
THE POWER OF 
ARITHMETIC IN ML

by Dr. Alberto A. Del Barrio
University of California at Irvine, 08-jan-2021



Outline

• Deep Learning and Approximate Computing
• Approximate Logarithmic Multiplication
• The Posit Number System
• Conclusions
• Open challenges

2



Outline

• Deep Learning and Approximate Computing
• Approximate Logarithmic Multiplication
• The Posit Number System
• Conclusions
• Open challenges

3



Computational Challenge in Machine 
Learning
• Machine Learning growing in diverse applications

• Autonomous Driving, Face Recognition, Social Analysis…
• … even for detecting covid-19

• Large amount of data and/or time constraint
• Computationally costly and challenging!

4



DNN Computation is Mostly Matrix 
Multiplications 
• M by N matrix of weights multiplied by N by 1 vector of inputs
• Need an activation function after this matrix operation: Rectifier, 

Sigmoid, etc.
• Matrices are dense

5



Training and Inference

• Learning Step: Weights are produced by training, initially random, 
using successive approximation that includes backpropagation with 
gradient descent.  Mostly floating point operations.  Time consuming
• Inference Step: Recognition and classifications.  More frequently 

invoked step. Fixed point operation
• Both steps include many dense matrix vector operations

6



Opportunities for Power Savings
• Perfect for hardware acceleration

• A lot of MAC operations
• Parallel and regular structure

• Suitable for Approximate Computing
• Inherent error in machine learning
• Applications can tolerate small errors

• Approximate multiplier for the CNN accelerator can 
reduce power consumption from datacenters to 
embedded systems

Page 
Ranking

AlphaGo
Visual 
Recognition

Translate

Google TPU Accelerator

Jouppi, Norman P., et al. "In-datacenter performance analysis of a tensor processing unit." Proceedings of the 44th Annual International 
Symposium on Computer Architecture. ACM, 2017.

Services that use TPU
7



Big Players are Investing Heavily on ML
• Custom built chips for AI
• iPhone X AI Chip
• Google TPU 2
• Nvidia acquiring ARM
• Microsoft Azure and integration of 

FPGAs
• Intel acquiring Altera and Nervana; 

ML accelerator IP
• AMD acquiring Xilinx

• Software tools
• Tensorflow, Pytorch, Caffe
• ML algorithms

8



Addition is deeply optimized …

• … I just type +
• Why on earth should I learn about

Arithmetic? I prefer Python
• This is something really ancient

9

1941



Addition is deeply optimized …

• … I just type +
• Neural Networks theory was developed in the mid 20th century
• Until we did not have enough computational power and available

data (around 2010), they did not take off

10
V. Sze, Y. Chen, T. Yang and J. S. Emer, "Efficient Processing of Deep Neural Networks: A Tutorial and Survey," in Proceedings of the IEEE, vol. 105, no. 12, pp. 2295-2329, Dec. 
2017, doi: 10.1109/JPROC.2017.2761740.



Some figures • DNNs are very complex
• The number of parameters is

usually larger than 10M
• Training is very expensive
• Jevons Paradox or “dying

because of the success”

11[1] S. Bianco, R. Cadene, L. Celona and P. Napoletano, "Benchmark Analysis of Representative Deep Neural Network Architectures," in IEEE Access, vol. 
6, pp. 64270-64277, 2018, doi: 10.1109/ACCESS.2018.2877890.



Some figures

12

Neil C. Thompson, Kristjan Greenewald, 
Keeheon Lee, Gabriel F. Manso: The
Computational Limits of Deep Learning. CoRR
abs/2007.05558 (2020)



Some figures

13

V. Sze, Y. Chen, T. Yang and J. S. Emer, "Efficient Processing of Deep Neural Networks: A Tutorial and Survey," in Proceedings of the IEEE, vol. 105, no. 12, pp. 2295-2329, Dec. 
2017, doi: 10.1109/JPROC.2017.2761740.

