
1

- 1 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Embedded operating systems
- Requirement: Configurability -

• Configurability
No single RTOS will fit all needs, no overhead for unused
functions tolerated � configurability needed.
– simplest form: remove unused functions (by linker ?).
– Conditional compilation (using #if and #ifdef commands).
– Dynamic data might be replaced by static data.
– Advanced compile-time evaluation useful.
– Object-orientation could lead to a derivation subclasses.
Verification a potential problem of systems with a large
number of derived OSs:
Each derived OS must be tested thoroughly;
potential problem for eCos (open source RTOS from Red
Hat), including 100 to 200 configuration points [Takada, 01].

• Configurability
No single RTOS will fit all needs, no overhead for unused
functions tolerated � configurability needed.
– simplest form: remove unused functions (by linker ?).
– Conditional compilation (using #if and #ifdef commands).
– Dynamic data might be replaced by static data.
– Advanced compile-time evaluation useful.
– Object-orientation could lead to a derivation subclasses.
Verification a potential problem of systems with a large
number of derived OSs:
Each derived OS must be tested thoroughly;
potential problem for eCos (open source RTOS from Red
Hat), including 100 to 200 configuration points [Takada, 01].

- 2 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Example: Configuration of VxWorks

© Windriver

2

- 3 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Embedded operating systems
-Requirement: Disc and network handled by tasks-

• Disc and network handled by tasks instead of
integrated drivers
Many ES without disc, a keyboard, a screen or a mouse.
Effectively no device that needs to be supported by all
versions of the OS, except maybe the system timer.
Relatively slow discs & networks can be handled by tasks.

• Disc and network handled by tasks instead of
integrated drivers
Many ES without disc, a keyboard, a screen or a mouse.
Effectively no device that needs to be supported by all
versions of the OS, except maybe the system timer.
Relatively slow discs & networks can be handled by tasks.

RTOS Standard OS

- 4 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Example: WindRiver Platform Industrial Automation

© Windriver

3

- 5 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Embedded operating systems
- Requirement: Protection is optional-

• Protection mechanisms not always necessary:
ES typically designed for a single purpose,
untested programs rarely loaded, SW considered reliable.
(However, protection mechanisms may be needed for safety
and security reasons).

• Protection mechanisms not always necessary:
ES typically designed for a single purpose,
untested programs rarely loaded, SW considered reliable.
(However, protection mechanisms may be needed for safety
and security reasons).

No desire to implement I/O instructions as privileged
instructions and tasks can be allowed to do their own I/O.

Example: Let switch be the address of some switch
Simply use

load register,switch
instead of OS call.

No desire to implement I/O instructions as privileged
instructions and tasks can be allowed to do their own I/O.

Example: Let switch be the address of some switch
Simply use

load register,switch
instead of OS call.

- 6 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Embedded operating systems
- Requirement: Interrupts not restricted to OS -

• Interrupts can be employed by any process
For standard OS: serious source of unreliability.
Since

–embedded programs can be considered to be tested,
–since protection is not necessary and
–since efficient control over a variety of devices is required,
it is possible to let interrupts directly start or stop tasks
(by storing the tasks start address in the interrupt table).
More efficient than going through OS services.
However, composability suffers: if a specific task is
connected to some interrupt, it may be difficult to add
another task which also needs to be started by an event.

• Interrupts can be employed by any process
For standard OS: serious source of unreliability.
Since

–embedded programs can be considered to be tested,
–since protection is not necessary and
–since efficient control over a variety of devices is required,
it is possible to let interrupts directly start or stop tasks
(by storing the tasks start address in the interrupt table).
More efficient than going through OS services.
However, composability suffers: if a specific task is
connected to some interrupt, it may be difficult to add
another task which also needs to be started by an event.

4

- 7 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Embedded operating systems
- Requirement: Real-time capability-

• Many embedded systems are real-time (RT) systems and,
hence, the OS used in these systems must be real-time
operating systems (RTOSes).

