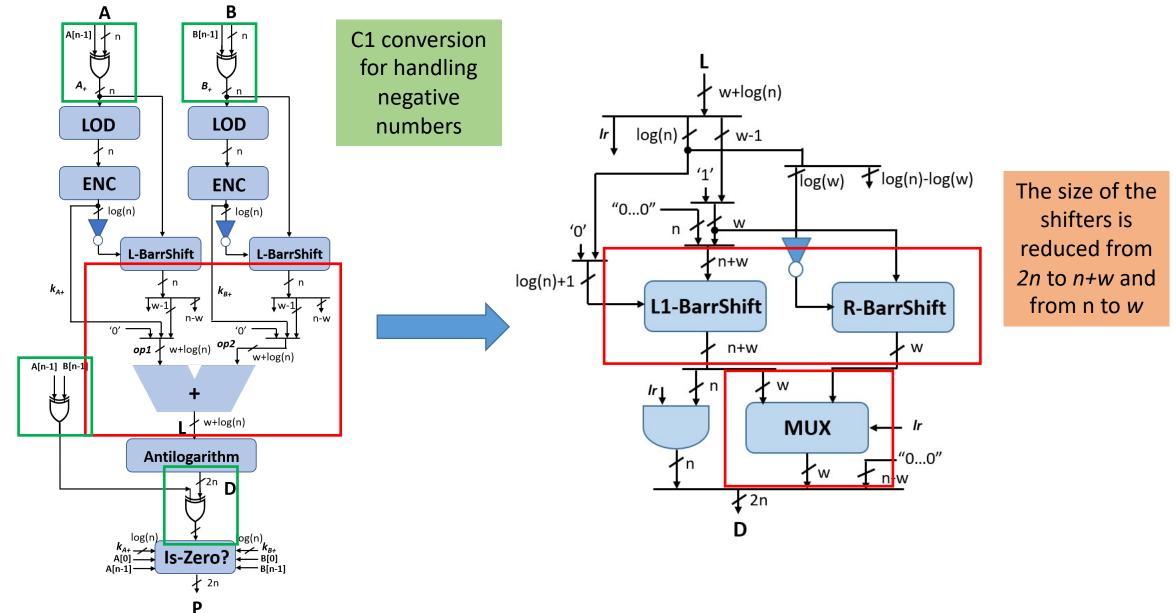


Mrazek, V., Sarwar, S. S., Sekanina, L., Vasicek, Z., & Roy, K. (2016). Design of power-efficient approximate multipliers for approximate artificial neural networks. *Proceedings of the 35th International Conference on Computer-Aided Design - ICCAD '16*, 1–7.

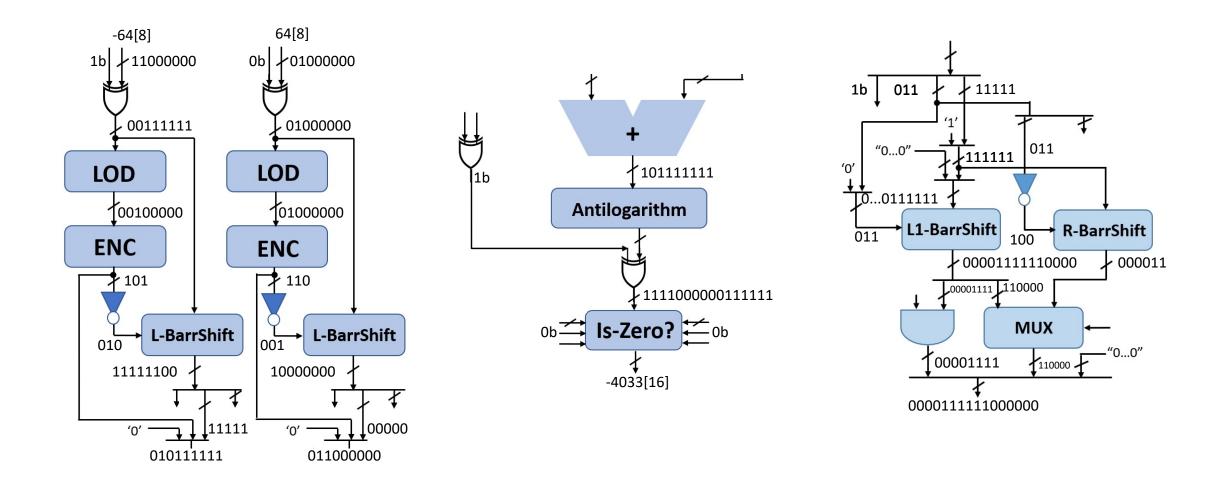
Some refinements

- Negative handling
- In the Logarithmic Number System (LNS), the weight/relevance of the characteristic with respect to the mantissa is very large
 - +1 in the characteristic is equivalent to double the value of the number
- Maybe not all the bits of the mantissa are necessary for a good enough implementation
- Maybe it is possible to further reduce the error