• Inference is not
easy either

Nowadays these
are toy examples



Some figures

• ImageNet validation dataset (50,000 images)
• What if I save 1 pJ per multiplication? (just in inference)
• LeNet-5 è 341 kmults/inference * 1 pJ * 50 kinferences = 17.1 mJ
• AlexNet è 724 Mmults/inference * 1 pJ * 50 kinferences = 36.2 J
• VGG-16 è 15.5 Gmults/inference * 1 pJ * 50 kinferences = 775 J
• GoogleLeNet v1 è 1.43 Gmults/inference * 1 pJ * 50 kinferences = 71.5 J
• ResNet-50 è 3.9 Gmults/inference * 1 pJ * 50 kinferences = 195 J

14



Some figures

• iPhone 12 Pro, USB-C 20W adapter, 2h/full charge è 20W * 2h* 3600s/h = 
144 kJ
• Average USA house consumption per year [1] è 10,649 kWh = 10,649 * 

1,000 W/1kW * 3600s/1h = 38336.4 MJ
• How many people work on ML (particularly DNNs)?

• Saving 1 pJ per multiplication you could be charging your iPhone 12 … like forever J
• Jevons Paradox. Let’s say, people validating Imagenet on ResNet-50

• 100 people è 100 * 195 J = 0.0195 MJ
• 1,000 people è 1,000 * 195 J = 0.195 MJ
• 10,000 people è 1,0000 * 195 J = 1.95 MJ
• 100,000 people è 100,000 * 195 J = 19.5 MJ

• Usually researchers make mistakes, so they will repeat the tests and also
will test other NNs (just for fun J)

15[1] https://www.eia.gov/tools/faqs/faq.php?id=97&t=3



So why Approximate Computing?
• DNN outputs are probabilities. It does not matter the value, the only

thing that matters is the relative order

16

If instead of 77.6%, we had 70% or even
50%, it would not matter

But be careful with the approximations !!!



Outline

• Deep Learning and Approximate Computing
• Approximate Logarithmic Multiplication
• The Posit Number System
• Conclusions
• Open challenges

17



Approximate Log Multiplication

• Arithmetic is something very ancient … so let’s try something very
ancient
• Logarithms were defined by Burgi and Napier at the beginning of the

XVII century
• Current logarithms and their connection with the exponential were

defined by Euler in the XVIII century
• Multiplication → Addition in log domain, log(A*B) = log(A) + log(B)

18



Approximate Log Multiplication

• Mitchell introduced digital logarithmic multiplication and division in 1962
• Based on approximating log2(1+x) with x, when x belongs to [0,1)

19

y=log2(1+x)

yapprox = x

Mitchell, J. N. (1962). Computer Multiplication and Division Using Binary Logarithms. Electronic Computers, IRE Transactions on, EC-11(4), 
512–517. http://doi.org/10.1109/TEC.1962.5219391

characteristic fraction



Approximate Log Multiplication
• Based on the approximate logarithm
• Reduces logarithm to Leading One Detector (LOD) and Shifter operations

Mitchell, J. N. (1962). Computer Multiplication and Division Using Binary Logarithms. Electronic Computers, IRE Transactions on, EC-11(4), 
512–517. http://doi.org/10.1109/TEC.1962.5219391

A (binary) Approx. 
log(A) 
(binary)

00001 000.0000
00010 001.0000
00011 001.1000
00100 010.0000
00101 010.0100
00110 010.1000
00111 010.1100
01000 011.0000
… …
10000 100.0000

20

Change of characteristic
every 2t numbers



Approximate Log Multiplication
• Worst case relative error = 11.1%

0 0 0 0 1 1 1 1

0 0 0 0 0 0 1 1

7 6 5 4 3 2 1 0
A

B

15
3

0 1 1 1 1 1 0 0 0 0

0 0 1 1 0 0 0 0 0 0

C=log2(A)= (3 << 7) & ((A – 23) << 4)

D=log2(B)= (1 << 7) & ((B - 21) << 6)

0 1 0 1 0 1 1 0 0 0 0C+D = E = 5.375

0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0
F= Antilog2(E) = 𝟐𝒌𝑬 * (1 + xE) = 44 7 6 5 4 3 2 1 0

44
2% 
error 21

Approx: 3.875  Exact: 3.907

Approx: 1.500 Exact: 1.585

F= 25 * (1 + 0.375) = 1.01100 << 5 =   44

kA (characteristic of A)

xA (mantissa of A)