• Many embedded systems are real-time (RT) systems and,
hence, the OS used in these systems must be real-time
operating systems (RTOSes).

- 8 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Real-time operating systems
- Real-time OS (1) -

Def.: (A) real-time operating system is an operating system
that supports the construction of real-time systems

The following are the three key requirements

1. The timing behavior of the OS must be predictable.
∀ services of the OS: Upper bound on the execution time!
RTOSs must be deterministic:

– unlike standard Java,

– short times during which interrupts are disabled,

– contiguous files to avoid unpredictable head
movements.

[Takada, 2001]

Def.: (A) real-time operating system is an operating system
that supports the construction of real-time systems

The following are the three key requirements

1. The timing behavior of the OS must be predictable.
∀ services of the OS: Upper bound on the execution time!
RTOSs must be deterministic:

– unlike standard Java,

– short times during which interrupts are disabled,

– contiguous files to avoid unpredictable head
movements.

[Takada, 2001]

5

- 9 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Real-time operating systems
- Real-time OS (2) -

2. OS must manage the timing and scheduling

– OS possibly has to be aware of task deadlines;
(unless scheduling is done off-line).

– OS must provide precise time services with high
resolution.

[Takada, 2001]

2. OS must manage the timing and scheduling

– OS possibly has to be aware of task deadlines;
(unless scheduling is done off-line).

– OS must provide precise time services with high
resolution.

[Takada, 2001]

- 10 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Real-time operating systems
- Real-time OS (3) -

3. The OS must be fast
Practically important.

[Takada, 2001]

3. The OS must be fast
Practically important.

[Takada, 2001]

6

- 11 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

RTOS-Kernels

Distinction between
• real-time kernels and modified kernels of standard OSes.

Distinction between
• real-time kernels and modified kernels of standard OSes.

Distinction between
• general RTOSes and RTOSes for specific domains,
• standard APIs (e.g. POSIX RT-Extension of Unix, ITRON,

OSEK) or proprietary APIs.

Distinction between
• general RTOSes and RTOSes for specific domains,
• standard APIs (e.g. POSIX RT-Extension of Unix, ITRON,

OSEK) or proprietary APIs.

- 12 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Functionality of RTOS-Kernels

Includes
• processor management,
• memory management,
• and timer management;
• task management (resume, wait etc),
• inter-task communication and synchronization.

Includes
• processor management,
• memory management,
• and timer management;
• task management (resume, wait etc),
• inter-task communication and synchronization.

resource management

7

- 13 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Classes of RTOSes according to R. Gupta
1. Fast proprietary kernels

• Fast proprietary kernels
For complex systems, these kernels are inadequate,
because they are designed to be fast, rather than to be
predictable in every respect

[R. Gupta, UCI/UCSD]

Examples include

– QNX, PDOS, VCOS, VTRX32, VxWORKS.

• Fast proprietary kernels
For complex systems, these kernels are inadequate,
because they are designed to be fast, rather than to be
predictable in every respect

[R. Gupta, UCI/UCSD]

Examples include

– QNX, PDOS, VCOS, VTRX32, VxWORKS.

- 14 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Classes of RTOSes according to R. Gupta
2. Real-time extensions to standard OSs

• Real-time extensions to standard OSes:
Attempt to exploit comfortable main stream OSes.
RT-kernel running all RT-tasks.
Standard-OS executed as one task.

• Real-time extensions to standard OSes:
Attempt to exploit comfortable main stream OSes.
RT-kernel running all RT-tasks.
Standard-OS executed as one task.

