
1

- 1 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Reuse of standard software components

Knowledge from previous designs to be made available
in the form of intellectual property (IP, for SW & HW).
• Operating systems
• Middleware
• Real-time data bases
• Standard software (MPEG-x, GSM-kernel, …)

Includes standard approaches for scheduling
(requires knowledge about execution times).

Knowledge from previous designs to be made available
in the form of intellectual property (IP, for SW & HW).
• Operating systems
• Middleware
• Real-time data bases
• Standard software (MPEG-x, GSM-kernel, …)

Includes standard approaches for scheduling
(requires knowledge about execution times).

- 2 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Worst case execution times

Def.: The worst case execution time (WCET) is an upper
bound on the execution times of tasks.

The term is not ideal, since a program requiring the WCET for
its execution does not have to exist (WCET is a bound).

Complexity:
• in the general case: undecidable if a bound exists.
• for restricted programs: simple for „old“ architectures,

very complex for new architectures with pipelines,
caches, interrupts, virtual memory, etc.

Approaches:
• for hardware: typically requires hardware synthesis
• for software: requires availability of machine programs;

complex analysis (see, e.g., www.absint.de)

Def.: The worst case execution time (WCET) is an upper
bound on the execution times of tasks.

The term is not ideal, since a program requiring the WCET for
its execution does not have to exist (WCET is a bound).

Complexity:
• in the general case: undecidable if a bound exists.
• for restricted programs: simple for „old“ architectures,

very complex for new architectures with pipelines,
caches, interrupts, virtual memory, etc.

Approaches:
• for hardware: typically requires hardware synthesis
• for software: requires availability of machine programs;

complex analysis (see, e.g., www.absint.de)

2

- 3 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Average execution times

• Estimated cost and performance values:
Difficult to generate sufficiently precise estimates;
Balance between run-time and precision

• Accurate cost and performance values:
Can be done with normal tools (such as compilers).
As precise as the input data is.

• Estimated cost and performance values:
Difficult to generate sufficiently precise estimates;
Balance between run-time and precision

• Accurate cost and performance values:
Can be done with normal tools (such as compilers).
As precise as the input data is.

- 4 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Real-time scheduling

Assume that we are given a task graph G=(V,E).

Def.: A schedule of G is a mapping
V → T

of a set of tasks V to start times from domain T.

Typically, schedules have to respect a number of constraints,
such as resource constraints and dependency constraints,
as well as deadlines.

Scheduling is the process of finding such a mapping.

During the design of embedded systems, scheduling has to
be performed several times
(early rough scheduling as well as late precise scheduling).

Assume that we are given a task graph G=(V,E).

Def.: A schedule of G is a mapping
V → T

of a set of tasks V to start times from domain T.

Typically, schedules have to respect a number of constraints,
such as resource constraints and dependency constraints,
as well as deadlines.

Scheduling is the process of finding such a mapping.

During the design of embedded systems, scheduling has to
be performed several times
(early rough scheduling as well as late precise scheduling).

3

- 5 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Classification of scheduling algorithms

- 6 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Hard and soft deadlines

Def.: A time-constraint (deadline) is called hard if not meeting
that constraint could result in a catastrophe [Kopetz, 1997].
All other time constraints are called soft.

We will focus on hard deadlines.

Def.: A time-constraint (deadline) is called hard if not meeting
that constraint could result in a catastrophe [Kopetz, 1997].
All other time constraints are called soft.

We will focus on hard deadlines.

4

- 7 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Periodic and aperiodic tasks

Def.: Tasks which must be executed once every p units of time are
called periodic tasks. p is called their period. Each execution of a
periodic task is called a job.

All other tasks are called aperiodic.

Def.: Tasks requesting the processor at unpredictable times are called
sporadic, if there is a minimum separation between the times at which
they request the processor.

Def.: Tasks which must be executed once every p units of time are
called periodic tasks. p is called their period. Each execution of a
periodic task is called a job.

All other tasks are called aperiodic.

Def.: Tasks requesting the processor at unpredictable times are called
sporadic, if there is a minimum separation between the times at which
they request the processor.

- 8 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Preemptive and non-preemptive scheduling

Preemptive and non-preemptive scheduling: Non-preemptive
schedulers are based on the assumption that tasks are executed
until they are done. As a result the response time for external events
may be quite long if some tasks have a large execution time.
Preemptive schedulers have to be used if some tasks have long
execution times or if the response time for external events is
required to be short.

