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Reuse of standard software components

Knowledge from previous designs to be made available
in the form of intellectual property (IP, for SW & HW).
• Operating systems
• Middleware
• Real-time data bases
• Standard software (MPEG-x, GSM-kernel, …)

Includes standard approaches for scheduling
(requires knowledge about execution times).
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Worst case execution times

Def.: The worst case execution time (WCET) is an upper 
bound on the execution times of tasks.

The term is not ideal, since a program requiring the WCET for 
its execution does not have to exist (WCET is a bound).

Complexity:
• in the general case: undecidable if a bound exists.
• for restricted programs: simple for „old“ architectures,

very complex for new architectures with pipelines, 
caches, interrupts, virtual memory, etc.

Approaches: 
• for hardware: typically requires hardware synthesis
• for software: requires availability of machine programs;

complex analysis (see, e.g., www.absint.de)
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Average execution times

• Estimated cost and performance values:
Difficult to generate sufficiently precise estimates;
Balance between run-time and precision

• Accurate cost and performance values:
Can be done with normal tools (such as compilers).
As precise as the input data is.
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Real-time scheduling

Assume that we are given a task graph G=(V,E).

Def.: A schedule of G is a mapping 
V → T

of a set of tasks V to start times from domain T.

Typically, schedules have to respect a number of constraints, 
such as resource constraints and dependency constraints,
as well as deadlines.

Scheduling is the process of finding such a mapping.

During the design of embedded systems, scheduling has to 
be performed several times
(early rough scheduling as well as late precise scheduling).
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Classification of scheduling algorithms
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Hard and soft deadlines

Def.: A time-constraint (deadline) is called hard if not meeting 
that constraint could result in a catastrophe [Kopetz, 1997]. 
All other time constraints are called soft.

We will focus on hard deadlines.
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Periodic and aperiodic tasks

Def.: Tasks which must be executed once every p units of time are 
called periodic tasks. p is called their period. Each execution of a 
periodic task is called a job.

All other tasks are called aperiodic.

Def.: Tasks requesting the processor at unpredictable times are called 
sporadic, if there is a minimum separation between the times at which 
they request the processor. 
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Preemptive and non-preemptive scheduling

Preemptive and non-preemptive scheduling: Non-preemptive 
schedulers are based on the assumption that tasks are executed 
until they are done. As a result the response time for external events 
may be quite long if some tasks have a large execution time. 
Preemptive schedulers have to be used if some tasks have long 
execution times or if the response time for external events is 
required to be short.
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Static and dynamic scheduling

Dynamic scheduling: Processor allocation decisions 
(scheduling) done at run-time.
Static scheduling: Processor allocation decisions 
(scheduling) done at design-time. Dispatcher allocates 
processor when interrupted by a timer. The timer is 
controlled by a table generated at design time.

Dynamic scheduling: Processor allocation decisions 
(scheduling) done at run-time.
Static scheduling: Processor allocation decisions 
(scheduling) done at design-time. Dispatcher allocates 
processor when interrupted by a timer. The timer is 
controlled by a table generated at design time.
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Time-triggered systems

In an entirely time-triggered system, the temporal control structure of all 
tasks is established a priori by off-line support-tools. This temporal control 
structure is encoded in a Task-Descriptor List (TDL) that contains the 
cyclic schedule for all activities of the node. This schedule considers the 
required precedence and mutual exclusion relationships among the tasks 
such that an explicit coordination of the tasks by the operating system at 
run time is not necessary. ..

The dispatcher is activated by the synchronized clock tick. It looks at the 
TDL, and then performs the action that has been planned for this instant. 
[Kopetz]

… pre-run-time scheduling is often the only practical means of 
providing predictability in a complex system. ([Xu, Parnas], as cited by 
Kopetz).

It can be easily checked if timing constraints are met. 
The disadvantage is that the response to sporadic events may be poor. 
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Centralized and distributed scheduling

Centralized and distributed scheduling: Multiprocessor 
scheduling either locally on 1 or on several processors

Mono- and multi-processor scheduling:
• Simple scheduling algorithms handle single processors,
• more complex algorithms handle multiple processors.

– algorithms for homogeneous multi-processor systems
– algorithms for heterogeneous multi-processor systems. 

(includes hardware accelerators as a special case).
Online- and offline scheduling:
• Online: scheduling at run-time, based on the information 

about the tasks arrived so far.
• Offline: scheduling taking a priori knowledge about arrival 

times, execution times, and deadlines into account.
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Schedulability

A set of tasks is said to be schedulable under a given  set 
of constraints, if a schedule exists for that set of tasks and 
constraints.

Exact tests are NP-hard in many situations.

Sufficient tests: sufficient conditions for guaranteeing a 
schedule are checked. Small (hopefully) probability of 
indicating that no schedule exists even though one exists. 

Necessary tests: checking necessary conditions. Can be 
used to show that no schedule exists. There may be cases 
in which no schedule exists and we may still be unable to 
prove this.  
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Cost functions

Cost function: Different algorithms aim at minimizing 
different functions.