+ Crash of standard-OS does not affect RT-tasks;
- RT-tasks cannot use Standard-OS services;

less comfortable than expected

+ Crash of standard-OS does not affect RT-tasks;
- RT-tasks cannot use Standard-OS services;

less comfortable than expected

8

- 15 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Classes of RTOSes according to R. Gupta
3. Research systems trying to avoid limitations

• Research systems trying to avoid limitations.
Include MARS, Spring, MARUTI, Arts, Hartos, DARK,
and Melody

Research issues [Takada, 2001]:
• low overhead memory protection,
• temporal protection of computing resources
• RTOSes for on-chip multiprocessors
• support for continuous media
• quality of service (QoS) control.
Competition between
• traditional vendors (e.g. Wind River Systems) and
• Embedded Windows XP and Windows CE

• Research systems trying to avoid limitations.
Include MARS, Spring, MARUTI, Arts, Hartos, DARK,
and Melody

Research issues [Takada, 2001]:
• low overhead memory protection,
• temporal protection of computing resources
• RTOSes for on-chip multiprocessors
• support for continuous media
• quality of service (QoS) control.
Competition between
• traditional vendors (e.g. Wind River Systems) and
• Embedded Windows XP and Windows CEM

ar
ke

t

- 16 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Middleware

1. Real-time data bases
2. Access to remote objects

1. Real-time data bases
2. Access to remote objects

9

- 17 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Real-time data bases (1)

Goal: store and retrieve persistent information
Transaction= sequence of read and write operations
Changes not final until they are committed
Requested (“ACID”) properties of transactions
1. Atomic: state information as if transaction is either

completed or had no effect at all.
2. Consistent: Set of values retrieved from several

accesses to the data base must be possible in the world
modeled.

3. Isolation: No user should see intermediate states of
transactions

4. Durability: results of transactions should be persistent.

Goal: store and retrieve persistent information
Transaction= sequence of read and write operations
Changes not final until they are committed
Requested (“ACID”) properties of transactions
1. Atomic: state information as if transaction is either

completed or had no effect at all.
2. Consistent: Set of values retrieved from several

accesses to the data base must be possible in the world
modeled.

3. Isolation: No user should see intermediate states of
transactions

4. Durability: results of transactions should be persistent.

- 18 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Real-time data bases (2)

Problems with implementing real-time data bases:
1. transactions may be aborted various times before they

are finally committed.
2. For hard discs, the access times to discs are hardly

predictable.

Problems with implementing real-time data bases:
1. transactions may be aborted various times before they

are finally committed.
2. For hard discs, the access times to discs are hardly

predictable.

Possible solutions:
1. Main memory data bases
2. Relax ACID requirements

Possible solutions:
1. Main memory data bases
2. Relax ACID requirements

10

- 19 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Access to remote objects

Software packages for access to remote objects;
Example:
CORBA (Common Object Request Broker Architecture).
Information sent to Object Request Broker (ORB) via local stub.
ORB determines location to be accessed and sends information
via the IIOP I/O protocol.

Software packages for access to remote objects;
Example:
CORBA (Common Object Request Broker Architecture).
Information sent to Object Request Broker (ORB) via local stub.
ORB determines location to be accessed and sends information
via the IIOP I/O protocol.

Access times not predictable.Access times not predictable.

- 20 - P. Marwedel, Univ. Dortmund, Informatik 12, 2003

Universität DortmundUniversität Dortmund

Real-time (RT-) CORBA

A very essential feature of RT-CORBA is to provide
• end-to-end predictability of timeliness in a fixed priority

system.
• This involves respecting thread priorities between client

and server for resolving resource contention,
• and bounding the latencies of operation invocations.
• Thread priorities might not be respected when threads

obtain mutually exclusive access to resources (priority
inversion).

• RT-CORBA includes provisions for bounding the time
during which such priority inversion can happen.

A very essential feature of RT-CORBA is to provide
• end-to-end predictability of timeliness in a fixed priority

system.
• This involves respecting thread priorities between client

and server for resolving resource contention,
• and bounding the latencies of operation invocations.
• Thread priorities might not be respected when threads

obtain mutually exclusive access to resources (priority
inversion).

• RT-CORBA includes provisions for bounding the time
during which such priority inversion can happen.