Some refinements



Approximate Log Multiplier Animation



Energy and accuracy

• 32nm, 250 MHz clock

	N=16					N=32				
	Fixed- point	Mitch- w8	2-Stage Iter. Log.	1-Alphabet ASM	DRUM6	Fixed- point	Mitch- w8	2-Stage Iter. Log.	1-Alphabet ASM	DRUM6
Crit. Path (ns)	2.23	1.90	3.88	2.64	2.64	3.78	2.50	4.00	4.00	3.96
Area (um^2)	2032	1135	3335	1543	1375	8627	2092	11218	7642	2917
Tot. Power (mW)	1.24	0.61	1.79	1.04	0.88	6.02	1.08	5.70	5.81	1.54
Energy (pJ)	2.77	1.16	6.95	2.75	2.32	22.76	2.70	22.80	23.24	6.10
Energy Savings	0%	58%	-151%	1%	16%	0%	88%	0%	-2%	73%
					Fixed	Mitch-w8	IterLog2	2 ASM	DRUM6	
ſ	No accuracy o ImageNet	•		Top-1	58.3%	58.2%	58.2%	41.6%	58.2%	
				Top-5	80.2%	80.2%	80.2%	67.0%	80.2%	

M. S. Kim, A. A. Del Barrio, L. T. Oliveira, R. Hermida and N. Bagherzadeh, "Efficient Mitchell's Approximate Log Multipliers for Convolutional Neural Networks," in IEEE Transactions on Computers. doi: 10.1109/TC.2018.2880742

M. S. Kim, A. A. Del Barrio, R. Hermida, N. Bagherzadeh:

Low-power implementation of Mitchell's approximate logarithmic multiplication for convolutional neural networks. ASP-DAC 2018: 617-622

Approximate Log Multiplier: wrapping up

- Saves up to 91% power at 32 bits vs. exact fixed-point multiplier
- Minimal classification accuracy degradations on CNNs

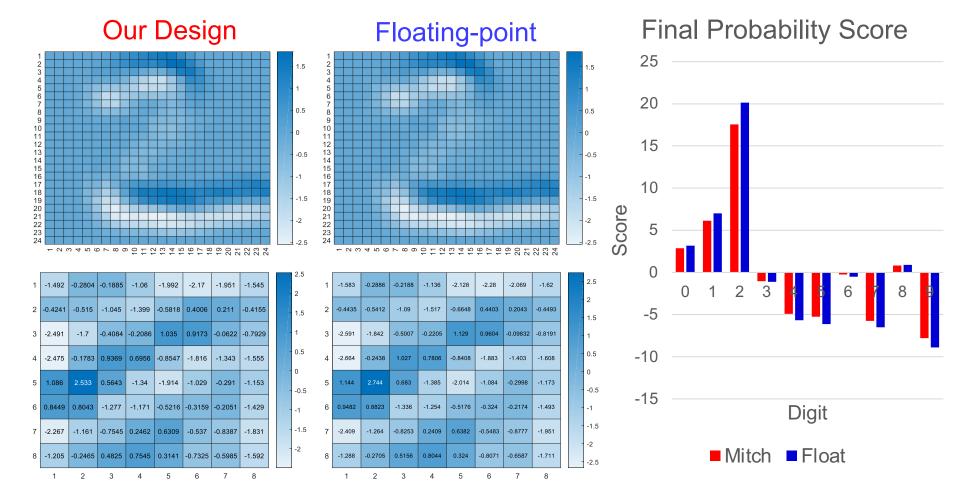
Synthesis Results Fixed Mitch-w6 Cell Area (um²) 8627 1815 **Critical Path (ns)** 3.78 2.19 Power (mW) 6.02 0.9 Energy (pJ) 22.76 1.97 **Area Savings** 79.0 % **Energy Savings** 91.3 %

CNN Image Classification Accuracy

Dataset	Fixed	Mitch-w6
MNIST (LeNet)	99.0 %	99.0 %
CIFAR-10 (Cuda-convnet)	81.4 %	81.3 %
Top-1 ImageNet (AlexNet)	56.8 %	56.5 %
Top-5 ImageNet (AlexNet)	79.9 %	79.8 %