Def.: Maximum lateness is defined as the difference 
between the completion time and the deadline,
maximized over all tasks. Maximum lateness is negative if 
all tasks complete before their deadline.
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Simple tasks

Tasks without any interprocess communication are called 
simple tasks (S-tasks).

S-tasks can be in one out of two states: ready or running.

The API of a TT-OS supporting S-tasks is quite simple: The 
application program interface (API) of an S-task in a TT system 
consists of  three data structures and two operating system 
calls. ... The system calls are TERMINATE TASK and ERROR. 
The TERMINATE TASK system call is executed whenever the 
task has reached its termination point. In case of an error that
cannot be handled within the application task, the task 
terminates its operation with the ERROR system call. [Kopetz, 
1997].
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Aperiodic scheduling
- Scheduling with no precedence constraints -

Let {Ti } be a set of tasks. Let:
• ci be the execution time of Ti ,
• di be the deadline interval, that is, the time between Ti 

becoming available
• and the time until which Ti has to finish execution.
• li be the laxity or slack, defined as li = di - ci
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Uniprocessor with equal arrival times

Preemption is useless.

Earliest Due Date (EDD): Based on Jackson's rule:
Given a set of n independent tasks, any algorithm that 
executes the tasks in order of nondecreasing deadlines is 
optimal with respect to minimizing the maximum lateness.
Proof: See [Buttazzo, 2002]

EDD requires all tasks to be sorted by their deadlines.
Hence, its complexity is O(n log(n)). 

Preemption is useless.
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Earliest Deadline First (EDF)
- Algorithm -

Different arrival times: Preemption potentially reduces lateness.

Theorem [Horn74]: Given a set of n independent tasks with 
arbitrary arrival times, any algorithm that at any instant executes 
the task with the earliest absolute deadline among all the ready
tasks is optimal with respect to minimizing the maximum 
lateness.

Earliest deadline first (EDF) algorithm: each time a new ready 
task arrives, it is inserted into a queue of ready tasks, sorted by 
their deadlines. If a newly arrived task is inserted at the head of 
the queue, the currently executing task is preempted.

If sorted lists are used, the complexity is O(n2) (less with bucket 
arrays). 

Different arrival times: Preemption potentially reduces lateness.
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Earliest Deadline First (EDF)
- Example -

Later deadline
� no preemption

Earlier deadline
� preemption
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Least laxity (LL), Least Slack Time First (LST)

Priorities = decreasing function of the laxity (the less laxity, the 
higher the priority); dynamically changing priority; preemptive.

Priorities = decreasing function of the laxity (the less laxity, the 
higher the priority); dynamically changing priority; preemptive.

Requires calling the 
scheduler periodically, and to 
recompute the laxity. Overhead 
for many calls of the scheduler 
and many context switches.
Detects missed deadlines early.

Requires calling the 
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for many calls of the scheduler 
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Detects missed deadlines early.
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Properties

LL is also an optimal scheduling for mono-processor systems. 
Dynamic priorities � cannot be used with a fixed prio OS.

LL scheduling requires the knowledge of the execution time.

LL is also an optimal scheduling for mono-processor systems. 
Dynamic priorities � cannot be used with a fixed prio OS.

LL scheduling requires the knowledge of the execution time.

Scheduling without preemption

Lemma: If preemption is not allowed, optimal schedules may 
have to leave the processor idle at certain times.
Proof: Suppose: optimal schedulers never leave processor 
idle.
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Scheduling without preemption

T1: periodic, c1 = 2, p1 = 4, d1 = 4
T2: occasionally available at times 4*n+1, c2= 1, d2= 1
T1 has to start at t=0
� deadline missed, but schedule is possible (start T2 first)
� scheduler is not optimal � contradiction! q.e.d.
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Scheduling without preemption

Preemption not allowed: � optimal schedules may leave 
processor idle to finish tasks with early deadlines arriving late.

�Knowledge about the future is needed for optimal
scheduling algorithms

�No online algorithm can decide whether or not to keep idle.

EDF is optimal among all scheduling algorithms not keeping 
the processor idle at certain times.

If arrival times are known a priori, the scheduling problem 
becomes NP-hard in general. B&B typically used.
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Scheduling with precedence constraints

Task graph and possible schedule:Task graph and possible schedule:

Schedule can be stored in table.Schedule can be stored in table.
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Simultaneous Arrival Times:
The Latest Deadline First (LDF) Algorithm

LDF [Lawler, 1973]: Generation of total order compatible with 
the partial order described by the task graph
(LDF performs a topological sort).

LDF reads the task graph and inserts tasks with no successors 
into a queue. It then repeats this process, putting tasks whose 
successor have all been selected into the queue.

At run-time, the tasks are executed in the generated total order.

LDF is non-preemptive and is optimal for mono-processors.
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Asynchronous Arrival Times:
Modified EDF Algorithm

This case can be handled with a modified EDF algorithm.
The key idea is to transform the problem from a given set of 
dependent tasks into a set of independent tasks with different 
timing parameters [Chetto90].
This algorithm is optimal for uni-processor systems.

If preemption is not allowed, the heuristic algorithm 
developed by Stankovic and Ramamritham can be used.
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