Preemptive and non-preemptive scheduling: Non-preemptive
schedulers are based on the assumption that tasks are executed
until they are done. As a result the response time for external events
may be quite long if some tasks have a large execution time.
Preemptive schedulers have to be used if some tasks have long
execution times or if the response time for external events is
required to be short.

5

- 9 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Static and dynamic scheduling

Dynamic scheduling: Processor allocation decisions
(scheduling) done at run-time.
Static scheduling: Processor allocation decisions
(scheduling) done at design-time. Dispatcher allocates
processor when interrupted by a timer. The timer is
controlled by a table generated at design time.

Dynamic scheduling: Processor allocation decisions
(scheduling) done at run-time.
Static scheduling: Processor allocation decisions
(scheduling) done at design-time. Dispatcher allocates
processor when interrupted by a timer. The timer is
controlled by a table generated at design time.

- 10 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Time-triggered systems

In an entirely time-triggered system, the temporal control structure of all
tasks is established a priori by off-line support-tools. This temporal control
structure is encoded in a Task-Descriptor List (TDL) that contains the
cyclic schedule for all activities of the node. This schedule considers the
required precedence and mutual exclusion relationships among the tasks
such that an explicit coordination of the tasks by the operating system at
run time is not necessary. ..

The dispatcher is activated by the synchronized clock tick. It looks at the
TDL, and then performs the action that has been planned for this instant.
[Kopetz]

… pre-run-time scheduling is often the only practical means of
providing predictability in a complex system. ([Xu, Parnas], as cited by
Kopetz).

It can be easily checked if timing constraints are met.
The disadvantage is that the response to sporadic events may be poor.

In an entirely time-triggered system, the temporal control structure of all
tasks is established a priori by off-line support-tools. This temporal control
structure is encoded in a Task-Descriptor List (TDL) that contains the
cyclic schedule for all activities of the node. This schedule considers the
required precedence and mutual exclusion relationships among the tasks
such that an explicit coordination of the tasks by the operating system at
run time is not necessary. ..

The dispatcher is activated by the synchronized clock tick. It looks at the
TDL, and then performs the action that has been planned for this instant.
[Kopetz]

… pre-run-time scheduling is often the only practical means of
providing predictability in a complex system. ([Xu, Parnas], as cited by
Kopetz).

It can be easily checked if timing constraints are met.
The disadvantage is that the response to sporadic events may be poor.

6

- 11 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Centralized and distributed scheduling

Centralized and distributed scheduling: Multiprocessor
scheduling either locally on 1 or on several processors

Mono- and multi-processor scheduling:
• Simple scheduling algorithms handle single processors,
• more complex algorithms handle multiple processors.

– algorithms for homogeneous multi-processor systems
– algorithms for heterogeneous multi-processor systems.

(includes hardware accelerators as a special case).
Online- and offline scheduling:
• Online: scheduling at run-time, based on the information

about the tasks arrived so far.
• Offline: scheduling taking a priori knowledge about arrival

times, execution times, and deadlines into account.

Centralized and distributed scheduling: Multiprocessor
scheduling either locally on 1 or on several processors

Mono- and multi-processor scheduling:
• Simple scheduling algorithms handle single processors,
• more complex algorithms handle multiple processors.

– algorithms for homogeneous multi-processor systems
– algorithms for heterogeneous multi-processor systems.

(includes hardware accelerators as a special case).
Online- and offline scheduling:
• Online: scheduling at run-time, based on the information

about the tasks arrived so far.
• Offline: scheduling taking a priori knowledge about arrival

times, execution times, and deadlines into account.

- 12 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Schedulability

A set of tasks is said to be schedulable under a given set
of constraints, if a schedule exists for that set of tasks and
constraints.

Exact tests are NP-hard in many situations.

Sufficient tests: sufficient conditions for guaranteeing a
schedule are checked. Small (hopefully) probability of
indicating that no schedule exists even though one exists.

Necessary tests: checking necessary conditions. Can be
used to show that no schedule exists. There may be cases
in which no schedule exists and we may still be unable to
prove this.

A set of tasks is said to be schedulable under a given set
of constraints, if a schedule exists for that set of tasks and
constraints.

Exact tests are NP-hard in many situations.

Sufficient tests: sufficient conditions for guaranteeing a
schedule are checked. Small (hopefully) probability of
indicating that no schedule exists even though one exists.

Necessary tests: checking necessary conditions. Can be
used to show that no schedule exists. There may be cases
in which no schedule exists and we may still be unable to
prove this.