In the log domain, a number A = 𝟐𝒌𝑨* (1 + xA)

Shifts, masks and concatenations



Mitchell Log Multiplier
• Logic optimization of LOD and ENC

• Fast and efficient fully parallel LOD
• One-hot output

• OR-Tree encoder. e.g. 113 = 0111 0001
• One-hot LOD (h7h6h5h4h3h2h1h0) è 0100 0000
• Or-Tree encoder (e2e1e0) è 110 
• e2 = h7 or h6 or h5 or h4, e1 = h7 or h6 or h3 or h2

• Shift amount calculation 
• (n-k-1) = not(k) when n is a power of 2

= 𝑚"#$,& +𝑚"#$,&'(#$%

= ℎ& = &
𝑧& 𝑗 = 𝑛 − 1
𝑚)*+ , ,&'$ · 𝑧& 𝑗 < 𝑛 − 1

3 2 1 0

4-bit parallel LOD
22M. S. Kim, A. A. Del Barrio, R. Hermida and N. Bagherzadeh, "Low-power implementation of Mitchell's approximate logarithmic multiplication for convolutional neural 

networks," ASP-DAC, Jeju, 2018, pp. 617-622. doi: 10.1109/ASPDAC.2018.8297391



Mitchell Decoder
• Given the characteristic (k), a normalized mantissa (xÎ [0,1)), X = 2k*(1+x)
• Two cases for decoding

• Large Characteristic (msb = 1)
• L1 barrel shifter è shamtL = (k and (2log(n)-1)) + 1
• L1 is a customized left shifter that performs the +1 for free

• Small Characteristic (msb = 0)
• Right barrel shifter è shamtR = not(k and (2log(n)-1))

• Only AND needed for MSBs

23

This is the most
complex block 
within the
multiplier



Zero Detection Unit
• Critical to CNN accuracy

Mrazek, V., Sarwar, S. S., Sekanina, L., Vasicek, Z., & Roy, K. (2016). Design of power-efficient approximate multipliers for approximate artificial 
neural networks. Proceedings of the 35th International Conference on Computer-Aided Design - ICCAD ’16, 1–7. 

24

Quick check: if the characteristic is zero and the lsb is
zero, the operand is zero



Some refinements

• Negative handling
• In the Logarithmic Number System (LNS), the weight/relevance of the

characteristic with respect to the mantissa is very large
• +1 in the characteristic is equivalent to double the value of the number

• Maybe not all the bits of the mantissa are necessary for a good
enough implementation
• Maybe it is possible to further reduce the error

25



Some refinements

26

The size of the
shifters is

reduced from
2n to n+w and 

from n to w

C1 conversion
for handling

negative
numbers



Approximate Log Multiplier Animation

1b 11000000 0b 01000000

00111111 01000000

00100000 01000000

101 110

010 001

1000000011111100

11111 00000

010111111 011000000

1011111111b

1111000000111111

-4033[16]

0b 0b

111110111b 011

0...0111111

011 100

011111111

00001111110000

111111

000011
00001111 110000

1b

0000111111000000

00001111 110000

25

-64[8] 64[8]



Energy and accuracy
• 32nm, 250 MHz clock

28

No accuracy degradation in 
ImageNet + AlexNet

M. S. Kim, A. A. Del Barrio, L. T. Oliveira, R. Hermida and N. Bagherzadeh, "Efficient Mitchell's Approximate Log Multipliers for Convolutional Neural Networks," 
in IEEE Transactions on Computers. doi: 10.1109/TC.2018.2880742
M. S. Kim, A. A. Del Barrio, R. Hermida, N. Bagherzadeh:
Low-power implementation of Mitchell's approximate logarithmic multiplication for convolutional neural networks. ASP-DAC 2018: 617-622



• Saves up to 91% power at 32 bits vs. exact fixed-point multiplier
• Minimal classification accuracy degradations on CNNs

Fixed Mitch-w6

Cell Area (um2) 8627 1815

Critical Path (ns) 3.78 2.19

Power (mW) 6.02 0.9

Energy (pJ) 22.76 1.97

Area Savings 79.0 %

Energy Savings 91.3 %

Dataset Fixed Mitch-w6

MNIST
(LeNet)