Approximate Log Multiplier: wrapping up

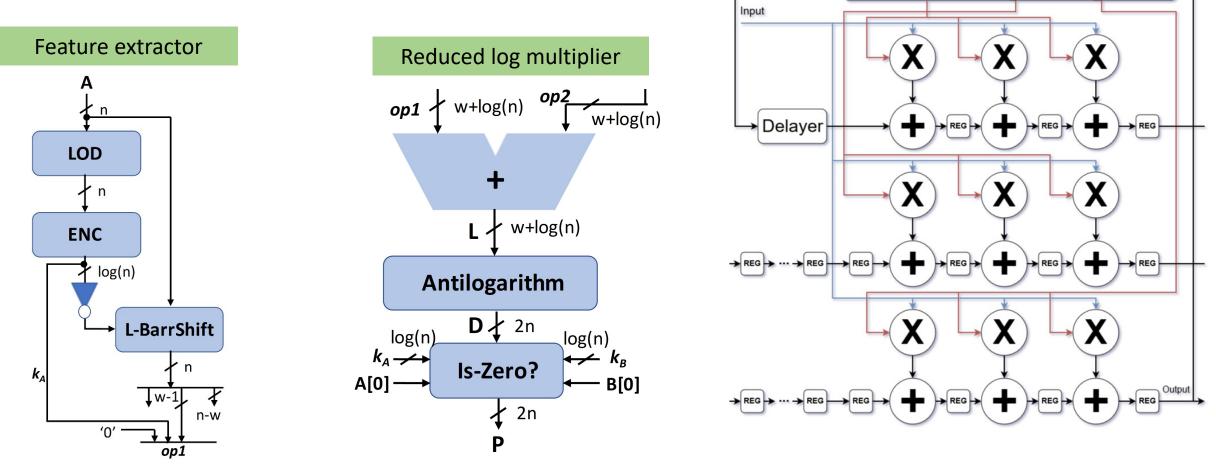
- Preserves abstract feature detection by convolutional layers
- For discrete classification, relative order of outputs is much more important than absolute magnitudes



28

Approximate Log Multiplier: in an FPGA

• Store the results of the feature extractor (constant) and share to reduce the multiplier itself

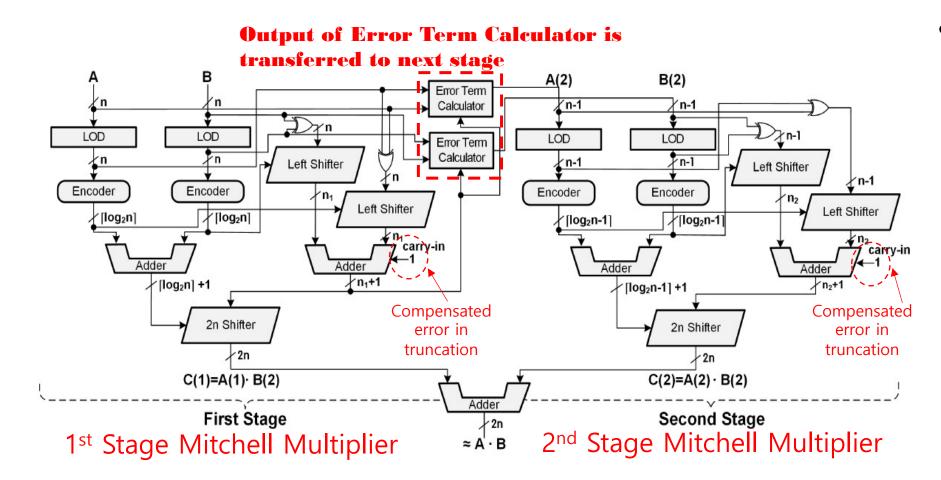


Weigths

L. T. Oliveira, M. S. Kim, A. A. Del Barrio, N. Bagherzadeh and R. Menotti, "Design of Power-Efficient FPGA Convolutional Cores with Approximate Log Multiplier," in European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN'19), just accepted

WEIGHT STORAGE

Approximate Log Multiplier: iterative



 Basically we customize the bitwidth of every stage

Hyun-Jin Kim, Min Soo Kim, Alberto A. Del Barrio, Nader Bagherzadeh: A Cost-Efficient Iterative Truncated Logarithmic Multiplication for Convolutional Neural Networks. ARITH 2019: 108-111

