Software Synthesis for
System on Chip

Haobo Yu

Ph.D. Final Defense
Information and Computer Science

Committee Members:
Professor Daniel D. Gajski
Professor Rainer Doemer
Professor Tony Givargis

J
Ph.D. Final Defense copyright£]2004 Haobo Yu ﬁ

Outline

 Introduction

* Related work

* RTOS scheduling refinement
» Code generation

 RTOS targeting

» Experimental results

» Conclusions

J
Ph.D. Final Defense copyright12004 Haobo Yu ﬁ

Introduction

» System level design

— System level description languages (SpecC, SystemC)

— High level system models for exploration and synthesis
 Increasing significance of embedded SW in SoC

— Embedded processors are widely used in SoC design

— Typical SoC contains processor, HW and communication arch.

— Complex SW is needed to drive the system

— 50-70% of SoC design process is used for SW development

(source: Virtual Socket Interface Alliance)

* New method for creating embedded software for SoC

- J
Ph.D. Final Defense copyright£]2004 Haobo Yu ﬁ

Embedded Software for SoC

» Concepts
— Application software
— Real time operating system (RTOS)
— Hardware dependent software (HdS)

* Development Tool
— Processor IP vender (ARM:ADS)
— RTOS venders (WindRiver:Tornado,GreenHill: MULTI)
— FPGA tool (Altera:SOPC Builder, Xilinx:EDK)
— DSP tool (MathWorks:MATLAB, Cadence:SPW)

- J
Ph.D. Final Defense copyright12004 Haobo Yu ﬁ

(&

Embedded SW Design

» System Architect

— Write system spec.
Allocate processors
Select HW / IP
HW / SW communication
Address allocation
 HW Engineer

— Write RTL code

— Logic synthesis

— Layout, place / route...
 SW Engineer

— Write application code

— Write drivers

— Compile / link / debug

System Architect

System Specification
CPU: ARM, OS: uCOSHI,
|P: MPEG, BUS: AMBA.
Address Mapping
OxFO100

OxFF100 |P_BASE

SW Engineer " _HW Engineer

s

e
swW RTL Code

Application SW
RTOS calls
HdS code

Ojbect File (.0)

Logic Synthesis

Physical Synthesis

Custom
Processor HW

Memory

IP Component

Memory

Ph.D. Final Defense

J
copyright£]2004 Haobo Yu ﬁ

(&

Manual vs.

» Manual Coding

Need low level HW
information

Tedious and error-prone

Target specific & lack
portability

Updating is hard
» Software Synthesis

— From a high level functional
specification to code
implementation

— Different from software
compilation

Synthesis

Informal, Formal
non-executable executable
specification specification
T
I
|
Manual coding Software Synthesis
‘ :
Y

SW

Application SW
RTOS calls

Application SW

RTOS calls

HdS code HdS code

Ph.D. Final Defense

J
copyright12004 Haobo Yu ﬁ

Related work

* RTOS Modeling
— Specific target implementations [Tomiyama01]
— Proprietary language & simulation engine [Desmet00]

» Software Synthesis and Code Generation
— From abstract model (UML) [Rational]
— From graphical finite state machine (StateCharts) [Harel90]
— From synchronous programming languages (Esterel) [Boussinot91]
— Reactive real time systems (POLIS) [Baladrin97]
— Software scheduling [Cortadella00]
— OS generation and application targeting [Gauthier01]
— Redefinition and overloading of SystemC class [Herrera03]
— Substituting SystemC modules with C structures [Groetker03]

- J
Ph.D. Final Defense copyright£]2004 Haobo Yu ﬁ

SW Synthesis in System Level Design

System Synthesis

« Architecture exploration
— Schedule SW behaviors . _
Architecture exploration
— Create SW tasks | Parition]
— Evaluate different | Scheduling |
scheduling algorithms
» Back-end

Generate C code |
Generate bus drivers
Target for RTOS Communication model
Compile & Link M -y ———————————- :

|| HW synthesis ‘ | SW synthesis ||

Communication synthesis |

)