99.0 % 99.0 %

CIFAR-10
(Cuda-convnet)

81.4 % 81.3 %

Top-1 ImageNet 
(AlexNet)

56.8 % 56.5 %

Top-5 ImageNet 
(AlexNet)

79.9 % 79.8 %

Synthesis Results CNN Image Classification Accuracy

27

Approximate Log Multiplier: wrapping up



• Preserves abstract feature detection by convolutional layers
• For discrete classification, relative order of outputs is much more 

important than absolute magnitudes

-15

-10

-5

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9

Sc
or
e

Digit

Final Probability Score

Mitch Float

Our Design Floating-point

28

Approximate Log Multiplier: wrapping up



Approximate Log Multiplier: in an FPGA
• Store the results of the feature extractor (constant) and 

share to reduce the multiplier itself

31
L. T. Oliveira, M. S. Kim, A. A. Del Barrio, N. Bagherzadeh and R. Menotti, "Design of Power-Efficient FPGA Convolutional Cores with Approximate Log 
Multiplier," in European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN’19), just accepted

Feature extractor Reduced log multiplier



Approximate Log Multiplier: iterative
• Basically we

customize the
bitwidth of every
stage

32

1st Stage Mitchell Multiplier 2nd Stage Mitchell Multiplier

Compensated 
error in 

truncation  

Compensated 
error in 

truncation  

Output of Error Term Calculator is 
transferred to next stage 

Hyun-Jin Kim, Min Soo Kim, Alberto A. Del Barrio, Nader Bagherzadeh: A Cost-Efficient Iterative Truncated Logarithmic Multiplication for Convolutional
Neural Networks. ARITH 2019: 108-111



Approximate Log Multiplier: iterative
• We tackle larger networks with

high accuracy

33Hyun-Jin Kim, Min Soo Kim, Alberto A. Del Barrio, Nader Bagherzadeh: A Cost-Efficient Iterative Truncated Logarithmic Multiplication for Convolutional
Neural Networks. ARITH 2019: 108-111



Outline

• Deep Learning and Approximate Computing
• Approximate Logarithmic Multiplication
• The Posit Number System
• Conclusions
• Open challenges

34



The Posit Number System (aka unum v3)
• Proposed by John L. Gustafson in 

2017 as a direct drop-in 
replacement for floating-point 
numbers (IEEE 754)
• Better dynamic range
• No wasted patterns for denormal 

numbers
• Consistency between machines
• Posit operations not rounded until 

the very end

35

J. L. Gustafson and I. T. Yonemoto, “Beating floating point at its own game: Posit arithmetic,” 
Supercomputing Frontiers and Innovations, vol. 4, no. 2, 06 2017.



The Posit Number System

• The order is a beauty in itself

36

0
0000

→
+000

-1
/1
6

11
11

→
-0
01

1 /16
0001→

+001

-1
/4

11
10
→-
01
0

1 /4
0010→+010

-1 /2

1101
→-01

1
1 /2 0011→+011

-11100→-100 1 0100→+100

-2

1011→-101
2 0101

→+10
1-4

1010→-110
4
01
10
→+
11
0

-16

1001→
-111

16
01
11

→
+1
11

±∞
1000

→
-000

0
00000

→
+0000

-1
/6
4

11
11
1→

-
00
01

1 /64
00001

→
+0001

-1
/1
6

11
11
0→

-0
01
0

1 /16
00010→

+0010

-1
/8

11
10
1→

-0
01
1

1 /8
00011→

+0011

-1
/4

11
10
0→
-0
10
0

1 /4
00100→+0100

-3
/8

110
11→

-01
01

3 /8
00101→+0101

-1 /2

1101
0→-0

110
1 /2 00110→+0110

-3 /4

11001→-
0111

3 /4 00111→+0111

-111000→-1000 1 01000→+1000
-3 /2

10111→-1001
3 /2 01001→+

1001-2

10110→-1010
2

0101
0→+1

010
-3

10101→-1011
3

010
11→

+10
11

-4

10100→-1100
4

01
10
0→
+1
10
0

-8

10011→
-1101

8
01
10
1→

+1
10
1

-16

10010→
-1110

16
01
11
0→

+1
11
0

-64
10001

→
-1111

64
01
11
1→

+
11
11

±∞
10000

→
-0000



Numerical value of Posits

• 𝑠 – sign
• 𝑢𝑠𝑒𝑒𝑑 = 2!!"