Approximate Log Multiplier: iterative

Model	Dataset	Multiplier	Top-1 (%)	Top-5 (%)
		FLOAT ^a	89.4	-
NiN [11]		FIXED ^b	89.4	
	CIFAR-10	MM ^c	88.7	-
		IM ^d	89.4	-
		PROP ^e	89.5	-
		FLOAT ^a	57.0	81.3
		FIXED ^b	57.0	81.3
AlexNet [12]	ImageNet	MM ^c	56.8	80.8
		IM ^d	56.8	81.3
		PROP ^e	56.9	81.3
		FLOAT ^a	68.3	88.4
		FIXED ^b	68.3	88.4
GoogLeNet [13]	ImageNet	MM ^d	67.1	87.5
		IM ^d	68.3	88.2
		PROP ^e	68.3	88.3
		FLOAT ^a	74.3	90.9
		FIXED ^b	74.2	90.9
ResNet-50 [14]	ImageNet	MM ^c	72.4	90.0
		IM^d	73.9	90.9
		PROP ^e	73.8	90.6

• We tackle larger networks with high accuracy

n	design	rerr _{max} (%)	$rerr_{avg} \ (\%)$	critical path (<i>ns</i>)	area (um ²)	power (uW)
	Booth ^a	0	0	1.3	613	403
8	$\mathbf{M}\mathbf{M}^{\mathbf{b}}$	11.11	3.76	1.3	446	217
0	IM ^c	6.25	0.83	1.9	1,133	590
	PROP ^d	11.11	-1.09	2.6	786	370
	Booth ^a	0	0	2.8	2,507	1,760
16	MM ^b	11.11	3.85	2.3	1,168	602
10	IM ^c	6.25	0.99	3.7	2,901	1,410
	PROP ^e	11.11	0.11	5.1	1,638	739
	Booth ^a	0	0	5.4	10,139	6,750
32	MM ^b	11.11	3.85	4.2	3,418	1,640
	IM ^c	6.25	0.99	6.5	7,674	3,680
	PROP ^e	11.11	0.12	7.9	3,102	1,370

^a Original Caffe using floating-point multiplications

^b Fixed-point multiplications

^c Mitchell multipliers [2]

^d Two-stage Babic's iterative multipliers [7]

^e Proposed two-stage multiplier with $n_1 = 6, n_2 = 2$

^a Radix-4 Booth multiplier

^b Mitchell multiplier [2]

^c Two-stage Babic's iterative multiplier [7]

^d Proposed two-stage multiplier with $n_1 = 4, n_2 = 2$

^e Proposed two-stage multiplier with $n_1 = 6, n_2 = 2$

Hyun-Jin Kim, Min Soo Kim, Alberto A. Del Barrio, Nader Bagherzadeh: A Cost-Efficient Iterative Truncated Logarithmic Multiplication for Convolutional Neural Networks. ARITH 2019: 108-111