7

- 13 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Cost functions

Cost function: Different algorithms aim at minimizing
different functions.

Def.: Maximum lateness is defined as the difference
between the completion time and the deadline,
maximized over all tasks. Maximum lateness is negative if
all tasks complete before their deadline.

Cost function: Different algorithms aim at minimizing
different functions.

Def.: Maximum lateness is defined as the difference
between the completion time and the deadline,
maximized over all tasks. Maximum lateness is negative if
all tasks complete before their deadline.

- 14 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Simple tasks

Tasks without any interprocess communication are called
simple tasks (S-tasks).

S-tasks can be in one out of two states: ready or running.

The API of a TT-OS supporting S-tasks is quite simple: The
application program interface (API) of an S-task in a TT system
consists of three data structures and two operating system
calls. ... The system calls are TERMINATE TASK and ERROR.
The TERMINATE TASK system call is executed whenever the
task has reached its termination point. In case of an error that
cannot be handled within the application task, the task
terminates its operation with the ERROR system call. [Kopetz,
1997].

Tasks without any interprocess communication are called
simple tasks (S-tasks).

S-tasks can be in one out of two states: ready or running.

The API of a TT-OS supporting S-tasks is quite simple: The
application program interface (API) of an S-task in a TT system
consists of three data structures and two operating system
calls. ... The system calls are TERMINATE TASK and ERROR.
The TERMINATE TASK system call is executed whenever the
task has reached its termination point. In case of an error that
cannot be handled within the application task, the task
terminates its operation with the ERROR system call. [Kopetz,
1997].

8

- 15 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Aperiodic scheduling
- Scheduling with no precedence constraints -

Let {Ti } be a set of tasks. Let:
• ci be the execution time of Ti ,
• di be the deadline interval, that is, the time between Ti

becoming available
• and the time until which Ti has to finish execution.
• li be the laxity or slack, defined as li = di - ci

Let {Ti } be a set of tasks. Let:
• ci be the execution time of Ti ,
• di be the deadline interval, that is, the time between Ti

becoming available
• and the time until which Ti has to finish execution.
• li be the laxity or slack, defined as li = di - ci

- 16 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Uniprocessor with equal arrival times

Preemption is useless.

Earliest Due Date (EDD): Based on Jackson's rule:
Given a set of n independent tasks, any algorithm that
executes the tasks in order of nondecreasing deadlines is
optimal with respect to minimizing the maximum lateness.
Proof: See [Buttazzo, 2002]

EDD requires all tasks to be sorted by their deadlines.
Hence, its complexity is O(n log(n)).

Preemption is useless.

Earliest Due Date (EDD): Based on Jackson's rule:
Given a set of n independent tasks, any algorithm that
executes the tasks in order of nondecreasing deadlines is
optimal with respect to minimizing the maximum lateness.
Proof: See [Buttazzo, 2002]

EDD requires all tasks to be sorted by their deadlines.
Hence, its complexity is O(n log(n)).

9

- 17 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Earliest Deadline First (EDF)
- Algorithm -

Different arrival times: Preemption potentially reduces lateness.

Theorem [Horn74]: Given a set of n independent tasks with
arbitrary arrival times, any algorithm that at any instant executes
the task with the earliest absolute deadline among all the ready
tasks is optimal with respect to minimizing the maximum
lateness.

Earliest deadline first (EDF) algorithm: each time a new ready
task arrives, it is inserted into a queue of ready tasks, sorted by
their deadlines. If a newly arrived task is inserted at the head of
the queue, the currently executing task is preempted.

If sorted lists are used, the complexity is O(n2) (less with bucket
arrays).

Different arrival times: Preemption potentially reduces lateness.

Theorem [Horn74]: Given a set of n independent tasks with
arbitrary arrival times, any algorithm that at any instant executes
the task with the earliest absolute deadline among all the ready
tasks is optimal with respect to minimizing the maximum
lateness.

Earliest deadline first (EDF) algorithm: each time a new ready
task arrives, it is inserted into a queue of ready tasks, sorted by
their deadlines. If a newly arrived task is inserted at the head of
the queue, the currently executing task is preempted.

If sorted lists are used, the complexity is O(n2) (less with bucket
arrays).

- 18 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Earliest Deadline First (EDF)
- Example -

Later deadline
� no preemption

Earlier deadline
� preemption

10

- 19 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Least laxity (LL), Least Slack Time First (LST)

Priorities = decreasing function of the laxity (the less laxity, the
higher the priority); dynamically changing priority; preemptive.

