EECS 298: Embedded Software Synthesis Lecture 2

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering Electrical Engineering and Computer Science University of California, Irvine

Lecture 2: Overview

- Course administration
 - Enrollment
 - Assignments
- Embedded Software
 - Real-time Issues
 - Real-time Operating Systems (RTOS)
 - Scheduling

EECS298: Embedded Software Synthesis, Lecture 2

(c) 2004 R. Doemer

2

Course Administration

- Enrollment
 - Course enrollment complete?
 - State of enrolled students
- Assignments
 - Project proposal
 - brief description of the project (half a page)
 - Project execution
 - · do your project
 - Project presentation
 - 10-20 minute presentation of the project
 - Project report
 - · final report about the project

EECS298: Embedded Software Synthesis, Lecture 2

(c) 2004 R. Doemer

3

Assignments

- Project options (1/3)
 - Hands-on experience with Embedded Software
 - · Choose an embedded target platform
 - PDA
 - Lego Mindstorm robot
 - Xilinx board
 - ..
 - · Choose an application
 - Controller
 - Game
 - ..
 - Implement the application on the platform
 - Report on your implementation

EECS298: Embedded Software Synthesis, Lecture 2

(c) 2004 R. Doemer

4

2

Assignments

- Project options (2/3)
 - Literature research
 - · Choose an interesting article from the literature on one aspect of Embedded Software Synthesis
 - see course contents for applicable areas
 - · Summarize the article and its context
 - check references, related work
 - compare contributions
 - · Analyze and critique the article
 - describe pros and cons
 - Report on your topic

EECS298: Embedded Software Synthesis, Lecture 2

(c) 2004 R. Doemer

Course Literature

P. Marwedel:

"Embedded System Design", Kluwer Academic Publishers, Boston, 2003.

F. Vahid, T. Givargis: "Embedded System Design: A Unified Hardware/Software Introduction", John Wiley and Sons, New York, 2002.

A. Jerraya, S. Yoo, D. Verkest, N. Wehn (editors): "Embedded Software for SoC", Kluwer Academic Publishers, Boston, 2003.

J. Staunstrup, W. Wolf (editors): "Hardware/Software Co-Design: Principles and Practice", Kluwer Academic Publishers, Boston, 1997.

H. Kopetz:

"Real-time Systems", Kluwer Academic Publishers, Boston, 1997.

C. Krishna, K. Shin: "Real-Time Systems", McGraw-Hill, 1997.

P. Marwedel, G. Goosens (editors): "Code Generation for Embedded Processors", Kluwer Academic Publishers, 1995.

A. Gerstlauer, R. Doemer, J. Peng, D. Gajski: "System Design: A Practical Guide with SpecC' Kluwer Academic Publishers, Boston, June 2001.

EECS298: Embedded Software Synthesis, Lecture 2

(c) 2004 R. Doemer

6

Assignments

- Project options (3/3)
 - Software synthesis example
 - Specify an example system in the SpecC system-level description language
 - · Validate your example
 - simulation
 - Synthesize your example down to an embedded software implementation
 - System-on-Chip Environment (SCE)
 - · Report on your experiment

EECS298: Embedded Software Synthesis, Lecture 2

(c) 2004 R. Doemer

7

Assignment 1

- Project proposal
 - brief description of your project idea
 - topic
 - · approach
 - · expected result
 - email to

doemer@uci.edu

- due by next week:
 - October 8, 2004, at 12pm (noon)

EECS298: Embedded Software Synthesis, Lecture 2

(c) 2004 R. Doemer

8

Synthesis

Embedded Software

 Chapter 4, part 1, of "Embedded System Design" by P. Marwedel (Univ. of Dortmund, Germany), Kluwer Academic Publishers, 2003.

EECS298: Embedded Software Synthesis, Lecture 2

(c) 2004 R. Doemer

9