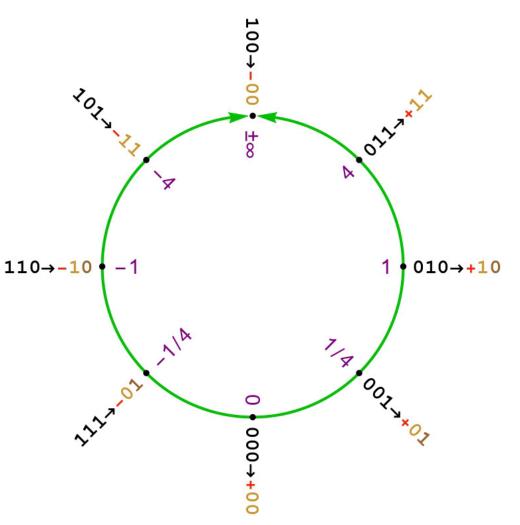
Outline

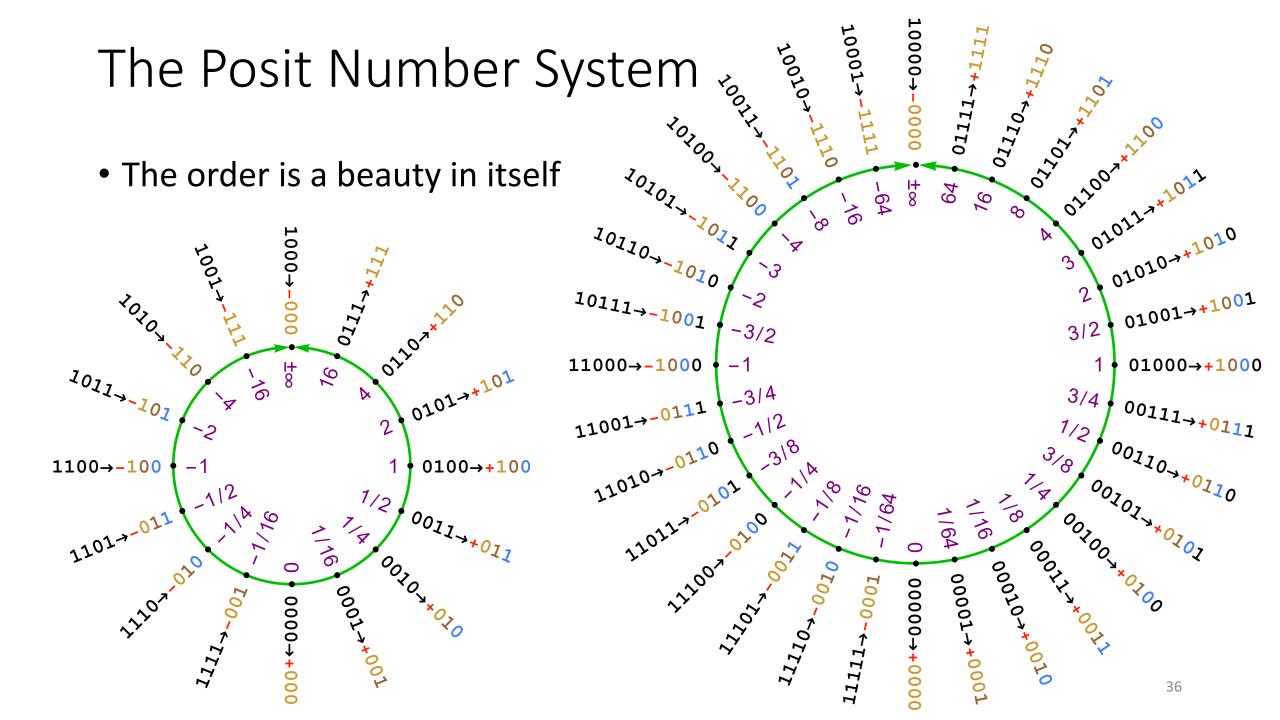
- Deep Learning and Approximate Computing
- Approximate Logarithmic Multiplication
- <u>The Posit Number System</u>
- Conclusions
- Open challenges

The Posit Number System (aka unum v3)

- Proposed by John L. Gustafson in 2017 as a direct drop-in replacement for floating-point numbers (IEEE 754)
- Better dynamic range
- No wasted patterns for denormal numbers
- Consistency between machines
 - Posit operations not rounded until the very end

J. L. Gustafson and I. T. Yonemoto, "Beating floating point at its own game: Posit arithmetic," *Supercomputing Frontiers and Innovations*, vol. 4, no. 2, 06 2017.



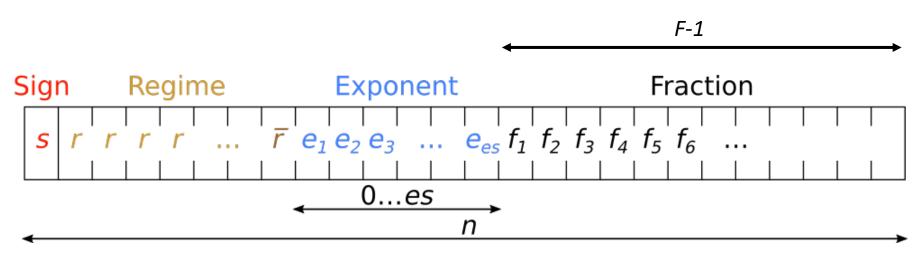


Numerical value of Posits

$$X = (-1)^{s} \times (useed)^{k} \times 2^{e} \times 1.f$$

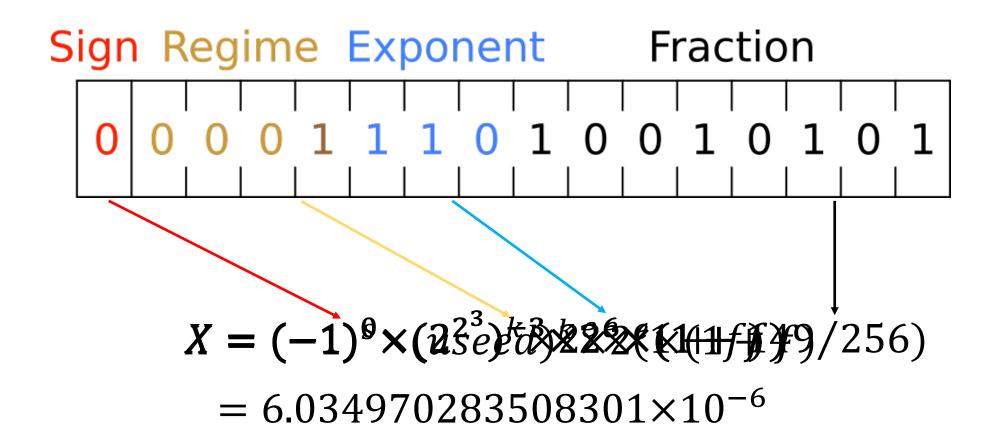
- *s* sign
- $useed = 2^{2^{es}}$
- *es* exponent size
- *k* regime encoded value (signed integer)
- *e* exponent value
- f fraction value