Priorities = decreasing function of the laxity (the less laxity, the
higher the priority); dynamically changing priority; preemptive.

Requires calling the
scheduler periodically, and to
recompute the laxity. Overhead
for many calls of the scheduler
and many context switches.
Detects missed deadlines early.

Requires calling the
scheduler periodically, and to
recompute the laxity. Overhead
for many calls of the scheduler
and many context switches.
Detects missed deadlines early.

- 20 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Properties

LL is also an optimal scheduling for mono-processor systems.
Dynamic priorities � cannot be used with a fixed prio OS.

LL scheduling requires the knowledge of the execution time.

LL is also an optimal scheduling for mono-processor systems.
Dynamic priorities � cannot be used with a fixed prio OS.

LL scheduling requires the knowledge of the execution time.

Scheduling without preemption

Lemma: If preemption is not allowed, optimal schedules may
have to leave the processor idle at certain times.
Proof: Suppose: optimal schedulers never leave processor
idle.

Lemma: If preemption is not allowed, optimal schedules may
have to leave the processor idle at certain times.
Proof: Suppose: optimal schedulers never leave processor
idle.

11

- 21 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Scheduling without preemption

T1: periodic, c1 = 2, p1 = 4, d1 = 4
T2: occasionally available at times 4*n+1, c2= 1, d2= 1
T1 has to start at t=0
� deadline missed, but schedule is possible (start T2 first)
� scheduler is not optimal � contradiction! q.e.d.

T1: periodic, c1 = 2, p1 = 4, d1 = 4
T2: occasionally available at times 4*n+1, c2= 1, d2= 1
T1 has to start at t=0
� deadline missed, but schedule is possible (start T2 first)
� scheduler is not optimal � contradiction! q.e.d.

- 22 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Scheduling without preemption

Preemption not allowed: � optimal schedules may leave
processor idle to finish tasks with early deadlines arriving late.

�Knowledge about the future is needed for optimal
scheduling algorithms

�No online algorithm can decide whether or not to keep idle.

EDF is optimal among all scheduling algorithms not keeping
the processor idle at certain times.

If arrival times are known a priori, the scheduling problem
becomes NP-hard in general. B&B typically used.

Preemption not allowed: � optimal schedules may leave
processor idle to finish tasks with early deadlines arriving late.

�Knowledge about the future is needed for optimal
scheduling algorithms

�No online algorithm can decide whether or not to keep idle.

EDF is optimal among all scheduling algorithms not keeping
the processor idle at certain times.

If arrival times are known a priori, the scheduling problem
becomes NP-hard in general. B&B typically used.

12

- 23 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Scheduling with precedence constraints

Task graph and possible schedule:Task graph and possible schedule:

Schedule can be stored in table.Schedule can be stored in table.

- 24 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Simultaneous Arrival Times:
The Latest Deadline First (LDF) Algorithm

LDF [Lawler, 1973]: Generation of total order compatible with
the partial order described by the task graph
(LDF performs a topological sort).

LDF reads the task graph and inserts tasks with no successors
into a queue. It then repeats this process, putting tasks whose
successor have all been selected into the queue.

At run-time, the tasks are executed in the generated total order.

LDF is non-preemptive and is optimal for mono-processors.

LDF [Lawler, 1973]: Generation of total order compatible with
the partial order described by the task graph
(LDF performs a topological sort).

LDF reads the task graph and inserts tasks with no successors
into a queue. It then repeats this process, putting tasks whose
successor have all been selected into the queue.

At run-time, the tasks are executed in the generated total order.

LDF is non-preemptive and is optimal for mono-processors.

13

- 25 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Asynchronous Arrival Times:
Modified EDF Algorithm

This case can be handled with a modified EDF algorithm.
The key idea is to transform the problem from a given set of
dependent tasks into a set of independent tasks with different
timing parameters [Chetto90].
This algorithm is optimal for uni-processor systems.

If preemption is not allowed, the heuristic algorithm
developed by Stankovic and Ramamritham can be used.

This case can be handled with a modified EDF algorithm.
The key idea is to transform the problem from a given set of
dependent tasks into a set of independent tasks with different
timing parameters [Chetto90].
This algorithm is optimal for uni-processor systems.

If preemption is not allowed, the heuristic algorithm
developed by Stankovic and Ramamritham can be used.