3
=3
)
3
]
=1
g nE
=
=1
3
5]
=%
[cX

J
Ph.D. Final Defense copyright12004 Haobo Yu ﬁ

Software Synthesis Flow

RTOS scheduling
refinement

e Two intermediate models
— Multi task model
— C model
* Four model refinement steps Muti task model
— Scheduling refinement
— Code generation
— RTOS targeting
— Compiling & importing
e Three libraries
— RTOS model library
— RTOS adapter library Asss;g"s'{::;;?rfg'a“""
— Target RTOS library (vendor)

—
RTOS
model

|

SW code generation

RTOS targeting

Implementation model

- J
Ph.D. Final Defense copyright£]2004 Haobo Yu ﬁ

Scheduling Refinement

Partitioned model
—
RTOS scheduling RTOS
refinement model

Multi task model

» Behaviors need scheduling
— Static scheduling
— Dynamic scheduling

» Dynamic scheduler

— Actual RTOS is available only
for final implementation

— Model RTOS in SpecC

— Provide general task
management functionality

» Scheduling refinement
— Behaviors => SW tasks

ISS importing
— Multi task model
— Scheduling algorithm

- J
Ph.D. Final Defense copyright12004 Haobo Yu ﬁ

SW code generation

RTOS targeting

I

——
RTOS
adapter

S—
RTOS
library

Scheduling Refinement Steps

e Insert RTOS Model
— RTOS model instantiation
— Create main task

e Task Refinement
— Create software tasks from

parallel behaviors
« Synchronization Refinement model
os.pre_wait();
wait event => wait event;
0s.post_wait();
» Preemption Point Creation
waitfor(T) => os.time_wait(T);

((] RTOS model D

- J
Ph.D. Final Defense copyright£]2004 Haobo Yu ﬁ

()
Scheduling Refinement Example
interrupt
B3 d1_ _d2 # d3 d4
C1 c2
T — M & A
B1

» logical time
0 t1 12 3 t# t5(t6) t7

(a) unscheduled model

inferrupt
task B3| «dl= d2 R E— a4 Inaccuracy due to
c1 c2 timing granularity
task_B2 & e o1 <28
task_PE
» logical time
0 t1 t2 t3 t# t4 t5 t6 t7

L (b) scheduled model)
Ph.D. Final Defense copyright12004 Haobo Yu

C Code Generation From SpecC

e Generate C code for each task

. . . Partiti d del
— Hierarchical behaviors / channels
— Most compiler accept C as input RTOS scheduling

e SpecC constructs

— Behaviors
— Channels
— Methods v
.
adapter

Ports / Port mapping
— Instantiation / Initialization
e C constructs

Assembly & compilation

S—
RTOS
libral

— C struct 1SS importing
— Functions

i
— Pointers

- J
Ph.D. Final Defense copyright£]2004 Haobo Yu ﬁ

RTOS Targeting

* Needs OS support for C code
— Task management API
— Task communication API
— Task synchronization API : v

» Create code for each platform e
— Knowledge about target RTOS API SW code generation
— Lacks portability

Partitioned model

RTOS scheduling
refinement

rgetin RTOS
« A general RTOS API set RT0S fraetng

it

Insert general RTOS API to C code
Implemented by RTOS adapter
C code can be imported to the

ISS importing
system model
C Model

- J
Ph.D. Final Defense copyright12004 Haobo Yu ﬁ

 —
RTOS
library

Host and Target RTOS Adapters

T
|

HWIIP, Bus (SpecC) | SW C Code (Generated)
I

¢ AP Driver |
Channels
SpecC Simulation Engine|

OS adapter

Thread Library

(&

* Host RTOS adapter
— Build on top of thread library

SW C Code (Generated)

nd Channels | OS adapter

RTOS Kernel (vendor)

Hardware Abstraction Layer (HAL) |

Processor ISA

— Link against SpecC simulation engine
— Enable C code co-simulate with SpecC

» Target RTOS adapter

— Middleware between application and RTOS kernel
— Translate general RTOS API to target specific RTOS calls

