Software Synthesis for System on Chip

Haobo Yu

Ph.D. Final Defense Information and Computer Science

Committee Members: Professor Daniel D. Gajski Professor Rainer Doemer Professor Tony Givargis

Ph.D. Final Defense

copyright©2004 Haobo Yu

Outline

- Introduction
- Related work
- RTOS scheduling refinement
- Code generation
- RTOS targeting
- · Experimental results
- Conclusions

Ph.D. Final Defense

copyright©2004 Haobo Yu

Introduction

- System level design
 - System level description languages (SpecC, SystemC)
 - High level system models for exploration and synthesis
- Increasing significance of embedded SW in SoC
 - Embedded processors are widely used in SoC design
 - Typical SoC contains processor, HW and communication arch.
 - Complex SW is needed to drive the system
 - 50-70% of SoC design process is used for SW development (source: Virtual Socket Interface Alliance)
- New method for creating embedded software for SoC

Ph.D. Final Defense

copyright©2004 Haobo Yu

Embedded Software for SoC

- Concepts
 - Application software
 - Real time operating system (RTOS)
 - Hardware dependent software (HdS)
- Development Tool
 - Processor IP vender (ARM:ADS)
 - RTOS venders (WindRiver:Tornado,GreenHill: MULTI)
 - FPGA tool (Altera:SOPC Builder, Xilinx:EDK)
 - DSP tool (MathWorks:MATLAB, Cadence:SPW)

Ph.D. Final Defense

copyright@2004 Haobo Yu

Related work

- RTOS Modeling
 - Specific target implementations [Tomiyama01]
 - Proprietary language & simulation engine [Desmet00]
- Software Synthesis and Code Generation
 - From abstract model (UML) [Rational]
 - From graphical finite state machine (StateCharts) [Harel90]
 - From synchronous programming languages (Esterel) [Boussinot91]
 - Reactive real time systems (POLIS) [Baladrin97]
 - Software scheduling [Cortadella00]
 - OS generation and application targeting [Gauthier01]
 - Redefinition and overloading of SystemC class [Herrera03]
 - Substituting SystemC modules with C structures [Groetker03]

Ph.D. Final Defense

copyright@2004 Haobo Yu CECS

SW Synthesis in System Level Design

- Architecture exploration
 - Schedule SW behaviors
 - Create SW tasks
 - Evaluate different scheduling algorithms
- Back-end
 - Generate C code
 - Generate bus drivers
 - Target for RTOS
 - Compile & Link

Ph.D. Final Defense

Experiment

- Developed software synthesis tools for SpecC
 - Scheduling refinement tool scos
 - Code generation tool sc2c
 - Integrated in SoC Design Environment (SCE) toolset
- Examples
 - GSM Vocoder
 - JPEG encoder
 - Motor controller
 - Mp3 decoder
 - Inter-task communication examples

CECS

Ph.D. Final Defense

copyright@2004 Haobo Yu

SW Code Generation Results

Design		Behaviors	Channels	SW Tasks	C Code (#LoC)	Code Gen.	Manual Coding
Vocoder	SW	109	0	1	9,805	1.41s	98h
	HW/SW	107	1	2	9,244	1.57s	92h
Мр3	SW	131	3	16	33,519	5.98s	335h
	HW/SW	147	7	34	32,092	9.24s	320h
JPEG	SW	36	0	1	1,655	0.21s	16h
	HW/SW	29	6	2	1,959	0.31s	19h
Motor	SW	29	3	9	2,245	0.28s	22h
	HW/SW	25	8	5	2,300	0.32s	23h

- Generate SW for different system arch. in seconds
- 1000x productivity gain

Ph.D. Final Defense

Implement GSM voice encoder on FPGA Xilinx Virtex-II FPGA - Processor: Microblaze - RTOS: uC/OS-II - Bus: OPB Bus On-chip GSM Vocoder SW **GSM Vocoder HW** Block RAM DLMB ILMB Other OPB Interrupt MicroBlaze MicroBlaze Controller OPB (On-chip Peripheral Bus) IOPB DOPB Off-chip Off-chip Timer JTAG Memory Memory Ph.D. Final Defense copyright@2004 Haobo Yu

Conclusions

- Benefits of software synthesis
 - Relieves designers from the tedious, error-prone code writing process
 - Eliminates the need to maintain two versions of software
- · Contributions of my dissertation
 - Software synthesis flow with well defined design steps
 - Demonstrated effectiveness and productivity gain through experiment
 - C and SpecC co-simulation enables validation of C code through fast C model simulation instead of using instruction set simulation
 - C model serves as a virtual system prototype for designers to add/debug/validate new application software to the system
 - Defined a way to model RTOSs in SpecC, which enables scheduling exploration in the early stages of system design
- Future work
 - Apply software synthesis to models in SystemC
 - Introduce more features for RTOS models in SpecC

Ph.D. Final Defense

copyright©2004 Haobo Yu

Ph.D. Final Defense

copyright©2004 Haobo Yu CECS