Posit format encoding



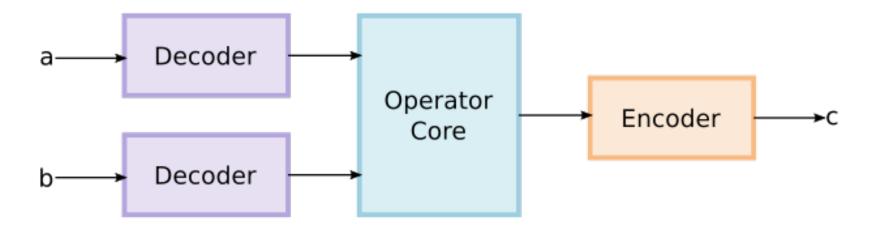
- Sign bit (s)
- Regime (k) sequence of r identical bits
 - #r = occurrences of r
 - k = -#r if r is 0, and k = #r 1 if r is 1
- Exponent (e) represented by es bits
- Fraction (f) unsigned integer divided by 2^F

Example: Posit(16,3)



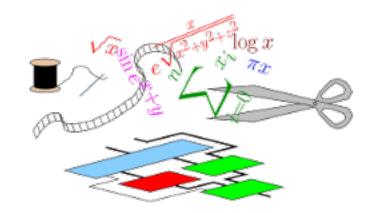
Posit functional units

- Posits were designed to be "hardware friendly"
 - Similar circuitry to floating point
 - Less special cases (just 0 and NaR)

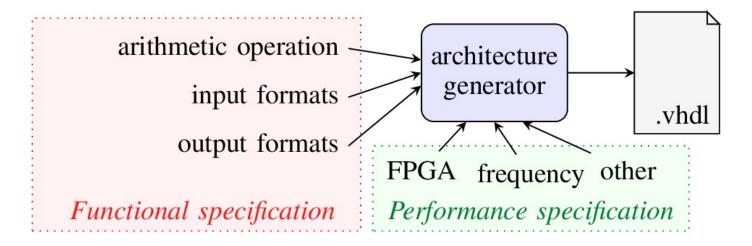


• Design challenge: runtime varying fields

FloPoCo Core Generator



- Open source tool for generating arithmetic cores for FPGA
- Operators are fully parameterized
- Written in C++, outputs synthesizable VHDL



Evaluation of Posit units - Adder

Still, not competitive w.r.t. floating point operators

	Posit (n, es)	Area (μm^2)	Delay (ns)	Power (µW)	Energy (<i>pJ</i>)
PACoGen [1]	(16,1)	3228.48	5.34	1637.6	8.74
	(32,2)	7615.08	7.94	3828.3	30.4
Proposed	(8,0)	1038.6	3.9	489.5	1.91
	(16,1)	2176.92	6.23	1133.1	7.06
	(32,2)	4880.88	9.48	2811.1	26.65
		-35.9%	+19.4%	-30.8%	-19.2%

[1] M. K. Jaiswal and H. K. -. So, "PACoGen: A Hardware Posit Arithmetic Core Generator," in IEEE Access, vol. 7, pp. 74586-74601, 2019, doi: <u>10.1109/ACCESS.2019.2920936</u>.

R. Murillo, A. A. Del Barrio and G. Botella, "Customized Posit Adders and Multipliers using the FloPoCo Core Generator," 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Sevilla, 2020, pp. 1-5, doi: 10.1109/ISCAS45731.2020.9180771.

Evaluation of Posit units - Multiplier

Still, not competitive w.r.t. floating point operators

	Posit 〈n, es〉	Area (μm^2)	Delay (ns)	Power (µW)	Energy (<i>pJ</i>)
PACoGen [1]	(16,1)	4955.76	5.15	3036.6	15.64
	(32,2)	15106.32	8.54	13027	111.25
Proposed	〈 8,0〉	1032.48	2.98	558.4	1.66
	(16,1)	3321.72	5.64	2470.9	13.94
	(32,2)	11924.64	8.87	11926	105.78
		-32.97%	+9.5%	-18.6%	-10.86%

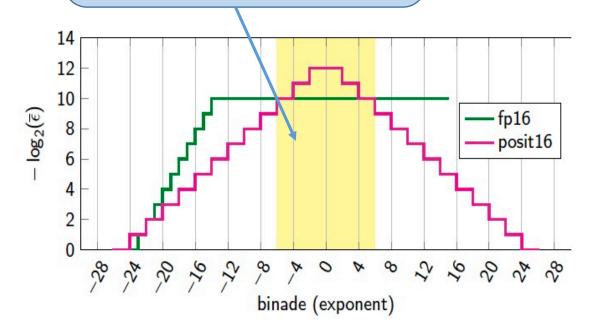
[1] M. K. Jaiswal and H. K. -. So, "PACoGen: A Hardware Posit Arithmetic Core Generator," in IEEE Access, vol. 7, pp. 74586-74601, 2019, doi: <u>10.1109/ACCESS.2019.2920936</u>.