Ph.D. Final Defense

— Target RTOS adapter libraries for different RTOSs ﬁ)

copyrightt12004 Haobo Yu

(&

Compile and Link

e Compile generated C code

— Compiler for target processor
— Modify / optimize C code

» Link object code

— HAL library
— Specific RTOS library
— Target RTOS adapter

e Implementation model

— Instruction set simulator
— Import binary image
— Cycle accurate simulation

C_ wrapper

app.c? drv.c T

host
adapter.a

Ph.D. Final Defense

J
copyright12004 Haobo Yu ﬁ

Software Synthesis Example

behavi or Bl

{ void main(void)
-}
ehavi or B2

{ void main(void)

behavi or CPU()
{

Bl b1();
B2 b2();
voi d mai n(voi d)

d

par

bl. main();
b2. mai n();
1}

%

behavi or Task_B1(RTOS os)
{ void main(void)

.}
behavi or Task_B2(RTOS os)
{ void main(void)

béhavi or Task_CPU(RTOS os)
{

Task_B2 task_b2(os);
Task_B3 task_b3(os);

struct Task_Bi{.}

voi d Task_Bl1_mai n(struct
Task_B1 *This) {.}

struct Task_B2{.}

voi d Task_B2_mai n(struct
Task_B2 *This) {.}

struct Task_CPU {

struct Task_B1l task_b1l;

struct Task_B2 task_b2 }

voi d Task_CPU_mai n(struct
Task_CPU *This)

{

task_b2.create();
task_b3.create();

os.par_start(); '

par {
b2. mai n();
b3. mai n();

TaskCreat e(&Task_B1_nwi n,
&Thi s->task_b1,0);

TaskCr eat e(&Task_B2_n=i n,
&Thi s- >t ask_b2, 0);

}
b ‘ os. par_end();} '

\ TaskJoi n(NULL) ; '
T

Input Model

Multi Task Model

C Model

Ph.D. Final Defense

J
copyright£]2004 Haobo Yu ﬁ

Experiment

» Developed software synthesis tools for SpecC
— Scheduling refinement tool scos
— Code generation tool sc2c
— Integrated in SoC Design Environment (SCE) toolset

 Examples

GSM Vocoder

JPEG encoder

Motor controller

Mp3 decoder

Inter-task communication examples

Ph.D. Final Defense

J
copyright12004 Haobo Yu ﬁ

SW Code Generation Results

Design Behaviors Channels SW C Code Code \VEGUEL
Tasks (#LoC) Gen. Coding
Sw 109 0 1 9,805 1.41s 98h
Vocoder
HW/SW 107 1 2 9,244 1.57s 92h
- SW 131 S 16 33,519 | 5.98s 335h
P HW/SW 147 7 34 32,092 | 9.24s 320h
SW 36 0 1 1,655 0.21s 16h
JPEG
HW/SW 29 6 2 1,959 0.31s 19h
SwW 29 3 9 2,245 0.28s 22h
Motor
HW/SW 25 8 5 2,300 0.32s 23h

* Generate SW for different system arch. in seconds

» 1000x productivity gain

\ S
Ph.D. Final Defense copyrightt12004 Haobo Yu
s N
Implement GSM voice encoder on FPGA
e Xilinx Virtex-Il FPGA
— Processor: Microblaze
— RTOS: uC/OS-li
— Bus: OPB Bus
—— On-chip | —— csyvocoder sw
Block RAM GSM Vocoder HW
ILMB DLMB
| 1 Interrupt Other OPB
MlcroBIaze Controller | IWESCISIEV]
IOPB DOPB | OPB (On-chip Peripheral Bus)
Off-chi Off-chi)
oree || || e || ac
_

Ph.D. Final Defense

J
copyright12004 Haobo Yu ﬁ

10

(&

Conclusions

Benefits of software synthesis
— Relieves designers from the tedious, error-prone code writing process
— Eliminates the need to maintain two versions of software
Contributions of my dissertation
— Software synthesis flow with well defined design steps
— Demonstrated effectiveness and productivity gain through experiment

— C and SpecC co-simulation enables validation of C code through fast C
model simulation instead of using instruction set simulation

— C model serves as a virtual system prototype for designers to
add/debug/validate new application software to the system

— Defined a way to model RTOSs in SpecC, which enables scheduling
exploration in the early stages of system design

Future work
— Apply software synthesis to models in SystemC
— Introduce more features for RTOS models in SpecC

J
Ph.D. Final Defense copyright£]2004 Haobo Yu ﬁ

(&

TUINK Y

Loz N

J
Ph.D. Final Defense copyright12004 Haobo Yu ﬁ

11