• 𝑒𝑠 – exponent size
• 𝑘 – regime encoded value (signed integer)
• 𝑒 – exponent value
• 𝑓 – fraction value

𝑋 = (−1)"×(𝑢𝑠𝑒𝑒𝑑)#×2$×1. 𝑓

37



Posit format encoding

• Sign bit (𝑠)
• Regime (𝑘) – sequence of r identical bits

• #r = occurrences of r
• 𝑘 = −#𝑟 if 𝑟 is 0, and 𝑘 = #𝑟 − 1 if 𝑟 is 1

• Exponent (𝑒) – represented by es bits
• Fraction (𝑓) – unsigned integer divided by 2!

38

F-1



Example: Posit 16,3

39

= 6.034970283508301×10!"
𝑋 = (−1)#×(𝑢𝑠𝑒𝑒𝑑)$×2%×(1 + 𝑓)𝑋 = (−1)&×(2'")$×2%×(1 + 𝑓)𝑋 = (−1)&×(2'")!(×2%×(1 + 𝑓)𝑋 = (−1)&×(2'")!(×2"×(1 + 𝑓)𝑋 = (−1)&×(2'")!(×2"×(1 + ⁄149 256)



Posit functional units

• Posits were designed to be “hardware friendly”
• Similar circuitry to floating point
• Less special cases (just 0 and NaR)

• Design challenge: runtime varying fields

40



FloPoCo Core Generator

• Open source tool for generating
arithmetic cores for FPGA
• Operators are fully parameterized
• Written in C++, outputs synthesizable VHDL

41



Evaluation of Posit units - Adder

Posit
𝑛, 𝑒𝑠

Area
(𝜇𝑚.)

Delay
(𝑛𝑠)

Power
(𝜇𝑊)

Energy
(𝑝𝐽)

PACoGen [1]
16,1 3228.48 5.34 1637.6 8.74
32,2 7615.08 7.94 3828.3 30.4

Proposed
8,0 1038.6 3.9 489.5 1.91
16,1 2176.92 6.23 1133.1 7.06
32,2 4880.88 9.48 2811.1 26.65

42

[1]  M. K. Jaiswal and H. K. -. So, “PACoGen: A Hardware Posit Arithmetic Core Generator,” in IEEE Access, vol. 7, pp. 74586-74601, 2019, doi: 
10.1109/ACCESS.2019.2920936.

-35.9% +19.4% -30.8% -19.2%

R. Murillo, A. A. Del Barrio and G. Botella, "Customized Posit Adders and Multipliers using the FloPoCo Core Generator," 2020 IEEE International Symposium
on Circuits and Systems (ISCAS), Sevilla, 2020, pp. 1-5, doi: 10.1109/ISCAS45731.2020.9180771.

Still, not competitive w.r.t. 
floating point operators

https://www.doi.org/10.1109/ACCESS.2019.2920936


Evaluation of Posit units - Multiplier

Posit
𝑛, 𝑒𝑠

Area
(𝜇𝑚.)

Delay
(𝑛𝑠)

Power
(𝜇𝑊)

Energy
(𝑝𝐽)

PACoGen [1]
16,1 4955.76 5.15 3036.6 15.64
32,2 15106.32 8.54 13027 111.25

Proposed
8,0 1032.48 2.98 558.4 1.66
16,1 3321.72 5.64 2470.9 13.94
32,2 11924.64 8.87 11926 105.78

43

[1]  M. K. Jaiswal and H. K. -. So, “PACoGen: A Hardware Posit Arithmetic Core Generator,” in IEEE Access, vol. 7, pp. 74586-74601, 2019, doi: 
10.1109/ACCESS.2019.2920936.

-32.97% +9.5% -18.6% -10.86%

R. Murillo, A. A. Del Barrio and G. Botella, "Customized Posit Adders and Multipliers using the FloPoCo Core Generator," 2020 IEEE International Symposium
on Circuits and Systems (ISCAS), Sevilla, 2020, pp. 1-5, doi: 10.1109/ISCAS45731.2020.9180771.