R. Murillo, A. A. Del Barrio and G. Botella, "Customized Posit Adders and Multipliers using the FloPoCo Core Generator," 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Sevilla, 2020, pp. 1-5, doi: 10.1109/ISCAS45731.2020.9180771.

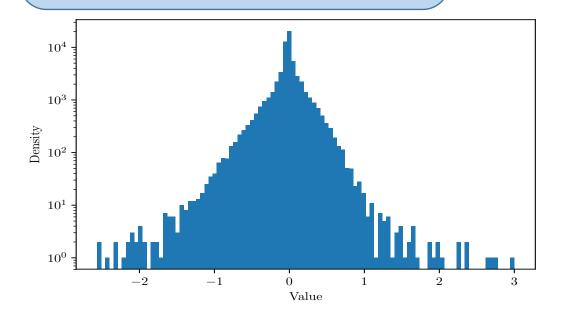
Why are posits interesting then?

• Posit format (J.L. Gustafson, 2017)

Tappered precision suits a gaussian distribution, i.e. like the weights of a DNN



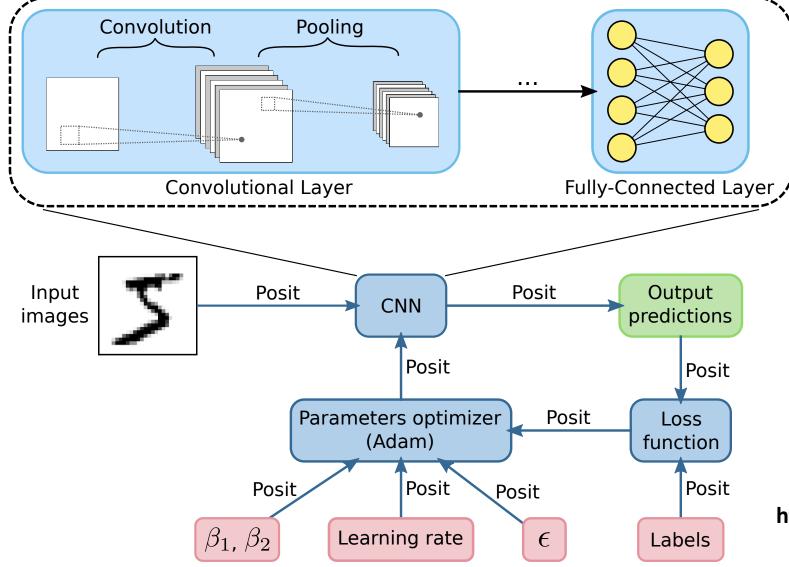
Expectable: an *n/2* bits posit achieves the same accuracy as an n bits float



J. L. Gustafson and I. T. Yonemoto, "Beating floating point at its own game: Posit arithmetic," *Supercomputing Frontiers and Innovations*, vol. 4, no. 2, 06 2017.

Deep PeNSieve

Raul Murillo, Alberto A. Del Barrio, Guillermo Botella: Deep PeNSieve: A deep learning framework based on the posit number system. Digit. Signal Process. 102: 102762 (2020)

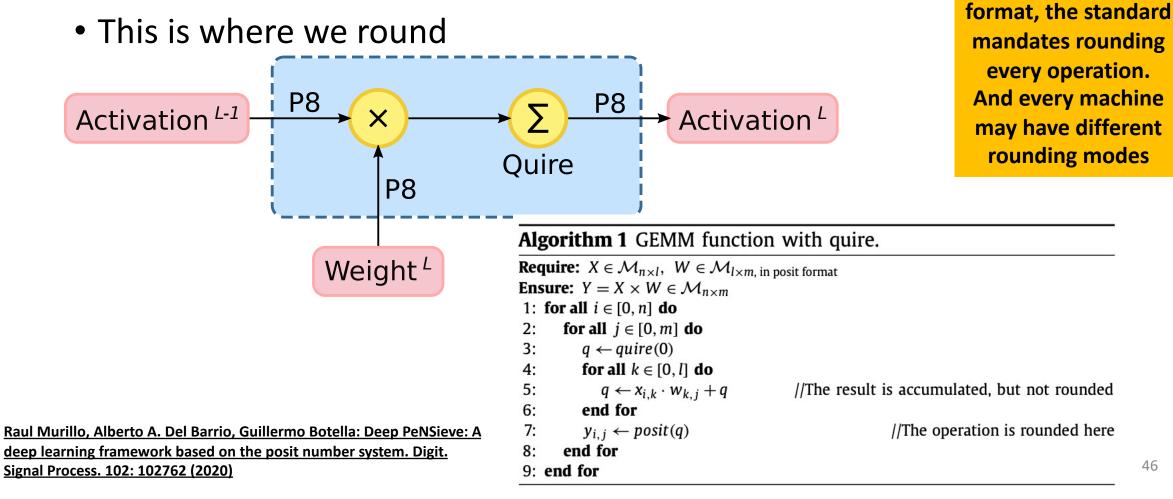


- Open-source framework based on TF
- Entire training performed with posits
 - Without conversions
- Allows training/inference with <32,2>, <16,1> and <8,0>

https://github.com/RaulMurillo/deep-pensieve

Deep PeNSieve

Operations between 8-bit posits require a 64-bit quire (architectural register)



Deep PeNSieve

Quite remarkable: even higher precision than float

Table 1									
Accuracy results for the inference stage.									
Format	at MNIST		Fashion-MNIS	Fashion-MNIST		SVHN			
	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5	
Float 32	99.17%	100%	89.34%	99.78%	89.32%	98.35%	68.06%	95.15%	
Posit(32, 2)	99.09%	99.98%	89.90%	99.84%	89.51%	98.36%	69.32%	96.59%	
Posit(16, 1)	99.18%	100%	90.17%	99.81%	90.90%	98.72%	72.51%	97.40%	
2									

Table 2

Post-training quantization accuracy results for the inference stage.

Format	MNIST	MNIST		Fashion-MNIST		SVHN		CIFAR-10	
2	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5	
Float 16	99.17%	100%	89.34%	99.78%	89.32%	98.35%	68.05%	96.15%	
INT8	99.16%	100%	89.51%	99.79%	89.33%	98.38%	68.15%	96.14%	
Posit(8, 0)	98.77%	99.99%	88.52%	99.82%	81.31%	97.07%	43.89%	86.49%	
Posit(8, 0) _{quire}	99.07%	99.99%	89.92%	99.81%	89.13%	98.39%	68.88%	96.47%	

Raul Murillo, Alberto A. Del Barrio, Guillermo Botella: Deep PeNSieve: A deep learning framework based on the posit number system. Digit. Signal Process. 102: 102762 (2020)

Outline

- Deep Learning and Approximate Computing
- Approximate Logarithmic Multiplication
- The Posit Number System
- <u>Conclusions</u>
- Open challenges

Conclusions

- ML and DNNs have opened new possibilities to Computer Arithmetic
- Approximate Computing suits the error tolerance of these applications
- Good Enough Arithmetic is critical to find the best tradeoff
 - Accuracy vs Energy
 - There is no need to be better
- New Generation Arithmetic (NGA) is here
 - Energy efficient
 - Even with better features

Outline

- Deep Learning and Approximate Computing
- Approximate Logarithmic Multiplication
- The Posit Number System
- Conclusions
- Open challenges

Open challenges

- Integrating logarithmic arithmetic in an accelerator
 - Memory accesses and other details must be considered too
 - High-level Synthesis is not to be forgotten, can enhance the arithmetic approach [1]
- Posit units are still not competitive with respect to IEEE-754 based or bfloat16
 - Posits are not standard yet
 - The community is still understanding the properties of the new format
 - New tricks are required

[1] A. A. Del Barrio, R. Hermida and S. Ogrenci-Memik, "A Combined Arithmetic-High-Level Synthesis Solution to Deploy Partial Carry-Save Radix-8 Booth Multipliers in Datapaths," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 2, pp. 742-755, Feb. 2019. doi: 10.1109/TCSI.2018.2866172

Open challenges

- Training with posits is very slow, every operation must be emulated
 - 10 days with CIFAR-10
 - The framework can be optimized yet (SW)
 - RISC-V processor can integrate posit support (HW and SW)
 - https://www.redleonardo.es/beneficiario/alberto-antonio-del-barrio-garcia/

Fundación

BBVA

This work was produced with the support of a 2020 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation, whose id is PR200320/01

THANKS SO MUCH FOR YOUR ATTENTION !!

Any questions ??? ... or you can email me at abarriog@ucm.es