Still, not competitive w.r.t. 
floating point operators

https://www.doi.org/10.1109/ACCESS.2019.2920936


• Posit format (J.L. Gustafson, 2017)

Why are posits interesting then?

°2 °1 0 1 2 3
Value

100

101

102

103

104

D
en

si
ty

Tappered precision suits a 
gaussian distribution, i.e. 
like the weights of a DNN 

Expectable: an n/2 bits posit
achieves the same accuracy as 

an n bits float

44J. L. Gustafson and I. T. Yonemoto, “Beating floating point at its own game: Posit arithmetic,” 
Supercomputing Frontiers and Innovations, vol. 4, no. 2, 06 2017.



Deep PeNSieve
• Open-source framework

based on TF
• Entire training performed

with posits
• Without conversions

• Allows training/inference
with <32,2>, <16,1> and 
<8,0>

45

Input
images

Posit Posit

Posit

Posit

Posit

PositPositPosit

Posit

CNN

Loss
function

Output
predictions

Parameters optimizer
(Adam)

, Learning rate Labels

Convolutional Layer

Convolution Pooling

Fully-Connected Layer

...

Raul Murillo, Alberto A. Del Barrio, Guillermo Botella: Deep PeNSieve: A deep learning
framework based on the posit number system. Digit. Signal Process. 102: 102762 (2020)

https://github.com/RaulMurillo/deep-pensieve



Deep PeNSieve

46

• Operations between 8-bit posits require a 64-bit quire (architectural
register)
• This is where we round

Activation L× ∑P8

P8

P8

Quire
Activation L-1

Weight L

Raul Murillo, Alberto A. Del Barrio, Guillermo Botella: Deep PeNSieve: A 
deep learning framework based on the posit number system. Digit. 
Signal Process. 102: 102762 (2020)

In floating point
format, the standard 
mandates rounding

every operation. 
And every machine 
may have different

rounding modes



Deep PeNSieve

47

Quite remarkable: even higher
precision than float

Raul Murillo, Alberto A. Del Barrio, Guillermo Botella: Deep PeNSieve: A deep learning framework based on the posit number system. Digit. Signal Process. 
102: 102762 (2020)



Outline

• Deep Learning and Approximate Computing
• Approximate Logarithmic Multiplication
• The Posit Number System
• Conclusions
• Open challenges

48



Conclusions

• ML and DNNs have opened new possibilities to Computer Arithmetic
• Approximate Computing suits the error tolerance of these

applications
• Good Enough Arithmetic is critical to find the best tradeoff
• Accuracy vs Energy
• There is no need to be better

• New Generation Arithmetic (NGA) is here
• Energy efficient
• Even with better features

49



Outline

• Deep Learning and Approximate Computing
• Approximate Logarithmic Multiplication
• The Posit Number System
• Conclusions
• Open challenges

50



Open challenges
• Integrating logarithmic arithmetic in an accelerator
• Memory accesses and other details must be considered too
• High-level Synthesis is not to be forgotten, can enhance the arithmetic

approach [1]

• Posit units are still not competitive with respect to IEEE-754 based or
bfloat16
• Posits are not standard yet
• The community is still understanding the properties of the new format
• New tricks are required

51
[1] A. A. Del Barrio, R. Hermida and S. Ogrenci-Memik, "A Combined Arithmetic-High-Level Synthesis Solution to Deploy Partial Carry-Save Radix-8 Booth
Multipliers in Datapaths," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 2, pp. 742-755, Feb. 2019. doi: 10.1109/TCSI.2018.2866172



Open challenges

• Training with posits is very slow, every operation must be emulated
• 10 days with CIFAR-10
• The framework can be optimized yet (SW)
• RISC-V processor can integrate posit support (HW and SW)
• https://www.redleonardo.es/beneficiario/alberto-antonio-del-barrio-garcia/

52

This work was produced with the support of a 2020 
Leonardo Grant for Researchers and Cultural Creators, 
BBVA Foundation, whose id is PR200320/01



53

Any questions ??? … or you
can email me at
abarriog@ucm.es

THANKS SO 
MUCH FOR YOUR 
ATTENTION !!


